Can the cure kill the patient? Corporate credit interventions and debt overhang

Nicolas Crouzet and Fabrice Tourre

Northwestern University and Copenhagen Business School

Motivation

New policy tool: Business Funding Programs (BFPs)

[BFPs in the US]

Corporate Credit Facilities (Fed)

Main Street Lending Program (Fed)

Paycheck Protection Program (Treasury+Fed)

Motivation

New policy tool: Business Funding Programs (BFPs)

[BFPs in the US]

Corporate Credit Facilities (Fed)

Main Street Lending Program (Fed)

Paycheck Protection Program (Treasury+Fed)

Q1 What is the effect of BFPs on corporate financing, default, and investment decisions?

ease financial conditions (short-run) vs. debt overhang (long-run)

Motivation

New policy tool: Business Funding Programs (BFPs)

[BFPs in the US]

Corporate Credit Facilities (Fed)

Main Street Lending Program (Fed)

Paycheck Protection Program (Treasury+Fed)

Q1 What is the effect of BFPs on corporate financing, default, and investment decisions? ease financial conditions (short-run) vs. debt overhang (long-run)

Q2 How should BFPs be designed?

untargeted or targeted? loans vs. grants/debt forbearance/equity?

Structural model:

 $Structural\ model: \qquad Q-theory \qquad + \ trade-off\ theory$

Structural model: Q - theory + trade-off theory

Crisis:

Structural model: Q – theory + trade-off theory

Crisis: cash-flow shock + risk price shock

Structural model: Q - theory + trade-off theory

 $Structural\ model: \qquad Q-theory \qquad \qquad + \quad trade\text{-}off\ theory$

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect financial markets:

Structural model: Q-theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

 $1. \ \ Perfect \ financial \ markets: \ lending \ programs \ have \ \underline{ambiguous} \ effects \ on \ investment$

 $Structural\ model: \qquad Q-theory \qquad \qquad + \quad trade-off\ theory$

Crisis: cash-flow shock + risk price shock [+ sudden stop]

1. Perfect financial markets: lending programs have ambiguous effects on investment

 $\cdot\,$ any funding at market rates: neutral (irrelevance result)

Structural model: Q – theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - $\cdot\,$ any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (\uparrow leverage, \downarrow investment)

Structural model: Q-theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)

Structural model: Q-theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)

Structural model: Q-theory + trade-off theory

Crisis: cash-flow shock + risk price shock [+ sudden stop]

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)

2. Sudden stop:

Structural model: Q-theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)
- 2. Sudden stop: short-run positive effects on investment dominate

Structural model: Q – theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)
- 2. Sudden stop: short-run positive effects on investment dominate
 - · weak debt overhang channel

Structural model: Q-theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)
- 2. Sudden stop: short-run positive effects on investment dominate
 - · weak debt overhang channel
- 3. Alternative designs:

Structural model: Q – theory + trade-off theory

- 1. Perfect financial markets: lending programs have ambiguous effects on investment
 - · any funding at market rates: neutral (irrelevance result)
 - · debt at subsidized prices: negative (↑ leverage, ↓ investment)
 - · intervention reducing cost of equity capital: positive (\uparrow Tobin's q, \uparrow investment)
- 2. Sudden stop: short-run positive effects on investment dominate
 - · weak debt overhang channel
- 3. Alternative designs: gains when targeting high leverage firm, inefficient grants

Roadmap

1. Model and estimation

2. Business Funding Programs when financial markets function normally

3. Business Funding Programs during sudden stops

1. Model and estimation

Model building blocks

[<u>math</u>]

- ak production with convex adjustment cost function Φ

(Hayashi, 1982)

Model building blocks

[math]

· ak production with convex adjustment cost function Φ

(Hayashi, 1982)

· (permanent, Brownian) shocks to efficiency units of capital $k_t^{(j)}$

 $(Brunner meier\ and\ Sannikov, 2014)$

· ak production with convex adjustment cost function Φ

(Hayashi, 1982)

