A Factor Structure of Disagreement

Edward Herbst and Fabian Winkler

Deutsche Bundesbank, 10/17/2019

Introduction ●000	Factor model OO	Results 000000000	
Motivation			

- Forecasters disagree about everything
- What are the aspects of the economy that they disagree most about?
- How should we model multivariate disagreement parsimoniously?
- Dominant way of thinking:
 - ignore multivariate structure of disagreement
 - dispersion statistics summarize disagreement (e.g. s.d.)
- But the data can take us much further

Introduction ○●○○		Results 000000000	
Example			

• Dispersion of forecasts about inflation π and output y both increase in recessions:

 $\operatorname{Cov}_{t}\left(\operatorname{Var}_{i}\left(\hat{\pi}_{it}\right),\operatorname{Var}_{i}\hat{y}_{it}\right)>0$

- Cross-sectional correlation can tell us about the source of disagreement
- Example: Lorenzoni (2009)-type heterogenous information model
 - disagreement about demand shocks: $\operatorname{Cov}_i(\hat{\pi}_{it}, \hat{y}_{it}) > 0$
 - disagreement about supply shocks: $\operatorname{Cov}_i(\hat{\pi}_{it}, \hat{y}_{it}) < 0$
- Challenges:
 - Need some structure
 - Many forecast variables
 - Lots of missing data

Introduction 00●0		Results 000000000	
Paper sum	nary		

Method:

- Estimate a factor structure on individual SPF forecasts using full-information Bayesian methods
- Factors extract the most important comovement relationships across variables
- Interpret with semi-structural model of heterogenous expectations

Introduction 00●0		Results 000000000	
Paper sum	nary		

Method:

- Estimate a factor structure on individual SPF forecasts using full-information Bayesian methods
- Factors extract the most important comovement relationships across variables
- Interpret with semi-structural model of heterogenous expectations

Main findings:

- First two factors capture supply and demand side disagreement
 - supply disagreement more prominent before Great Moderation
 - demand disagreement more prominent in Great Recession
- Monetary policy disagreement plays minor role

Introduction 000●		Results 000000000	
Related Lite	erature		

• Disagreement:

Lahiri and Sheng (2008), Patton and Timmermann (2010), Andrade and Le Bihan (2013), Dovern (2014), Andrade et al. (2016), Rich and Tracy (2017), Bordalo et al. (2018), ...

• Structural models of heterogenous expectations: Brock and Hommes (1997), Lorenzoni (2009), Melosi (2014), ...

• Theory-consistency of forecasts: Carvalho and Nechio (2014), Draeger et al. (2016), ...

• Predictions of forecaster *i* = 1, ..., *n* for variable *j* and horizon *h* at time *t*:

$$\hat{y}_{jt+h|it} = \bar{y}_{jt+h|t} + \sum_{k=1}^{p} \lambda_{jhk} f_{kit} + \xi_{ijht}$$

$$\tag{1}$$

• Predictions of forecaster *i* = 1, . . . , *n* for variable *j* and horizon *h* at time *t*:

$$\hat{y}_{jt+h|it} = \bar{y}_{jt+h|t} + \sum_{k=1}^{p} \lambda_{jhk} f_{kit} + \xi_{ijht}$$

$$\tag{1}$$

• Average ("consensus") forecast $\bar{y}_{jt+h|t} = 1/ |\mathcal{I}_{jht}| \sum_{i \in \mathcal{I}_{jht}} \hat{y}_{jt+h|it}$ where $\mathcal{I}_{jht} \subseteq \{1, \dots, n\}$ are non-missing observations

• Predictions of forecaster *i* = 1, . . . , *n* for variable *j* and horizon *h* at time *t*:

$$\hat{y}_{jt+h|it} = \bar{y}_{jt+h|t} + \sum_{k=1}^{p} \lambda_{jhk} f_{kit} + \xi_{ijht}$$

$$\tag{1}$$

- Average ("consensus") forecast $\bar{y}_{jt+h|t} = 1/ |\mathcal{I}_{jht}| \sum_{i \in \mathcal{I}_{jht}} \hat{y}_{jt+h|it}$ where $\mathcal{I}_{jht} \subseteq \{1, \dots, n\}$ are non-missing observations
- Separate factors f_{kit} for each forecaster with identical loadings Λ and:

$$f_{kit} = \phi_k f_{kit-1} + u_{kit}, \ u_{kit} \sim \mathcal{N}(0,1)$$
(2)

