

Foreseen Risks

João F. Gomes, Marco Grotteria, and Jessica A. Wachter

May 15, 2019

João F. Gomes, Marco Grotteria, and Jessica A. Wachter

- Schularick & Taylor (AER, 2012) show that credit booms precede the sharpest economic contractions
 - They suggest that the credit booms cause contractions
- Reinhart and Rogoff (2009), Mian, Sufi, and Verner (2017) and Lopez-Salido, Stein, and Zakrajsek (2017) make similar arguments.
- A causal chain from credit booms to economic contractions suggests a role for central banks in "managing the credit cycle."

- We present a quantitative model of banking in the spirit of Merton (1978).
- We introduce a business cycle through time-varying risk of rare events.
- We show how bank's changing incentives to lend can produce a *correlation* between credit booms and subsequent economic contractions.
- However, there is no causation in the model.

Definition

A bank is an investment management company whose risky investments are financed by equity and guaranteed deposits.

Bank i	
Government Bonds	Deposits (D_{it})
Loans	Retained Equity
Assets (A_{it})	

- Bank *i* enters period *t* with book equity BE_{it} and deposits D_{it} .
- The bank chooses its dividend & pays costs; what's left is invested.

$$A_{it} = BE_{it} + D_{it} - Div_{it} - \Phi_{it}.$$

 The bank invests in a loan portfolio (r^L) and in government bonds (r^G):

$$r_{i,t+1}^{A} = \varphi_{it}r_{i,t+1}^{L} + (1 - \varphi_{it})r_{t+1}^{G}.$$

• Evolution of book equity:

$$BE_{i,t+1} - BE_{it} = A_{it}r_{i,t+1}^A - r^D D_{it} - Div_{it} - \Phi_{it}$$

• Equivalently: $BE_{i,t+1} = (1 + r_{i,t+1}^A)A_{it} - (1 + r^D)D_{it}$.

- r^L and r^G are competitive rates (they solve the rep. agents' Euler equation).
- $r^D < E[r^G]$ Deposits insurance implies that depositors accept low rates.
- The bank terminates immediately if $BE_{it} < 0$ and equityholders receive nothing.
- Banks face the following cost function

$$\Phi(A_{it}, D_{it}, A_{i,t-1}) = \underbrace{\eta_B A_{i,t-1} \left(\frac{A_{it} - A_{i,t-1}}{A_{i,t-1}}\right)^2}_{\text{Adjustment costs}} + \underbrace{\frac{fD_{it} \mathbbm{1}_{D_{it} > \chi A_{it}}}{\text{Regulatory constraint}}$$

Deposit rates lie below Treasury bill rates, and are more stable

• See Drechsler, Savov, and Schnabl (2017).

- Assume constant relative risk aversion and preference for early resolution of uncertainty
- To obtain reasonable quantitative implications, assume risk of economic crisis.
- Set up of Gourio (2012) and Wachter (2013)

• Consumption:

$$C_{t+1} = C_t e^{\mu_c + \sigma_c \epsilon_{c,t+1} + \xi x_{t+1}}$$

where $\xi < 0$. $x_{t+1} = 1$ with probability p_t , where

$$\log p_{t+1} = (1 - \rho_p) \log \bar{p} + \rho_p \log p_t + \epsilon_{p,t+1}$$

Stochastic discount factor

$$M_{t+1} = \beta^{\theta} \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\frac{S(p_{t+1})+1}{S(p_t)}\right)^{\theta-1},$$

where $S(p_t)$ is the wealth-consumption ratio, and $\theta = \frac{1-\gamma}{1-\frac{1}{\psi}}$.

Loans to households

- The bank holds a diversified portfolio of loans with face value (κ) and current collateral value, W_{ijt}
- The ex-post repayment (at time t + 1) for each loan j made by bank i is given by

$$\kappa P(W_{ij,t+1} \geq \kappa) + (1 - \mathscr{L})W_{ij,t+1}P(W_{ij,t+1} \leq \kappa)$$

where ${\mathscr L}$ is the loss in default

• The collateral value evolves according to

$$W_{ij,t+1} = W_{ijt} e^{\xi x_{t+1} + \omega_{i,t+1} + \epsilon_{j,t+1}}$$

where $\epsilon_{j,t+1}$ is loan-specific and $\omega_{i,t+1}$ is bank-specific.

• A crisis (x_{t+1} = 1) increases the probability that loans go into default.

Market value of equity

• The bank's market equity is the discounted value of future dividends:

$$V_{it} = \mathbb{E}_t \left[\sum_{s=t}^{T_i^* - 1} M_{t+s} Div_{is} \right], \quad t < T_i^*,$$

where

$$T_i^* = \inf\{t : BE_{it} < 0\}$$

otherwise $V_{it} = 0$.