- (permanent, Brownian) shocks to efficiency units of capital $\boldsymbol{k}_t^{(j)}$

 $(Brunnermeier\ and\ Sannikov, 2014)$

- financing via either tax-advantaged exponentially amortizing debt $\boldsymbol{b}_t^{(j)}$ or equity

· ak production with convex adjustment cost function Φ

(Hayashi, 1982)

· (permanent, Brownian) shocks to efficiency units of capital $k_t^{(j)}$

- (Brunnermeier and Sannikov, 2014)
- financing via either tax-advantaged exponentially amortizing debt $\boldsymbol{b}_t^{(j)}$ or equity
- no commitment over bond issuances I_t or default policy

(DeMarzo and He, 2020)

- · ak production with convex adjustment cost function Φ (Hayashi, 1982)
- · (permanent, Brownian) shocks to efficiency units of capital $k_t^{(j)}$ (Brunnermeier and Sannikov, 2014)
- \cdot financing via either tax-advantaged exponentially amortizing debt $b_t^{(j)}$ or equity

· at default, bankruptcy costs and firm restructuring with debt haircut

· no commitment over bond issuances I_t or default policy

(DeMarzo, He and Tourre, 2021)

(DeMarzo and He, 2020)

- · ak production with convex adjustment cost function Φ (Hayashi, 1982)
- \cdot (permanent, Brownian) shocks to efficiency units of capital $k_t^{(j)}$ (Brunnermeier and Sannikov, 2014)
- financing via either tax-advantaged exponentially amortizing debt $\boldsymbol{b}_t^{(j)}$ or equity

- · at default, bankruptcy costs and firm restructuring with debt haircut
- (DeMarzo, He and Tourre, 2021)

(DeMarzo and He, 2020)

 $\cdot \ \text{exogenous SDF(s)} \rightarrow \text{"industry"} \ \text{(partial) equilibrium}$

· no commitment over bond issuances I_t or default policy

(DeMarzo and He, 2020)

- · ak production with convex adjustment cost function Φ (Hayashi, 1982)
- · (permanent, Brownian) shocks to efficiency units of capital $k_t^{(j)}$ (Brunnermeier and Sannikov, 2014)
- financing via either tax-advantaged exponentially amortizing debt $b_t^{(j)}$ or equity
- no commitment over bond issuances I_t or default policy
- · at default, bankruptcy costs and firm restructuring with debt haircut (DeMarzo, He and Tourre, 2021)
- $\cdot\,$ exogenous SDF(s) \rightarrow "industry" (partial) equilibrium
 - partially idiosyncratic, partially aggregate shock \rightarrow cross-sectional distribution $f_t(b,k)$

(Hayashi, 1982)

- · ak production with convex adjustment cost function Φ
 - (permanent, Brownian) shocks to efficiency units of capital $k_{i}^{(j)}$

- · no commitment over bond issuances I_t or default policy
- at default, bankruptcy costs and firm restructuring with debt haircut
- exogenous $SDF(s) \rightarrow$ "industry" (partial) equilibrium
- partially idiosyncratic, partially aggregate shock \rightarrow cross-sectional distribution $f_t(b,k)$
 - leverage x := b/k sufficient statistic for a given firm

(Brunnermeier and Sannikov, 2014)

· financing via either tax-advantaged exponentially amortizing debt $b_i^{(j)}$ or equity

(DeMarzo and He, 2020)

(DeMarzo, He and Tourre, 2021)

Estimation

· Calibrate 6 parameters:

$$r = \kappa = 5\%$$
, $\delta = 10\%$, $\Theta = 35\%$, $1/m = 10$ years, $1 - \alpha_b = 85\%$, $1 - \alpha_k = 67\%$.

Estimation

· Calibrate 6 parameters:

$$r = \kappa = 5\%$$
, $\delta = 10\%$, $\Theta = 35\%$, $1/m = 10$ years, $1 - \alpha_b = 85\%$, $1 - \alpha_k = 67\%$.