• Predictions of forecaster *i* = 1, ..., *n* for variable *j* and horizon *h* at time *t*:

$$\hat{y}_{jt+h|it} = \bar{y}_{jt+h|t} + \sum_{k=1}^{p} \lambda_{jhk} f_{kit} + \xi_{ijht}$$

$$\tag{1}$$

- Average ("consensus") forecast y
 {jt+h|t} = 1/ | I{jht} | ∑<sub>i∈I_{jht} ŷ_{jt+h|it} where I_{jht} ⊆ {1,...,n} are non-missing observations
 </sub>
- Separate factors f_{kit} for each forecaster with identical loadings Λ and:

$$f_{kit} = \phi_k f_{kit-1} + u_{kit}, \ u_{kit} \sim \mathcal{N}(0,1)$$
(2)

• Idiosyncratic components:

$$\xi_{ijht} = \rho_{jh} \mathbf{e}_{ijht-1} + \mathbf{v}_{ijht}, \quad \mathbf{v}_{ijht} \sim \mathcal{N}\left(0, \sigma_{jh}^2\right)$$
(3)

• Predictions of forecaster *i* = 1, ..., *n* for variable *j* and horizon *h* at time *t*:

$$\hat{y}_{jt+h|it} = \bar{y}_{jt+h|t} + \sum_{k=1}^{p} \lambda_{jhk} f_{kit} + \xi_{ijht}$$

$$\tag{1}$$

- Average ("consensus") forecast y
 {jt+h|t} = 1/ | I{jht} | ∑<sub>i∈I_{jht} ŷ_{jt+h|it} where I_{jht} ⊆ {1,...,n} are non-missing observations
 </sub>
- Separate factors f_{kit} for each forecaster with identical loadings Λ and:

$$f_{kit} = \phi_k f_{kit-1} + u_{kit}, \ u_{kit} \sim \mathcal{N}(0,1)$$
(2)

Idiosyncratic components:

$$\xi_{ijht} = \rho_{jh} \mathbf{e}_{ijht-1} + \mathbf{v}_{ijht}, \quad \mathbf{v}_{ijht} \sim \mathcal{N}\left(0, \sigma_{jh}^2\right) \tag{3}$$

• All disturbances are iid across forecasters and variables.

Introduction 0000	Factor model O●	Results 0000000000	
2-D repr	esentation		

- Dataset has 3 dimensions: time t, forecaster i, variable (j, h)
- Can stack forecasters to obtain 2-D DFM with restrictions:

$$\begin{pmatrix} mn \times 1 \\ \hat{y}_{|1t} \\ \hat{y}_{|2t} \\ \vdots \\ \hat{y}_{|nt} \end{pmatrix} = \begin{pmatrix} I_m \\ I_m \\ \vdots \\ I_m \end{pmatrix} \bar{y}_t + \begin{pmatrix} \Lambda & 0 & \cdots & 0 \\ 0 & \Lambda & 0 \\ \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & \Lambda \end{pmatrix} \begin{pmatrix} f_{1t} \\ f_{2t} \\ \vdots \\ f_{nt} \end{pmatrix} + \begin{pmatrix} \xi_{1t} \\ \xi_{2t} \\ \vdots \\ \xi_{nt} \end{pmatrix}$$

$$\begin{pmatrix} f_{1t} \\ f_{2t} \\ \vdots \\ f_{nt} \end{pmatrix} = \begin{pmatrix} \Phi & 0 & \cdots & 0 \\ 0 & \Phi & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Phi \end{pmatrix} \begin{pmatrix} f_{1t-1} \\ f_{2t-1} \\ \vdots \\ f_{nt-1} \end{pmatrix} + \begin{pmatrix} u_{1t} \\ u_{2t} \\ \vdots \\ u_{nt} \end{pmatrix}, \ u_t \sim \mathcal{N}(0, I_n \otimes I_p)$$

$$\begin{pmatrix} \xi_{1t} \\ \xi_{2t} \\ \vdots \\ 0 & 0 & \cdots & \Phi \end{pmatrix} \begin{pmatrix} \xi_{1t-1} \\ \xi_{2t-1} \\ \vdots \\ \xi_{nt-1} \end{pmatrix} + \begin{pmatrix} v_{1t} \\ v_{2t} \\ \vdots \\ u_{nt} \end{pmatrix}, \ v_t \sim \mathcal{N}(0, I_n \otimes \Sigma)$$

Semi-structural model

Heterogenous information model

Consider a generic model of heterogenous information.

