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Private Income Forecasts

I SCE survey question:

”What do you believe your annual earnings will be in 4 months?”

I Assume your beliefs are summarized by this distribution
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I Research Question: Which measure do rational respondents report?

I Reasonable answers: the mean, median, mode or anything in between.
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Economic Examples

(1) SCE Labor Market Survey of the New York Fed survey question:

”What do you believe your annual earnings will be in 4 months?”1

(2) Greenbook GDP Forecasts:

”The staff [...] prepares projections about how the economy will fare [...].”2

(3) Survey of Professional Forecasters (SPF):

”The forecasts [...] are the forecasters’ projections [...]”3

1
Source: Questionnaire for SCE Labor Market Survey.

https://www.newyorkfed.org/medialibrary/media/research/microeconomics/interactive/downloads/sce-labor-questionnaire.pdf
2

Source: https://www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data
3

Source: Croushore, D. and Stark, T. (2019) Fifty Years of the Survey of Professional Forecasters. Federal Reserve Bank of Philadelphia.

https://www.philadelphiafed.org/-/media/frbp/assets/economy/articles/economic-insights/2019/q4/eiq419.pdf
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A General Class of Central Tendency Forecasts

I General class of central tendency measures: any convex combination of the
mean, median, and mode:

Xcentral
t (w) = w1X

mean
t + w2X

median
t + w3X

mode
t

I These are the famous “three Ms” of statistics.

I The first two Ms are widely studied, but the third:

I Dalenius (1965, JRSSA): “The Mode – A Neglected Statistical Parameter”

I New results on loss and identification functions for the mode

I The mode is the most intuitive but also the most complicated measure.
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An Identification Problem

I We would like to estimate the weights w in

Xcentral
t (w) = w1X

mean
t + w2X

median
t + w3X

mode
t

I But, the weights can be

I un-identified
I weakly identified
I strongly identified
I partially identified

I A valid testing approach must accommodate all these possibilities

I We construct confidence sets through inverted test statistics from Stock and
Wright (2000, ECMA)
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I strongly identified
I partially identified

I A valid testing approach must accommodate all these possibilities

I We construct confidence sets through inverted test statistics from Stock and
Wright (2000, ECMA)
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Illustration of the Confidence Set

mode

mean median

90% confidence set rejected
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A Mode Forecast Rationality Test
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A Mean Forecast Rationality Tests

I Yt+1: variable of interest
I Xt: 1-step ahead forecast for Yt+1

I Ft: information available to the forecaster at time t
I ht ∈ Rk: Ft-measurable vector of instruments

I Mean forecast rationality:

H∗0 : Xt = E[Yt+1|Ft] a.s. (1)

I This is often tested by using instruments ht = (1, Xt):

H0 : E
[
(Xt − Yt+1) h>t

]
= 0 (2)

I Intuition: the forecast error εt = Xt − Yt+1 is zero on average

I Using the strict identification function V Mean
t (εt) = εt:

H0 : E
[
V Mean
t (εt) h>t

]
= 0 (3)
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Mean Identification Function
V Mean
t (εt) = εt

εt

Testing Forecast Rationality for Measures of Central Tendency Timo Dimitriadis



Introduction Mode Rationality Test Forecasts of Central Tendency Applications Conclusion

A Median Forecast Rationality Test

I We want to test:

H∗0 : Xt = Median[Yt+1|Ft] a.s. (4)

I Instead, we test the necessary hypothesis:

H0 : E
[
V Med
t (εt) h>t

]
= 0 (5)

I Main difference: median identification function:

V Med
t (εt) = 1{εt>0} − 1{εt<0} (6)
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Median Identification Function
V Med
t (εt) = 1{εt>0} − 1{εt<0}

εt
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What about the Mode?

I No identification function exists for the mode (Heinrich, 2014, Biometrika)

I We consider asymptotic identifiability of the mode through the (smoothed)
modal midpoint

MMP(δ) = arg max
x

P
(
Y ∈ [x− δ/2, x+ δ/2]

)
(7)

I The interval of fixed length δ which contains the highest probability.
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What about the Mode?