· Estimate 3 parameters:

[GMM details]

- a (average product of capital)
- σ (TFP shock vol.)
- γ (curv. of investment adjustment costs)

Estimation

· Calibrate 6 parameters:

$$r = \kappa = 5\%$$
, $\delta = 10\%$, $\Theta = 35\%$, $1/m = 10$ years, $1 - \alpha_b = 85\%$, $1 - \alpha_k = 67\%$.

· Estimate 3 parameters:

[GMM details]

- a (average product of capital)
- σ (TFP shock vol.)
- γ (curv. of investment adjustment costs)

Moment	Description	Targeted?	Data	Model
$\hat{\Phi}$	average investment rate	✓	9.48	9.47
\hat{z}	average debt/ebitda	✓	2.71	2.71
$\frac{cov(\Phi(x),z(x))}{var(z(x))}$	slope of inv. w.r.t debt/ebitda	✓	-3.66	-3.66

Calibration of crisis state

- Transient aggregate shock with exponentially distributed length (1 year)
- Productivity drop and risk-price increase
- Outcomes of focus $\mathbb{E}_{0}\left[K_{t}\right], \mathbb{E}_{0}\left[Y_{t}\right]$

	EBITDA jump	Stock price jump	Credit spread jump
	$100 \cdot (Y_{0+}/Y_0 - 1)$	$100 \cdot (E_{0+}/E_0 - 1)$	$100 \cdot (\overline{cs}_{0+} - \overline{cs}_{0})$
A. Data			
Before Fed announcement	-25.0	-34.0	3.57 / 7.30
B. Model			
Cash flow shock	-25.0 [†]	-5.2	0.12
Cash flow + risk premium shock	-25.0 [†]	-34.0^{\dagger}	3.23

^{† =} targeted moment.

2. BFPs when financial markets function normally

Result 1: irrelevance theorem

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the government offers extra funding to firms at market prices
- (c) the intervention does not change investors' SDFs

Then, relative to the laissez-faire, all outcomes are unchanged.

Result 1: irrelevance theorem

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the government offers extra funding to firms at market prices
- (c) the intervention does not change investors' SDFs

Then, relative to the laissez-faire, all outcomes are unchanged.

Funding program can

- · consist of debt, equity, any hybrid instrument
- · be implemented via (fairly priced) government-backed credit guarantees
- · be unconditional or conditional on leverage

Result 2: subsidized loan programs depress investment

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the intervention lowers the required return on debt, without changing equity investors' SDF

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

Result 2: subsidized loan programs depress investment

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the intervention lowers the required return on debt, without changing equity investors' SDF

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

$$\tilde{\iota}(x) = \underbrace{\frac{\Theta\kappa}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_d(x) - R_d(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}} > \iota(x)$$

Result 2: subsidized loan programs depress investment

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the intervention lowers the required return on debt, without changing equity investors' SDF

Then, relative to the laissez-faire, future debt issuance is higher and future investment is lower.

$$\tilde{\iota}(x) = \underbrace{\frac{\Theta_{\kappa}}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_{d}(x) - R_{d}(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}} > \iota(x)$$

More issuance \implies distribution $\hat{f}_t(x)$ shifts right \implies lower investment

Result 3: expansionary announcement effects

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the intervention decreases the effective cost of equity capital for firms

Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Result 3: expansionary announcement effects

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the intervention decreases the effective cost of equity capital for firms

Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Conventional MP $(\downarrow r_e)$, or unconventional via announcement $(\downarrow \nu_e)$.

Result 3: expansionary announcement effects

Result

Suppose that, in the crisis state

- (a) financial markets continue to function normally
- (b) the intervention decreases the effective cost of equity capital for firms

Then, relative to the laissez-faire, aggregate investment and growth is higher on impact.

Conventional MP $(\downarrow r_e)$, or unconventional via announcement $(\downarrow \nu_e)$.

Caveat: with segmented markets, if intervention also leads to \uparrow in $\tilde{R}_d(x) - R_d(x)$...