• The state and observation equations of the economy are:

$$\begin{split} \tilde{y}_t &= C \tilde{x}_t + \tilde{\eta}_t, \ \tilde{\eta}_t \sim \mathcal{N}\left(0, I_m\right) \\ \tilde{x}_t &= A \tilde{x}_{t-1} + B \tilde{\varepsilon}_t, \ \tilde{\varepsilon}_t \sim \mathcal{N}\left(0, I_q\right). \end{split}$$

Introduction Factor model Semi-structural model Results Conclusion 000 00 00 00 United Results Conclusion 000000000 0 United Results Conclusion 0000000000 0

Heterogenous information model

Consider a generic model of heterogenous information.

• The state and observation equations of the economy are:

$$\begin{split} \tilde{y}_{t} &= C\tilde{x}_{t} + \tilde{\eta}_{t}, \, \tilde{\eta}_{t} \sim \mathcal{N}\left(0, I_{m}\right) \\ \tilde{x}_{t} &= A\tilde{x}_{t-1} + B\tilde{\varepsilon}_{t}, \, \tilde{\varepsilon}_{t} \sim \mathcal{N}\left(0, I_{q}\right) \end{split}$$

• At time *t*, agents observe x_{t-1} , and receive signals about ε_{kt} , and η_{jt+h} .

Introduction Factor model Semi-structural model Results Conclusion 000 00 00 00 Unit or provided Results Conclusion 000000000 0 Unit of the structural model Results Conclusion

Heterogenous information model

Consider a generic model of heterogenous information.

• The state and observation equations of the economy are:

$$\begin{split} \tilde{y}_{t} &= C \tilde{x}_{t} + \tilde{\eta}_{t}, \, \tilde{\eta}_{t} \sim \mathcal{N}\left(0, I_{m}\right) \\ \tilde{x}_{t} &= A \tilde{x}_{t-1} + B \tilde{\varepsilon}_{t}, \, \tilde{\varepsilon}_{t} \sim \mathcal{N}\left(0, I_{q}\right) \end{split}$$

- At time *t*, agents observe x_{t-1} , and receive signals about ε_{kt} , and η_{jt+h} .
- Signal about ε_{kt} for agent *i* has the form:

$$\begin{split} s_{\varepsilon ikt} &= \tilde{\varepsilon}_{kt} + \tilde{u}_{\varepsilon ikt} + \tilde{\omega}_{\varepsilon ikt} \\ \tilde{u}_{\varepsilon ikt} &= \rho_{\varepsilon k} \tilde{u}_{\varepsilon ikt-1} + \tilde{v}_{\varepsilon ikt}. \end{split}$$

- *s*_{∈*ip*+1t}, *s*_{∈*ip*+2t}, ... perfectly correlated across agents ⇒ no disagreement.
- Signals about η_{jt+h} have analogous forms.

Forecasts of rational Bayesian forecasters have a factor structure:

$$\hat{y}_{jt+h|it} = \delta_{jht} + \sum_{k=1}^{p} \lambda_{jhk} \varepsilon_{ikt} + \eta_{ijht}$$
(4)

- Factors and idiosyncratic processes follow ARMA(1,2) processes
- Factor loadings \propto IRFs of the shocks forecasters disagree about:

$$\lambda_{jhk} = C_{j.} A^h B_{.k} \tag{5}$$

Forecasts of rational Bayesian forecasters have a factor structure:

$$\hat{y}_{jt+h|it} = \delta_{jht} + \sum_{k=1}^{p} \lambda_{jhk} \varepsilon_{ikt} + \eta_{ijht}$$
(4)

- Factors and idiosyncratic processes follow ARMA(1,2) processes
- Factor loadings \propto IRFs of the shocks forecasters disagree about:

$$\lambda_{jhk} = C_{j} A^h B_{\cdot k} \tag{5}$$

- Can generalize this to current heterogenous-information DSGE models (e.g. Lorenzoni, 2009):
 - unobserved x_{t-1}
 - correlation of signals across shocks
 - signals about states

