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Abstract:
This paper considers factor estimation from heterogenous data, where some of the vari-

ables are noisy and only weakly informative for the factors. To identify the irrelevant

variables, we search for zero rows in the loadings matrix of the factor model. To sharply

separate these irrelevant variables from the informative ones, we choose a Bayesian frame-

work for factor estimation with sparse priors on the loadings matrix. The choice of a sparse

prior is an extension to the existing macroeconomic literature, which predominantly uses

normal priors on the loadings. Simulations show that the sparse factor model can well

detect various degrees of sparsity in the data, and how irrelevant variables can be iden-

tified. Empirical applications to a large multi-country GDP dataset and disaggregated

CPI inflation data for the US reveal that sparsity matters a lot, as the majority of the

variables in both datasets are irrelevant for factor estimation.
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Non-technical summary

Factor models are nowadays widely used econometric tools in central banks. Policy-

relevant applications of these models include the estimation of composite business cycle

indicators, forecasting and structural investigations of the transmission of shocks. The

econometric methods to estimate factor models can consider large datasets, and thus allow

for the simultaneous analysis of many economic activities.

A difficulty with respect to the use of large datasets is that the information content

of some included time series might be low, for example, if they are noisy. The literature

shows that keeping these variables in the data can distort factor estimation. In this

case, variable preselection could be considered to separate the relevant variables from

irrelevant ones and estimate factors from the reduced dataset. Another solution might be

the modification of the estimation methods of the model such that the weight attached

to irrelevant variables becomes small.

In this paper, we discuss methods for finding irrelevant variables in factor models. We

also discuss a sparse specification of the factor model that allows to discriminate sharply

between relevant and irrelevant variables. To estimate factors, we follow a Bayesian

approach from the recent statistical literature, where sparsity is introduced in the prior

distribution of the loadings matrix. Such sparse priors have rarely been used in the

macreconomic literature on factor models.

Simulations show that the factor model is a flexible tool in the presence of data with

different degrees of sparsity, where the information content of the data and the number of

irrelevant variables varies. The simulations also indicate that the posterior distributions

of the loadings are useful to find irrelevant variables in the data.

As an empirical application, we estimate the sparse factor model using an international

dataset. In the literature, this data is used to analyse global business cycles. The results

show that only less that 50% of the countries are explained by the factors. In particular,

Africa and Latin America seem to play only a minor role in international business cycles.

An additional application concerns disaggregated CPI inflation in the US. In this data, we

find even more sparsity, as only about 35% of the sectoral inflation rates are informative

about the factors. Thus, sectoral price developments seem to be driven mainly by sector-

specific rather than aggregate shocks.



Nicht-technische Zusammenfassung

In Zentralbanken werden Faktormodelle zu verschiedensten Zwecken verwendet. Sie bilden

die Grundlage der Berechnung von zusammengesetzten Konjunkturindikatoren, werden

zur Analyse von strukturellen Schocks und bei der Prognose angewendet. Die ökono-

metrischen Methoden zur Schätzung von Faktormodellen erlauben die Auswertung um-

fangreicher Datensätze und können daher eine Vielzahl ökonomischer Aktivitäten simultan

berücksichtigen.

Eine Schwierigkeit bei der Verwendung großer Datensätze besteht darin, dass einige

Variablen verrauscht sein können und ihr Informationsgehalt für die Schätzung gemein-

samer Faktoren daher gering ist. Empirischer Evidenz aus der Literatur zufolge kann

dadurch die Faktorschätzung erheblich verzerrt werden. In diesem Fall ist in Erwägung

zu ziehen, eine Vorauswahl der für die Schätzung relevanten Variablen zu treffen und die

irrelevanten Variablen bei der Schätzung zu vernachlässigen. Eine andere Lösung besteht

darin, das Schätzverfahren des Modells so zu modifizieren, dass den irrelevanten Variablen

schon bei der Schätzung ein geringes Gewicht beigemessen wird.