- · on impact, always $R_e(x) \downarrow$, $q \uparrow$, investment \uparrow
- · but over time, because $\tilde{R}_d(x) \downarrow$, corporate leverage \uparrow , investment \downarrow .

4. BFPs during a sudden stop

A recession with a sudden stop

· While the economy is in the crisis state, assume that:

dividends
$$\pi_t \geq 0$$
, debt issuance $\iota_t \leq 0$

· Compared to normally functioning capital markets

investment is cash flow constrained default boundary $\bar{x} \downarrow \implies$ wave of defaults on impact

Loan programs in the crisis state become unambiguously beneficial for investment despite their debt overhang effects

Why are BFPs' debt overhang effects not larger?

BFP loans move the debt/ebitda ratio:

$$z_{t} = \frac{b_{t}}{ak_{t}} \rightarrow z'_{t} = \frac{b_{t} + \overbrace{(1/\chi)(a-\underline{a})k}^{\text{amount borrowed}}}{ak_{t}}$$

$$\approx 2.20 \qquad = z_{t} + \frac{1}{\chi} \left(1 - \frac{\underline{a}}{a}\right)$$

$$= z_{t} + 0.25 \approx 2.45$$

Small move, in a region where the slope of investment is not steep.

Alternative Program Designs

· Targeted loan programs

implemented via loans extended at a fixed price (selection effect) significant improvement in program efficiency eliminates incentive to over-issue for low-leverage firms

· Loans with dividends/share buy-back restrictions

limits dynamic commitment problem moderate improvement in program efficiency (since few firms are constrained)

· Grants program

similar to PPP

much lower return on tax payer dollars than subsidized loans

Conclusion

Novel policy tool: Business Funding Programs (BFPs).

Q1 What is the effect of BFPs on corporate financing, default, and investment decisions?

perfect financial markets

ambiguous effects

subsidized funding \rightarrow investment \downarrow — but small quantitative effects

sudden stop

in the short-run, investment $\uparrow \uparrow$

in the long-run, investment \downarrow — but small quantitative effects

Q2 How should BFPs be designed?

targeting high-leverage firms improves "bang for the buck" grants with much lower returns per tax-payer dollar than loans

$$dk_{t}^{(j)} = k_{t-}^{(j)} \left[g_{t-}^{(j)} dt + \sigma \left(\rho dZ_{t} + \sqrt{1 - \rho^{2}} dZ_{t}^{(j)} \right) + (\alpha_{k} - 1) dN_{t}^{(j)} \right]$$

$$dk_{t}^{(j)} = k_{t-}^{(j)} \left[g_{t-}^{(j)} dt + \sigma \left(\rho dZ_{t} + \sqrt{1 - \rho^{2}} dZ_{t}^{(j)} \right) + (\alpha_{k} - 1) dN_{t}^{(j)} \right]$$

· Financing via long term debt with notional $b_t^{(j)}$ that satisfies: $db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} - m b_t^{(j)}\right) dt$

$$dk_{t}^{(j)} = k_{t-}^{(j)} \left[g_{t-}^{(j)} dt + \sigma \left(\rho dZ_{t} + \sqrt{1 - \rho^{2}} dZ_{t}^{(j)} \right) + (\alpha_{k} - 1) dN_{t}^{(j)} \right]$$

[Back]

- · Financing via long term debt with notional $b_t^{(j)}$ that satisfies: $db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} m b_t^{(j)}\right) dt$
- · Dividends to shareholders of firm *j*

$$\pi_t^{(j)} k_t^{(j)} := \overbrace{ak_t^{(j)} - \Phi\left(g_t^{(j)}\right) k_t^{(j)}}^{\text{ebitda - capex}} + \underbrace{\iota_t^{(j)} k_t^{(j)} D_t^{(j)} - \left(\kappa + m\right) b_t^{(j)}}_{\text{net debt issuance}} - \underbrace{\Theta\left(ak_t^{(j)} - \kappa b_t^{(j)}\right)}_{\text{net debt issuance}}$$

$$dk_{t}^{(j)} = k_{t-}^{(j)} \left[g_{t-}^{(j)} dt + \sigma \left(\rho dZ_{t} + \sqrt{1 - \rho^{2}} dZ_{t}^{(j)} \right) + (\alpha_{k} - 1) dN_{t}^{(j)} \right]$$