• Consider the standard New-Keynesian model:

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa y_t + u_t$$

$$y_t = \mathbb{E}_t y_{t+1} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{t+1} - r_t^n)$$

$$i_t = \phi_\pi \pi_t + \phi_y y_t + e_t$$

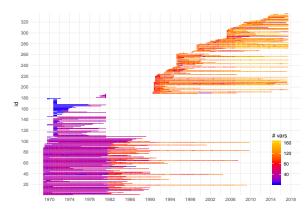
• Factor loadings λ :

Shock	y_{t+h}	π_{t+h}	i_{t+h}
supply u_t	(+)	(-)	(-)
demand r_t^n	(+)	(+)	(+)
monetary policy e_t	(+)	(+)	(-)

Introduction 0000		Results ●00000000	
Data			

Survey of Professional Forecasters (SPF):

- Quarterly survey 1968Q3-2018Q1
- about 30 forecasters per quarter
- many variables and forecast horizons
- missing data:
 - forecasters entry and exit
 - incomplete responses
 - variables and horizons added over the sample



Introduction 0000		Results ⊙●○○○○○○○	
Estimation			

- Take all SPF variables at four-quarter and ten-year horizon
 - Data transformations follow Stock and Watson (2002)
- *p* = 2, no restrictions on loadings
 - factors identified by dynamic restrictions as long as $\phi_1 \neq \phi_2$
- Bayesian approach, group parameters of DFM into θ , then

$$p(heta|Y) = rac{p(Y| heta)p(heta)}{p(Y)}.$$

- Elicit draws from posterior distribution via Gibbs sampling
- Conjugate, uninformative priors

	Results	
	000000000	

Posterior estimates (I)

	mean $\Lambda_{\cdot 1}$	[5, 95]	mean $\Lambda_{\cdot 2}$	[5, 95]
RGDP4	0.79	[0.76, 0.81]	0.41	[0.37, 0.45]
RCONSUM4	0.56	[0.52, 0.59]	0.31	[0.28, 0.34]
RNRESIN4	0.92	[0.82, 1.03]	0.76	[0.68, 0.83]
RRESINV4	1.50	[1.32, 1.67]	1.12	[0.98, 1.26]
RSLGOV4	0.27	[0.22, 0.31]	0.15	[0.11, 0.18]
RFEDGOV4	0.26	[0.17, 0.35]	-0.06	[-0.12, 0.00]
RCBI4	0.03	[0.02, 0.04]	0.04	[0.03, 0.04]
REXPORT4	0.07	[0.05, 0.09]	-0.02	[-0.03, 0.00]
PGDP4	-0.39	[-0.41, -0.37]	0.12	[0.10, 0.15]
CPI4	-0.27	[-0.30, -0.24]	0.18	[0.16, 0.20]
CORECPI4	-0.25	[-0.29, -0.22]	0.18	[0.16, 0.20]
COREPCE4	-0.23	[-0.26, -0.20]	0.17	[0.15, 0.18]
UNEMP4	-0.03	[-0.04, -0.02]	-0.12	[-0.13, -0.12]
EMP4	0.15	[0.12, 0.18]	0.12	[0.10, 0.14]
TBILL4	-0.03	[-0.05, -0.00]	0.10	[0.08, 0.12]
TBONDTBILL4	0.04	[0.02, 0.06]	-0.01	[-0.03, 0.00]

	Results	
	000000000	

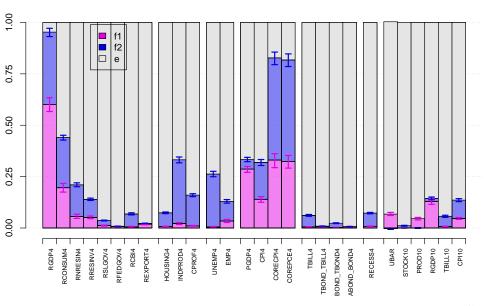
Posterior estimates (II)