 Investors choose policies to maximize market equity, leading to the recursive formulation:

$$V_{i}(BE_{it}, A_{i,t-1}, D_{it}, p_{t}) = \max_{\varphi_{it}, Div_{it}} Div_{it} + \mathbb{E}_{t} \left[M_{t+1}V_{i}(BE_{i,t+1}, A_{it}, D_{i,t+1}, p_{t+1})\mathbb{1}_{BE_{i,t+1} > 0} \right]$$

• Scale the problem by deposits.

$$\widetilde{v}(a_{i,t-1},p_t) = \frac{V_i(BE_{it},A_{i,t-1},D_{it},p_t) - BE_{it}}{D_{it}},$$

where
$$a_{it} = \frac{A_{it}}{D_{it}}$$
 and $be_{it} = \frac{BE_{it}}{D_{it}}$.

- Franchise value is the (scaled) difference between market and book equity.
- Maximizing total value and scaled franchise value is the same at any period *t*.

- Banks face a moral hazard problem (maximizing equity payouts and total payouts not the same)
- However, main business of the bank, taking in deposits and investing in assets, is highly profitable ⇒
- Investors wish to avoid shutdown, both now and in the future.

- As the probability of a crisis rises, however, the bank's incentives change.
- The business of the bank is less profitable.
- The probability of shutdown increases, and avoiding it entirely becomes too costly.
- The bank shifts from being a "good bank", making safe investment and seeking to stay in business, to being a "bad bank," taking advantage of the subsidy offered to depositors.

Optimal bank assets as a function of crisis probability

• Optimal bank assets (lending), scaled by deposits.

Portfolio allocation

 ϕ is the allocation to risky loans.

- What explains the shift from "good bank" to "bad bank" at higher levels of the crisis probability?
- Franchise value decreases as a function of the crisis probability.
- At higher levels of p_t , protecting the (now lower) value by increasing assets becomes costlier.
- The bank "gambles for resurrection."
 - A good outcome generates high returns for the equity holders.
 - A bad outcome results in being shut down; however, if shutdown is likely regardless, equityholders cannot be further penalized.

- Endogenous shifts in r^G exacerbate risk shifting.
- As p_t rises, r^G falls due to precautionary motives.
- Thus it is harder to protect franchise value by investing in safe assets.

- When the environment is riskier, banks may increase leverage, and may allocate assets to riskier loans.
- Within a production model, higher *p_t* leads endogenously to lower growth (Gourio, 2012; Gomes, Grotteria, Wachter 2018)
- Risky lending by banks can co-occur with lower future growth, without *causing* lower future growth.

Frequency of crises by lagged credit growth

Average frequency of a crisis in year t conditioning on a given quintile of credit growth from year t - 5 to t. Data are from Jorda, Schularick, and Taylor (2016). In the model, a crisis occurs when the 1-year GDP growth rate is in the bottom 4% of its distribution. In the data, credit is scaled by GDP.

GDP growth and Lagged Household Debt

The x-axis shows the growth rate in household debt from t - 4 to t - 1 (in the data, household debt is scaled by GDP). The y-axis shows the GDP growth rate from t to t + 3. Data are from 39 countries from 1961 to 2012.

In the years directly preceding the crisis:

- Pessimism rose.
- 2 Banks increased their leverage
- Franchise values fell.
- Banks increased risky lending

Rising pessimism

Note: The fraction of households answering the question: "Generally speaking, do you think now is a good time or a bad time to buy a house?" with "now is a bad time."

João F. Gomes, Marco Grotteria, and Jessica A. Wachter

Foreseen Risks

An increase in leverage

Note: Sum of total liabilities dividend by the sum of market capitalization and total liabilities across banks.

Wachovia Corp.

Jan 2005 Jan 2006 Jan 2007 Jan 2008 Jan 2009

0.

Declining franchise value

Note: Aggregate market-to-book across bank holding companies.

Increases in risky lending

Note: The sum of Treasury and agency securities and cash assets divided by sum of total assets across commercial banks.

- Many policy interventions can be viewed as a means of further subsidizing banks' borrowing costs.
- To the extent that these, or any policy, increases franchise value
- They might *decrease* lending.

Unintended consequences of strengthening banks

 Percent of assets (φ) allocated to loans as a function of crisis probability for low (benchmark) and high subsidies.

- Though subject to moral hazard, banks' desire to maintain franchise value usually prevents them from taking undue risks.
- However, as the economic outlook darkens, incentives can change.
 - Fragile banks have more incentives to make risky loans
 - Even though the expected outcome of the loans is less favorable than when the economy was safer.
- Thus credit booms can predict downturns, even though there is no causation.
- Attempting to increase lending by shoring up bank's balance sheets may have the opposite effect.
- More broadly: Regulators may face a tradeoff between growth and stability.