- · Financing via long term debt with notional $b_t^{(j)}$ that satisfies: $db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} m b_t^{(j)}\right) dt$
- · Dividends to shareholders of firm *j*

$$\pi_t^{(j)} k_t^{(j)} := \overbrace{ak_t^{(j)} - \Phi\left(g_t^{(j)}\right) k_t^{(j)}}^{\text{ebitda - capex}} + \underbrace{\iota_t^{(j)} k_t^{(j)} D_t^{(j)} - \left(\kappa + m\right) b_t^{(j)}}_{\text{net debt issuance}} - \overbrace{\Theta\left(ak_t^{(j)} - \kappa b_t^{(j)}\right)}^{\text{taxes}}$$

· Investor n ($n \in \{e, d\}$) with SDF $\xi_{n,t}$ that satisfies $\frac{d\xi_{n,t}}{\xi_{n,t}} = -r_n dt - \nu_n dZ_t$

Model of the firm

· Technology with adjustment costs: $\Phi(g_t) k_t dt$ spent allows capital to grow by $g_t k_t dt$

$$dk_{t}^{(j)} = k_{t-}^{(j)} \left[g_{t-}^{(j)} dt + \sigma \left(\rho dZ_{t} + \sqrt{1 - \rho^{2}} dZ_{t}^{(j)} \right) + (\alpha_{k} - 1) dN_{t}^{(j)} \right]$$

- Financing via long term debt with notional $b_t^{(j)}$ that satisfies: $db_t^{(j)} = \left(\iota_t^{(j)} k_t^{(j)} m b_t^{(j)}\right) dt$
- · Dividends to shareholders of firm *i*

$$\pi_t^{(j)} k_t^{(j)} := \overbrace{ak_t^{(j)} - \Phi\left(g_t^{(j)}\right) k_t^{(j)}}^{\text{ebitda - capex}} + \underbrace{\iota_t^{(j)} k_t^{(j)} D_t^{(j)} - \left(\kappa + m\right) b_t^{(j)}}_{\text{net debt issuance}} - \underbrace{\Theta\left(ak_t^{(j)} - \kappa b_t^{(j)}\right)}_{\text{net debt issuance}}$$

- · Investor n ($n \in \{e, d\}$) with SDF $\xi_{n,t}$ that satisfies $\frac{d\xi_{n,t}}{\xi_{n,t}} = -r_n dt \nu_n dZ_t$
- · Shareholder problem and debt valuation

$$E(k_t, b_t) = \sup_{g, \iota, \tau} \mathbb{E}^{\mathbb{Q}_e} \left[\int_t^{+\infty} e^{-r_e(s-t)} \pi_s k_s ds \right] \qquad D(k_t, b_t) = \mathbb{E}^{\mathbb{Q}_d} \left[\int_t^{+\infty} e^{-(r_d + m)(s-t)} \alpha_b^{N_t} (\kappa + m) ds \right]$$

$$E(k,b) = ke(x)$$

$$O(k,b) = d(x)$$

$$E(k,b) = ke(x)$$
 $D(k,b) = d(x)$ $G(k,b) = kg(x)$ $I(k,b) = k\iota(x)$

$$I(k,b) = k\iota(x)$$

$$E(k,b) = ke(x)$$

$$D(k,b) = d(x)$$

$$E(k,b) = ke(x)$$
 $D(k,b) = d(x)$ $G(k,b) = kg(x)$ $I(k,b) = k\iota(x)$

$$I(k,b) = k\iota(x)$$

· defaults when leverage reaches cutoff \bar{x}

$$E(k,b) = ke(x)$$

$$D(k,b) = d(x)$$

$$E(k,b) = ke(x)$$
 $D(k,b) = d(x)$ $G(k,b) = kg(x)$ $I(k,b) = k\iota(x)$

$$I(k,b) = k\iota(x)$$

- · defaults when leverage reaches cutoff \bar{x}
- · firm-level growth rate g(x) satisfies q-theory rule $\Phi'(g(x)) = \partial_k E := q(x)$