	mean $\Lambda_{\cdot 1}$	[5, 95]	mean $\Lambda_{\cdot 2}$	[5, 95]
BONDTBOND4	-0.04	[-0.05, -0.02]	-0.04	[-0.05, -0.03]
BAABONDBOND4	-0.03	[-0.05, 0.00]	-0.01	[-0.03, 0.01]
HOUSING4	0.50	[0.31, 0.70]	1.54	[1.35, 1.73]
INDPROD4	0.20	[0.15, 0.24]	0.61	[0.57, 0.65]
CPROF4	0.41	[0.26, 0.56]	1.37	[1.24, 1.50]
RECESS4	-0.98	[-1.24, -0.72]	-1.88	[-2.13, -1.63]
UBAR	-0.14	[-0.20, -0.08]	-0.03	[-0.07, 0.00]
STOCK10	0.04	[-0.16, 0.27]	0.12	[0.01, 0.24]
PROD10	0.13	[0.08, 0.17]	0.03	[0.00, 0.05]
RGDP10	0.18	[0.14, 0.21]	0.05	[0.03, 0.07]
TBILL10	-0.07	[-0.16, 0.03]	0.13	[0.08, 0.18]
CPI10	-0.09	[-0.11, -0.07]	0.08	[0.07, 0.10]

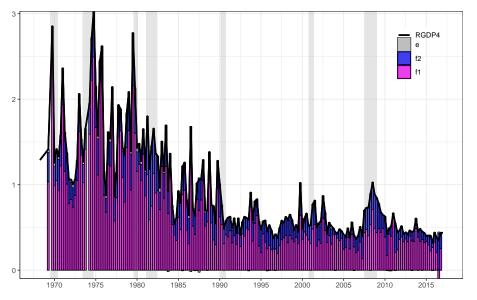
	mean	[5, 95]
ϕ_1	0.45	[0.42, 0.49]
ϕ_2	0.80	[0.78, 0.82]

Introduction 0000			Results ○○○○●○○○○○	
Variance	decomposit	ion		

Variance decomposition

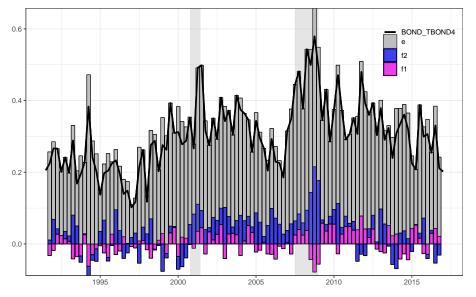


Decomposition of dispersion: Real GDP

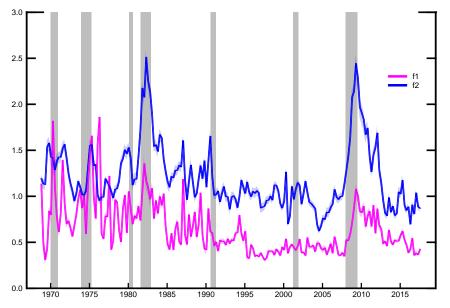


Decomposition of dispersion: Inflation





Dispersion of factors



Introduction 0000		Results ○○○○○○○○●	
Subsamples	5		

Subsample 1:	Subsample 2:	Subsample 3:
1968Q3-1984Q4	1985Q1-2008Q2	2008Q3-2016Q4

mean	Λ.1	Λ.2	mean	Λ.1	Λ.2	mean	Λ.1	Λ.2
RGDP4	0.73	0.77	RGDP4	0.32	0.31	RGDP4	0.22	0.27
CPROF4	-0.55	2.26	CPROF4	0.95	0.77	CPROF4	0.80	0.77
UNEMP4	0.01	-0.18	UNEMP4	-0.03	-0.10	UNEMP4	-0.01	-0.11
PGDP4	-0.81	-0.10	PGDP4	-0.06	0.03	PGDP4	-0.16	0.16
TBILL4	0.02	-0.09	TBILL4	-0.23	0.32	TBILL4	-0.04	0.07

- supply disagreement dominant
- interest rates little related to factors

- inflation disagreement less related to output
- interest rates respond more strongly

- demand disagreement more important
- interest rates respond less strongly again

Introduction 0000		Results 000000000	Conclusion
Conclusion			

- parsimonious factor structure of individual-level forecasts
- extracted factor loadings capture comovement of disagreement across variables
- interpretation with semi-structural model
- results:
 - supply disagreement dominates before Great Moderation, demand disagreement afterwards and during Great Recession
 - monetary policy disagreement not important
- next steps:
 - include more forecast horizons
 - optimal number of factors
 - apply to other datasets