Im vorliegenden Papier werden Methoden vorgestellt und diskutiert, mit denen irrele-

vante Variablen in Faktormodellen identifiziert werden können. Zudem wird eine sparsame

Spezifikationen des Faktormodells vorgeschlagen, mit der eine scharfe Trennung zwis-

chen relevanten und irrelevanten Variablen ermöglicht wird. Als Analyserahmen dient

ein bayesianischer Schätzansatz, wobei Sparsamkeit über die A-Priori-Verteilungen der

Ladungskoeffizienten des Faktormodells implementiert wird. Ein solcher Modellrahmen

wurde bisher selten für makroökonomische Fragestellungen verwendet.

In Simulationen zeigt sich, dass sich das Faktormodell flexibel an verschiedene Gegeben-

heiten in den Daten anpassen kann, wobei insbesondere der Informationsgehalt in den

Daten und somit die Zahl der relevanten und irrelevanten Variablen variiert wird. Ferner

gelingt es mit den Schätzergebnissen, irrelevante Variablen im Datensatz zu identifizieren.

Hierbei können insbesondere die A-Posteriori-Verteilungen der Ladekoeffizienten verwen-

det werden.

Als eine empirische Anwendung wird das sparsame Faktormodell mit einem interna-

tionalen Datensatz geschätzt, der in der Literatur zur Analyse globaler Konjunkturzyklen

verwendet wird. Es zeigt sich, dass weniger als 50% der Länder durch die Faktoren erklärt

werden. Insbesondere Afrika und Lateinamerika scheinen bestenfalls eine geringe Rolle

im internationalen Konjunktuzusammenhang zu spielen. In einer weiteren Anwendung

wird dass Modell mit disaggregierten Inflationsdaten der USA geschätzt. In diesen Daten

zeigt sich eine noch größere Sparsamkeit, da weniger als 35% der sektoralen Inflations-



raten durch die Faktoren erklärt werden. Demnach scheinen die Preisentwicklungen in

vielen Sektoren vornehmlich durch idiosynkratische Einflüsse bestimmt zu sein, während

aggregierte, gesamtwirtschaftliche Einflüsse für diese Sektoren eine sehr untergeordnete

Rolle spielen.
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Finding relevant variables in sparse Bayesian factor models:
Economic applications and simulation results1

1 Introduction

Factor models based on large datasets have received increasing attention in the recent

macroeconomic literature. Policy-relevant applications of these models include the esti-

mation of composite business cycle indicators, forecasting and structural investigations of

the transmission of shocks (Altissimo et al., 2010; Stock and Watson, 2002; Kose et al.,

2003; Bernanke et al., 2005).

A rarely discussed issue in the literature is the composition of the data used to esti-

mate factors. Economists can in principle make use of all the information contained in

large macroeconomic datasets that are nowadays available, as proper factor estimation

techniques like principal components (PC) analysis can be applied to these large datasets.

The question is to what extent the whole datasets are informative for the above-mentioned

purposes. One of the few papers that discusses the composition of the data used to es-

timate factors is Boivin and Ng (2006). In the context of factor estimation by PC, they

show that it generally depends on the information content of data for the factors whether

the inclusion of additional data is detrimental. The point is illustrated by Monte Carlo

simulation results, where the data-generating process (DGP) includes some variables that

depend strongly on the factors whereas others are noisy. Both types of variables together

imply heterogenous information in the data and a factor loadings matrix containing a

considerable number of zeros.