I We consider asymptotic identifiability of the mode through the (smoothed)
modal midpoint

SMMP(K, δ) = arg max
x

E
[1
δ
K
(
Y − x
δ

)]
(8)

I e.g. the Gaussian density function K(·) = φ(·)
I a rectangular kernel recovers the MMP from the previous slides

I Asymptotic Identification Function for the smoothed modal midpoint:

V Mode
t,δT

(εt) = 1
δ2
T

K′
(−εt
δT

)
(9)

I Let δT → 0 converge “slowly” with the sample size T

Details on (Asymptotic) Elicitability
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(Asymptotic) Mode Identification Function
V Mode
t,δT

(εt) = 1
δ2

T

K′
(−εt
δT

)

εt
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A (Nonparametric) Mode Forecast Rationality Test

I Recall: We want to test

H∗0 : Xt = Mode[Yt+1|Ft] a.s. (10)

I We test instead:

H0 : E
[
V Mode
t,δT

(εt) h>t
]

= 0 (11)

Theorem 1
Under H∗0 and given Assumption 1, it holds that

δ
3/2
T T−1/2

∑T−1

t=1
V Mode
t,δT

(εt) h>t
d−→ N (0,ΩMode), (12)

and

JT = 1
Tδ3

T

(∑
t
V Mode
t,δT

(εt)h>t
)

Ω̂−1
T,Mode

(∑
t
V Mode
t,δT

(εt)ht
)

d−→ χ2
k. (13)

I Use the test statistic JT and compare it to χ2
k critical values.

Assumption 1 Bandwidth Choice Covariance Estimation Test Power
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Forecasts of Central Tendency
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Identifying the Measure of Central Tendency

I Test whether forecasts are rational for some measure of central tendency.

I Central tendency: convex combination of the functionals:

Xcentral
t (w) = w1X

mean
t + w2X

median
t + w3X

mode
t (14)

I Convex combinations not elicitable/identifiable. What now?
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Identifying the Measure of Central Tendency

I Solution: Convex combination of identification functions:

φt,T (θ) = ht θ
>

 ŵT,Mean εt
ŵT,Med (1{εt>0} − 1{εt<0})
ŵT,Mode δ

−1/2
T K′

(−εt
δT

)
 , (15)

where ŵT,• are possibly estimated weights.

I Motivated by a forecaster minimizing a convex combination of loss functions.

I Formally, we test the null hypothesis:

H0 : ∃ θ0 ∈ Θ s.t. lim
T→∞

E [φt,T (θ0)] = 0. (16)
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Infeasible Estimation of the Combination Weights

I The GMM objective function:

ST (θ) =
[
T−1/2

∑T−1

t=1
φt,T (θ)

]>
Σ̂−1
T (θ)

[
T−1/2

∑T−1

t=1
φt,T (θ)

]
I Think if φt,T (θ) as a moment condition in the GMM context

I Intuition: try to find a value of θ such that T−1/2∑
t
φt,T (θ) is close to zero

I The standard approach: estimate θ by minimization of ST (θ)

I θ might be strongly, weakly, partially or un-identified

I But: We cannot consistently estimate θ

I We get asymptotically valid confidence sets through inverted test statistics
(Stock and Wright, 2000, ECMA)
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Confidence Sets for the Combination Weights

Theorem 2
Given the null hypothesis,

H0 : ∃ θ0 ∈ Θ s.t. lim
T→∞

E [φt,T (θ0)] = 0, (17)

and given Assumption 2, for the true, but unknown parameter(s) θ0,

ST (θ0) d−→ χ2
k. (18)

Corollary

Given Assumption 2, the set

Θ̂∗T =
{
θ ∈ Θ : ST (θ) ≤ χ(−1)

k (1− α)
}

(19)

is an asymptotically valid 100(1− α)% confidence set.

Assumption 2 Confidence Set Power
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Illustration of the Results
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Illustration of the Identification Problem

(a) Point Identification
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(b) Set Identification
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(d) Weak Identification

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

mode

mean median

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

mode

mean median

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

mode

mean median

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

mode

mean median

low income high income

private
non private

confidence sets ● ● ●90% 95% rejected

Testing Forecast Rationality for Measures of Central Tendency Timo Dimitriadis



Introduction Mode Rationality Test Forecasts of Central Tendency Applications Conclusion

Simulation Study

I Both our methods work well in finite samples.

Simulation Study Mode Rationality Test Simulation Study Measure of Centrality

Testing Forecast Rationality for Measures of Central Tendency Timo Dimitriadis



Introduction Mode Rationality Test Forecasts of Central Tendency Applications Conclusion

Applications

Testing Forecast Rationality for Measures of Central Tendency Timo Dimitriadis



Introduction Mode Rationality Test Forecasts of Central Tendency Applications Conclusion

Application I: SCE Income Forecasts

I Data from the Survey of Consumer Expectations of the New York Fed.

I T = 3, 916 responses from more than 2, 000 individuals; interviewed between
March 2015 and March 2018.

I Survey question:

”What do you believe your annual earnings will be in 4 months?”