$$E(k,b) = ke(x)$$

$$D(k,b) = d(x)$$

$$E(k,b) = ke(x)$$
 $D(k,b) = d(x)$ $G(k,b) = kg(x)$ $I(k,b) = k\iota(x)$

$$I(k,b) = k\iota(x)$$

- · defaults when leverage reaches cutoff \bar{x}
- · firm-level growth rate g(x) satisfies q-theory rule $\Phi'(g(x)) = \partial_k E := q(x)$
- · debt overhang: g'(x) < 0 and $g(x) < g^*$

$$E(k,b) = ke(x)$$
 $D(k,b) = d(x)$ $G(k,b) = kg(x)$ $I(k,b) = k\iota(x)$

- · defaults when leverage reaches cutoff \bar{x}
- · firm-level growth rate g(x) satisfies q-theory rule $\Phi'(g(x)) = \partial_k E := q(x)$
- · debt overhang: g'(x) < 0 and $g(x) < g^*$
- · debt issuance rate (per unit of capital): trade-off theory with a twist

$$\iota(x) = \underbrace{\frac{\Theta\kappa}{-d'(x)}}_{\text{tax motive}} + \underbrace{\frac{\left(\tilde{R}_d(x) - R_d(x)\right)d(x)}{-d'(x)}}_{\text{arbitrage motive}}$$

· $\tilde{R}_d(x) - R_d(x)$: debt expected return wedge (between equity and credit market investors)

$$0 = \max_{\iota, g} \left[-(r - g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

$$0 = \max_{\iota, g} \left[-(r - g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· Feynman-Kac equation for debt price

$$(r+m)d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2\right)x\right]d'(x) + \frac{\sigma^2}{2}x^2d''(x).$$

$$0 = \max_{\iota, g} \left[-(r - g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· Feynman-Kac equation for debt price

$$(r+m)d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2\right)x\right]d'(x) + \frac{\sigma^2}{2}x^2d''(x).$$

· First order conditions for optimality

$$d(x) + e'(x) = 0 \Rightarrow \iota(x) = \frac{\Theta\kappa}{-d'(x)} + \frac{\left(R_d(x) - \tilde{R}_d(x)\right)d(x)}{-d'(x)}, \qquad q(x) := e(x) - xe'(x) = \Phi'(g(x))$$

$$0 = \max_{\iota, g} \left[-(r - g)e(x) + a - \Phi(g) - (\kappa + m)x + \iota d(x) - \Theta(a - \kappa x) + \left[\iota - (g + m)x\right]e'(x) + \frac{\sigma^2}{2}x^2e''(x) \right]$$

· Feynman-Kac equation for debt price

$$(r+m)d(x) = \kappa + m + \left[\iota(x) - \left(g(x) + m - \sigma^2\right)x\right]d'(x) + \frac{\sigma^2}{2}x^2d''(x).$$

· First order conditions for optimality

$$d(x) + e'(x) = 0 \Rightarrow \iota(x) = \frac{\Theta\kappa}{-d'(x)} + \frac{\left(R_d(x) - \tilde{R}_d(x)\right)d(x)}{-d'(x)}, \qquad q(x) := e(x) - xe'(x) = \Phi'\left(g(x)\right)$$

· Expected debt returns (R_d and \tilde{R}_d) and equity returns (R_e)

$$R_d(x) = r_d - \rho \nu_d \sigma \frac{x d'(x)}{d(x)}, \qquad \qquad \tilde{R}_d(x) = r_e - \rho \nu_e \sigma \frac{x d'(x)}{d(x)}, \qquad \qquad R_e(x) = r_e - \rho \nu_e \sigma \left[1 - \frac{x e'(x)}{e(x)}\right]$$