In the present paper, we propose a factor estimation framework, which takes into

account heterogeneous information in the data. The factors are estimated within a state-

space model with Bayesian techniques. To account for heterogeneous information, we

choose a sparse, parsimonious parameterization of the factor loadings matrix. In particu-

lar, the loadings are estimated under a sparse prior, which assumes that many zeros may

be present in the loadings matrix. Such an approach has been recently proposed in the

context of gene expression analysis (West, 2003; Carvalho, 2006; Lucas et al., 2006; Car-

1This paper represents the authors’ personal opinions and does not necessarily reflect the views of
the Swiss National Bank or the Deutsche Bundesbank. We thank Knut Are Aastveit, Sandra Eick-
meier, Heinz Herrmann, Anne Sofie Jore, and Malte Knüppel for helpful comments and suggestions.
Contact information: Sylvia Kaufmann: Study Center Gerzensee, Dorfstrasse 2, P.O. Box 21, CH-
3115 Gerzensee, Email: sylvia.kaufmann@szgerzensee.ch. Christian Schumacher: Deutsche Bundes-
bank, Economic Research Centre, Wilhelm-Epstein-Str. 14, 60431 Frankfurt am Main, Germany. Email:
christian.schumacher@bundesbank.de.
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valho et al., 2008). In an economic context, sparse priors have hardly been applied before.

An exception is the paper by Frühwirth-Schnatter and Lopes (2010), who estimate an ex-

change rate factor model with sparse loadings. However, the majority of macroeconomic

applications of Bayesian factor models typically employ normal priors on the loadings,

for example, to investigate the role of structural shocks in factor models (Bernanke et al.,

2005; Kose et al., 2003, 2010; Mackowiak et al., 2009). The sparse prior we use here is an

extension to priors for variable selection in multiple regression (George and McCulloch,

1993, 1997; Geweke, 1996) and is more general than the normal prior. The sparse prior on

a particular factor loading implies more mass at zero than the normal prior and therefore

allows for a sharper distinction between relevant and irrelevant variables.

Based on the posterior distributions of the loadings, we can investigate the relevance of

variables in the model. In particular, rows in the factor loadings containing only zero ele-

ments indicate irrelevant variables which do not contribute relevant information to factor

inference. The results on the relevance of variables might have important implications for

empirical applications. For example, Francis et al. (2012) follow Kose et al. (2003) and

investigate international business cycles by estimating international factors from a large

set of country-specific GDP series. If variables for a certain country are not explained by

the international factors and vice versa do not help to estimate them, one could conjec-

ture that these countries are not linked to international business cycles. Mackowiak et

al. (2009) identify common and sector-specific shocks from a factor model estimated from

disaggregated US CPI inflation data covering many different products and services. The

identification of irrelevant variables might be helpful in this case, as shocks hitting the

common factors do not have a significant impact on these variables. Thus, the results on

relevant variables might provide additional insights regarding the relative importance of

sector-specific and aggregate shocks.

In the paper, we also discuss identification issues prevalent in factor models in the

context of sparsity. A widely used identification scheme sets the upper diagonal elements

of the factor loading matrix to zero (Geweke and Zhou, 1996; Aguilar and West, 2000).

Obviously, when the number of variables is large and the factor loading matrix has a

sparse structure, variable ordering becomes an important issue (Frühwirth-Schnatter and

Lopes, 2010). Here, we propose to estimate the sparse factor model independently of the

variable ordering without any zero restrictions imposed a priori as in Bhattacharya and

Dunson (2011). We make use of the fact that the sparsity priors generally imply enough

zeros in the loadings matrix a posteriori. In this regard, the sparse prior specification also

contributes to the identification of factors and loadings.

To assess the quantitative properties of the sparse factor model, we provide Monte

2



Carlo simulations, where the DGP allows for different degrees of sparsity. Compared to a

benchmark normal prior for the loadings, our prior well detects sparsity in the simulated

data. This even holds, if there is only little sparsity in the DGP. We also compare

different specifications of sparse priors. It turns out that the performance of the one-layer

specification used in Frühwirth-Schnatter and Lopes (2010) is similar to the performance

of the hierarchical two-layer prior in Carvalho et al. (2008). We also compare different

ways to separate the irrelevant from the relevant variables in the data, and find in general

stable results, independently of the degree of sparsity in the DGP.