I They also report their realized income 4 months later.
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SCE Income Forecasts
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I best rationalized as mode forecasts, i.e. as the most likely outcome.
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SCE Income: Stratified by Past Income and Age
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I Low Income & under 40 respondents cannot rationally forecast their income.
I More stratifications in the paper.
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Application II: GDP Greenbook Forecasts

I We use one-quarter-ahead Greenbook forecasts of US GDP growth produced by
the Fed Board

I The sample is from 1967Q2 to 2014Q1; T = 187 observations
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GDP Greenbook Forecasts
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I always rationalizable as mean forecasts
I in the last vintage also as median forecasts
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Application III: No-Change Exchange Rate Forecasts

I Meese and Rogoff (1983, JIE): exchange rate changes are unpredictable when
using the squared-error loss function.

I This implies that the lagged exchange rate Xt = Yt is a rational (optimal)
mean forecast for Yt+1.

I Are the lagged exchange rates also rational median and mode forecasts?

I We use daily data on USD/EUR, JPY/EUR and GBP/EUR exchange rates
from May 2000 to June 2019; T = 4, 978 observations.

I We use ht = (1, Yt − Yt−1) as instruments for stationarity reasons.
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Random Walk Forecasts of Exchange Rates
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I no-change exchange rate forecasts are rationalizable as mean forecasts.
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Conclusion

I Economic surveys and forecasting tasks generally request a point forecast:
I they are vague about the specific quantity to be reported
I reasonable respondents can interpret this request in many ways

I We propose new methods to test forecast rationality of some unknown
measure of central tendency:

I we use a convex combination nesting the mean, median, and mode
I we establish asymptotic elicitability/identifiability of the mode
I we overcome an inherent identification problem
I our method provides confidence sets of rational centrality measures

I Three applications: micro, macro, finance
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Thank you for your attention!
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Some Related Work
I Mode estimation: Parzen (1962, AMS), Eddy (1980, AoS), Romano (1988, AoS),

Kemp and Santos Silva (2012, JoE), Kemp et al. (2019, JBES)
I we draw on this for implementing mode forecast rationality test

I Mode forecasting and elicitability: Gneiting (2011, JASA), Heinrich (2014,
Biometrika), Fissler and Ziegel (2016, AoS)

I we draw on these in defining asymptotic elicitibility of the mode

I Survey forecasts and responses: Manski (2004, ECMA), Engleberg, Manski
and Williams (2009, JBES), Kröger and Peirrot (2019, WP)

I motivates our consideration of multiple measures of central tendency

I Rationality under unknown loss: Elliott, Komunjer and Timmermann (2005,
REStud) (EKT), Patton and Timmermann (2007, JASA)

I like EKT we nest the mean & median as special cases
I unlike EKT we consider central tendency measures
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Elicitability and Identifiability

I A statistical functional Γ is said to be elicitable (Gneiting, 2011, JASA) if, for
Y ∼ F , there exists a loss function L where

Γ (F ) = arg min
x

E [L (x, Y )]

I Alternatively, it is identifiable if there exists an identification function V
such that

0 = E [V (x, Y )] ⇔ x = Γ (F )

I one can think of V (x, Y ) as ∂L (x, Y ) /∂x
I for the mean, V (x, Y ) = (x− Y ) = the forecast error
I for the median, V (x, Y ) = 1 {Y > x} − 1 {Y < x}

I If the forecast is elicitable, then a natural way to test rationality of
forecast x is via the first-order condition:

0 = E [V (x, Y ) · h] for h ∈F

Asymptotic Elicitability of the Mode
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The mode is asymptotically elicitable

Definition: A functional Γ is asymptotically elicitable relative to the class of
distributions P if there exists a sequence of elicitable functionals Γk such that
Γk (P )→ Γ (P ) for all P ∈ P .

Proposition: Let P denote the class of distributions consisting of absolutely
continuous unimodal distributions with bounded density and assume K is is
positive, smooth, log-concave, and

∫
K (u) du = 1. Then

Γδ = arg min
x

E
[1
δ
K
(
Y − x
δ

)]
is well defined for all δ > 0, and

Γδ → Mode (P ) as δ → 0 for all P ∈ P .

Asymptotic Elicitability of the Mode
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The Relationship to Mincer-Zarnowitz Tests

I Mincer and Zarnowitz (1969) propose to fit the (mean) regression

Yt+1 = α+ βXt + εt, where E[εt|Ft] = 0, (20)

and to test H0 : (α, β) = (0, 1).

