Discussion of "A Macroeconomic Framework for Quantifying Systemic Risk"

by Zhiguo He and Arvind Krishnamurthy

Nina Boyarchenko

Federal Reserve Bank of New York and CEPR

Annual Spring Bundesbank Conference 2019

May 15, 2019

The views expressed here are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.

Overview

- Equilibrium model with financial intermediaries, households and productive firms
- Occasionally binding (market) equity constraint on intermediaries; entry/exit of individual intermediaries
- \Rightarrow Stochastic steady state distribution
 - Use to study conditional systemic risk probabilities
 - Given realized shocks
 - Under alternative leverage assumptions

Comments

- 1. How to measure intermediary constraints?
- 2. Crisis probabilities

Intermediary constraints

Two concepts of leverage:

- Book: ratio of book assets to book equity
- Market: ratio of enterprise value to market equity

Enterprise value: book value of debt + market value of equity

Which do banks control directly?

Leverage cyclicality

	Asset Growth			Enterprise Value Growth		
	(1)	(2)	(3)	(4)	(5)	(6)
Book Leverage Growth	0.245***	0.261***	0.265***			
Market Leverage Growth				-0.058^{***}	-0.017	-0.016
Adjusted R ²	0.105	0.194	0.191	-0.002	0.097	0.080
Observations	17443	17453	17443	17423	17433	17423
Firm FE	Yes	No	Yes	Yes	No	Yes
Time FE	No	Yes	Yes	No	Yes	Yes

- Universe: commercial banks (SIC codes 6000 6200), broker-dealers (SIC codes 6200 – 6300, 6712)
- Book leverage procyclical both in TS and XS
- Market leverage countercyclical in TS, no relationship in XS
- High R^2 for asset growth

Leverage cyclicality

	Asset Growth			Enterprise Value Growth			
	(1)	(2)	(3)	(4)	(5)	(6)	
Book Leverage Growth	0.076**	0.102***	0.105***				
Market Leverage Growth				-0.339^{***}	-0.259^{***}	-0.260^{***}	
Adjusted R ²	-0.004	0.086	0.071	0.209	0.295	0.284	
Observations	24818	24835	24818	24796	24813	24796	
Firm FE	Yes	No	Yes	Yes	No	Yes	
Time FE	No	Yes	Yes	No	Yes	Yes	

- Universe: commercial banks (SIC codes 6000 6200), broker-dealers (SIC codes 6200 – 6300, 6712)
- Book leverage procyclical both in TS and XS
- Market leverage countercyclical in TS, no relationship in XS
- High R^2 for asset growth

Leverage and book-to-market ratio

Market leverage moves one-to-one with B/M ratio

Leverage and book-to-market ratio

- Market leverage moves one-to-one with B/M ratio
- Low correlation between book leverage and B/M ratio
- Not about accounting standards: broker-dealers mark-to-market; commercial banks use historical-cost accounting

Big picture

Structural model \Rightarrow correctly diagnose crisis risk only if realistic transmission mechanism/state characterization

- Model-implied probability of crisis as of 2008 Q1 (at the distress boundary):
 - 3% for 1 year
 - 16% for 2 year
 - 44% for 5 year
- Paper argues low probability due to hidden leverage; if incorporate also SIV/repo leverage:
 - 10% for 1 year
 - 30% for 2 year
 - 57% for 5 year

Can we do better with a non-structural approach?

Conditional distributions of growth

Adrian, Boyarchenko and Giannone (2019):

- Predict conditional distributions of GDP growth as a function of current economic and financial conditions
- Proxy for current financial conditions using Chicago Fed National Financial Conditions Index (NFCI)
 - Broad measure of financial conditions
 - First PCA of 125 series, including price, quantity and sentiment measures
- Baseline methodology: quantile regressions but also works with
 - Fully parametric GARCH model for GDP growth
 - Fully non-parametric density estimator

One year ahead distribution

Conclusion

- Structural model with bank entry/exit allows for a well-behaved stationary distribution
- Argue that can be used to study crisis probabilities under alternative scenarios
- To be used for stress testing, need to be confident that have the right link between intermediaries and real economy. Yet
 - Focus on market equity, outside of bank direct control
 - Low crisis probabilities going into 2008...reliable?