· Aggregate capital stock $K_t := \int k_t^{(j)} dj$

- · Aggregate capital stock $K_t := \int k_t^{(j)} dj$
- · Capital-share weighted distribution $\hat{F}_t(x) := \int rac{k_t^{(j)}}{K_t} \mathbb{I}\left(x_t^{(j)} \leq x\right) dj$

- · Aggregate capital stock $K_t := \int k_t^{(j)} dj$
- · Capital-share weighted distribution $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{k_t} \mathbb{I}\left(x_t^{(j)} \leq x\right) dj$
- · Aggregate capital-share-weighted moments

Default rate
$$\hat{\lambda}_t^d = -\frac{1}{2}\sigma^2 \bar{x}^2 \partial_x \hat{f}_t(\bar{x})$$
 Average growth $\hat{g}_t = \int g(x)\hat{f}_t(x)dx$

$$\hat{g}_t = \int g(x) \hat{f}_t(x) dx$$

- · Aggregate capital stock $K_t := \int k_t^{(j)} dj$
- · Capital-share weighted distribution $\hat{F}_t(x) := \int \frac{k_t^{(j)}}{K_t} \mathbb{I}\left(x_t^{(j)} \leq x\right) dj$
- · Aggregate capital-share-weighted moments

Default rate
$$\hat{\lambda}_t^d = -\frac{1}{2}\sigma^2 \bar{x}^2 \partial_x \hat{f}_t(\bar{x})$$
 Average growth $\hat{g}_t = \int g(x) \hat{f}_t(x) dx$

· Aggregate growth $\mu_{K,t} := \hat{g}_t - (1 - \alpha_k)\hat{\lambda}_t$ and aggregate capital stock dynamics

$$dK_t = \mu_{K,t} K_t dt + \rho \sigma K_t dZ_t$$

GMM (exactly identified case)

Parameter	Description	Point estimate	Standard error	[5,95] normal CI
a	average product of capital	0.223	0.001	[0.231, 0.235]
σ	volatility of idiosyncratic shock	0.236	0.010	[0.219, 0.253]
γ	curvature of capital adjustment cos	t 2.550	0.643	[1.493, 3.608]

[Back]

GMM (exactly identified case)

Moment	Description	Targeted?	Data	Model
$100 \times \hat{\Phi}$	average investment rate	√	9.48	9.47
\hat{z}	average debt-to-ebitda	/	2.71	2.71
$100 \times \frac{cov(\Phi(x),z(x))}{var(z(x))}$	slope of inv. w.r.t debt-to-ebitda	✓	-3.66	-3.66
$100 \times \kappa \hat{z}$	average (inverse) interest coverage ratio	×	11.61	13.53
$100 \times \hat{\pi}$	average dividend issuance rate	X	3.32	3.49
$100 \times \hat{\iota}$	average gross debt issuance rate	X	10.21	7.38
$100 \times (\hat{\iota} - m\hat{x})$	average net debt issuance rate	X	0.96	1.06
var(z(x))	variance of debt-to-ebitda	X	3.08	0.90
$var(100 \times \Phi(x))$	variance of investment rate	X	23.36	13.32
$100 \times \hat{F}(z(x) \le 1)$	total asset share, debt-to-ebitda ≤ 1	X	9.21	0.00
$100 \times \hat{F}(z(x) \le 2)$	total asset share, debt-to-ebitda ≤ 2	X	43.00	19.89
$100 \times \hat{F}(z(x) \le 3)$	total asset share, debt-to-ebitda ≤ 3	×	67.47	77.94

[Back]

The strength of the debt overhang channel

Average growth:

Growth rate of all-equity firm = 2.8%

Aggregate growth rate of $K_t = 0.9\%$

Marginal effects:

$\partial (i/k)_t/\partial x_t$	$(i/k)_t = \text{Gross}$ investment	$(i/k)_t = Net$ investment
Model	-0.094	-0.106
Lang, Ofek, Stulz (1996)		-0.105
An, Denis, Denis (2006)		-0.086
Cai, Zhang (2011)	-0.038	
Wittry (2020)	-0.038	