I Corresponding first-order moment conditions

E
[
(Xt − Yt+1) · (1, Xt)>

]
= 0. (21)

I This is a special case of rationality tests for ht = (1, Xt).
I A similar MZ-test for the mode could be used by using a mode regression of

Kemp and Santos Silva (2012, JoE) and Kemp et al. (2019, JBES)
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Assumption 1

(A1)
(
εt,ht

)
is a stationary and ergodic sequence

(A2) E
[
||ht||2+δ] <∞

(A3) the matrix E
[
hth

>
t

]
has full rank

(A4) the conditional distribution of εt = Xt − Yt+1 given Ft is absolutely contin-
uous with three times continuously differentiable density ft(·) and bounded
derivatives.

(A5) K : R → R, u 7→ K(u) is a continuously differentiable kernel function such
that: (i)

∫
K(u)du = 1, (ii) supK(u) ≤ c < ∞, (iii) supK′(u) ≤ c < ∞,

(iv)
∫
uK(u)du = 0, (v)

∫
u2K(u)du = c < ∞, (vi)

∫ (
K′(u)

)2du =
M <∞.

(A6) δT is a strictly positive and non-stochastic bandwidth such that for T →∞,
(i) TδT →∞, (ii) Tδ7

T → 0

Mode Rationality Test
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Bandwidth Selection

I Theory requires δT ∝ T−a with a ∈ (1/7, 1) . Optimal rate if a = 1/7 + ε.

I Kemp et al. (2019, JBES) used the rule:

δT = 3.2× M̂AD [|Xt − Yt+1|]× T−0.143

I We found we needed to generalize this to allow the bandwidth to vary with
the degree of skewness: bandwidth needs to shrink for skewed data

I We use

δT = 3.2× exp {−3.2 |γ̂|} × M̂AD [|Xt − Yt+1|]× T−0.143

where

γ̂ = 3 Ê [Xt − Yt+1]− M̂edian [Xt − Yt+1]
V̂ ar [Xt − Yt+1]1/2

is Pearson’s second coefficient of skewness.
Mode Rationality Test
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Covariance Estimation
I Asymptotic Covariance

ΩMode = E
[
hth

>
t ft(0)

] ∫
K′(u)2du (22)

I Covariance Estimator (following Kemp and Santos Silva (2012, JoE) and Kemp
et al. (2019, JBES))

Ω̂T,Mode = 1
T

T∑
t=1

δ−1
T K′

(
Xt − Yt+1

δT

)2
hth

>
t (23)

Theorem 3
Under Assumption 1, it holds that

Ω̂T,Mode
P−→ ΩMode. (24)

I The matrix (22) is known from the asymptotic theory of quantile regression.
I Engle and Manganelli (2004, JBES) use an indicator function instead of K(·).

Mode Rationality Test
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Test Power

I Our mode rationality test has power against the general alternative

HA : E
[
f ′t(0)ht

]
6= 0 for all t = 1, . . . , T. (25)

Theorem 4
Assume that Assumption 1 holds and that Tδ3

T →∞. Then, under the
alternative hypothesis HA, it holds that

P (JT ≥ c)→ 1 (26)

for any constant c ∈ R.
Mode Rationality Test
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Assumption 2

Besides Assumption 1, it holds that

(B1) There exist θ0 ∈ Θ and sequences φ∗t,T (θ0) and ut,T (θ0), such that

φ̃t,T (θ0) := φ∗t,T (θ0) + ut,T (θ0), (27)

and

(a)
{
T−1/2φ∗t,T (θ0),Ft+1

}
is a martingale difference sequence.

(b) T−1∑T

t=1

(
ut,T (θ0)λ

)2 P−→ 0 and∑T

t=1 E
[
||T−1/2ut,T (θ0)||2+δ]→ 0

(c) T−1∑T

t=1 ut,T (θ0)φ̃t,T (θ0) P−→ 0 and
T−1∑T

t=1 E
[
ut,T (θ0)φ̃t,T (θ0)

]
→ 0

(B2) E
[
ε2
t

]
<∞

(B3) ŴT,Mean
P−→WMean, ŴT,Med

P−→WMed, and ŴT,Mode
P−→WMode for

some positive definite matricesWMean,WMed andWMode.
Identifying the Measure of Centrality
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Discussion of Assumption (B1)

I Assumption (B1) of an approximate MDS is weaker than the standard MDS
assumption,

∃ θ0 ∈ Θ s.t.
{
T−1/2φ̃t(θ0),Ft+1

}
is a MDS. (28)

I The classically imposed (weaker) MDS assumption

∃ θ0 ∈ Θ s.t. E
[
φ̃t(θ0)

]
= 0, (29)

is too weak for our case.

I Given (29), in order to apply a CLT for stationary and ergodic (or strong
mixing) assumptions without the MDS assumption, we need that
moments of order 2 + δ (or r > 2) are finite, which is not fulfilled for the
mode case as these moments diverge arbitrarily slowly through the
bandwidth parameter δT .

Identifying the Measure of Centrality
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Discussion of Assumption (B1) II

Assumption (B1) can easily be shown to hold for the three vertices, where the
forecast is the mean, median or mode:

I When Xt is a mean or median forecast (i.e. θ0 = (1, 0, 0) or θ0 = (0, 1, 0)), set
ut,T (θ0) = 0 and

{
T−1/2φ̃t,T (θ0),Ft+1

}
is obviously a MDS.

I When Xt is the true conditional mode of Yt+1, (i.e. θ0 = (0, 0, 1)), set

ut,T (θ0) = Et
[
φ̃t,T (θ0)

]
= (TδT )−1/2Et

[
K′
(−εt
δT

)]
h>t . (30)

I When Xt is a convex combination of a mean and median forecast, i.e.
θ0 = (ξ, 1− ξ, 0) for some ξ ∈ [0, 1], we set ut,T (θ0) = 0 and{
T−1/2φ̃t,T (θ0),Ft+1

}
is again a MDS.

I When Xt is a convex combination with non-zero weight on the mode
Assumption (B1) is difficult to verify.
Identifying the Measure of Centrality
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Practical Choice of the Instruments

I The instruments
I must be Ft-measurable (known to the forecaster at time t)
I should span as much information as possible in Ft
I should be uncorrelated

I ht = (1, Xt) is an obvious starting point for all applications

I Examples of further variables that might be interesting:
I Income Application: covariates of the forecaster, past reported income
I GDP Application: forecast revisions, macro-economic variables
I FOREX Application: macro-economic variables
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Simulation Setup: Bias
I Generate data from a skewed normal AR(1)-GARCH(1,1) model:

Yt+1 = 0.5Yt + σt+1 εt+1, (31)

σ2
t+1 = 0.1 + 0.1Y 2

t + 0.8σ2
t (32)

εt ∼ SN (0, 1, η) (33)

I Optimal mode forecast:

X̃t = 0.5Yt + σt+1 Mode(εt+1) (34)

I Misspecified forecasts:

Bias: Xt = X̃t + κ1σX , where σX =
√

Var(X̃t) (35)

Noise: Xt = X̃t +N (0, κ2σ
2
X). (36)

I We vary the following:
I misspecification: κ1 ∈ [−1, 1] and κ2 ∈ [0, 1]
I skewness: η ∈ {0, 0.1, 0.25, 0.5}
I sample size: T ∈ {100, 500, 2000}
I instruments: ht ⊆ {1, Xt, Yt−1, Xt−1 − Yt−1}
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Size

I nominal size = 0.1

ht = 1 ht = (1, Xt)

skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5

T = 100 0.085 0.088 0.094 0.126 0.094 0.086 0.096 0.116
T = 500 0.112 0.113 0.124 0.135 0.111 0.107 0.116 0.125
T = 2000 0.107 0.111 0.123 0.125 0.104 0.180 0.114 0.111

ht = (1, Xt, Yt−1) ht = (1, Xt, Yt−2, et−1)

skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5

T = 100 0.082 0.082 0.084 0.102 0.074 0.068 0.074 0.088
T = 500 0.108 0.107 0.104 0.118 0.103 0.103 0.102 0.111
T = 2000 0.102 0.103 0.114 0.109 0.101 0.101 0.114 0.109
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Power ht = (1, Xt)
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Measure of Centrality: Simulation Setup
I Generate data from a skewed normal AR(1)-GARCH(1,1) model:

Yt+1 = 0.5Yt + σt+1 εt+1, (37)

σ2
t+1 = 0.1 + 0.1Y 2

t + 0.8σ2
t (38)

εt ∼ SN (0, 1, η) (39)

I We choose:
I sample size: T = 2000
I instruments: ht = (1, Xt)
I skewness: η ∈ {0, 0.5}

I Optimal Forecasts:

XMode
t = 0.5Yt + σt+1 Mode(εt+1) (40)

XMean
t = 0.5Yt + σt+1 Mean(εt+1) (41)

XMedian
t = 0.5Yt + σt+1 Median(εt+1) (42)

XMean−Med−Mode
t = 1/3XMean

t + 1/3XMedian
t + 1/3XMode

t (43)

XMean−Mode
t = 1/2XMean

t + 1/2XMode
t (44)

XMedian−Mode
t = 1/2XMedian

t + 1/2XMode
t (45)
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Measure of Centrality Coverage Rates, skew = 0
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Measure of Centrality Coverage Rates, skew = 0.5
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