To further illustrate the properties of the sparse factor model, we provide an empirical

application to the multi-country GDP data used by Francis et al. (2012) and to the

US sectoral inflation data by Mackowiak et al. (2009). Posterior inference on the factor

loadings in both applications reveals that many time series have zero loading rows. In

the international data, it turns out that African countries and most countries in Latin

America are not driven by world factors. In the US inflation data, we find that more than

65% of the sectoral inflation rates are not explained by factors and thus mainly driven by

sector-specific determinants.

The paper proceeds as follows. Section 2 provides an overview of the factor model,

its identification, and the definition of relevant and irrelevant variables. In Section 3, we

discuss the prior distributions, in particular of the loadings, and the posterior sampler.

Section 4 contains the Monte Carlo simulation results, and Section 5 the empirical results.

Finally, Section 6 summarizes and concludes.

2 Sparse factor model and identification

2.1 Model structure

Assume that Xt is a N×1 vector of stationary series observed in time period t = 1, . . . , T .
The number of time seriesN will typically be large, and we will work with the factor model

Xt = λft + εt, εt ∼ N (0,Σε) , (1)

Φ(L)ft = ηt, ηt ∼ N (0,Ση) , (2)

where the (k×1) factors ft with k << N capture the common dynamics in the series. The

factor loading matrix λ has dimensions N × k. The vector autorregressive lag polynomial
Φ(L) is of order p with Lft = ft−1. The idiosyncratic components εt are independent of

each other, E (εitεjt) = 0, i �= j, i.e. Σε is diagonal with elements σ2i for i = 1, . . . , N .

For identification purposes, see Section 2.3 below, we assume that factor innovations
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are independent of each other, rendering Ση diagonal. Finally, the factor innovations

the idiosyncratic components are also assumed to be independent, E (ηtεt) = 0. Of

course, if the common dynamics are not sufficient to capture all dynamics in the data,

one might specify additional idiosyncratic dynamics, e.g. modify (1) to Xt = λft + ξt

with Ψ(L)ξt = εt and lag polynomial Ψ(L) of order q. However, to simplify notation we

focus on the specification (1).

2.2 Relevant and irrelevant variables for factor analysis

As outlined in the introduction, we address the relevance of variables in the factor model

by focussing on the loadings matrix in (1). In particular, we aim at finding those variables

among the N series, which are not related to the factors and thus have only zero loadings

elements in the respective row. For a particular series xit ∈ Xt, the factor model is defined

as xit = λi·ft + εit, where λi· is the ith (1× k) row of λ. If all elements in the row vector
λi· are equal to zero, namely

λi· = (λi1λi2 . . . λik) = (0 0 . . . 0), (3)

the common factors do not have an impact on variable xit, and it is driven by idiosyncratic

noise only, xit = εit. We call these variables irrelevant for factor analysis. On the other

hand, the relevant variables are the remaining ones, namely, those with at least one non-

zero loading element.

In the simulations and empirical exercises below, we estimate the factor model and

address the relevance of variables using Bayesian techniques. The search can be carried

out based on the standard posterior output of Bayesian factor estimation. Therefore,

searching for relevant variables might augment the inferential toolbox of factor analysis.

Details how the relevance of the data is addressed will be provided in Section 4.3.

Note that zero rows in the loadings matrix have implications for the estimation of the

unobserved factors, because the factor estimates are typically obtained by solving a signal

extraction problem using the observed variables. If, for example, the Kalman filter is

used to estimate the unobserved factors, a variable with corresponding zero loadings row

does not contain relevant information for estimating the factors. Koopman and Harvey

(2003) show how Kalman filtered and smoothed states can be expressed as functions

of the observed data. These weight functions are equal to zero, if the loadings matrix,

which is also the observation matrix in state space, has a zero row for the variable under

consideration.
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2.3 Identification

In model (1), loadings and factors are not separately identified. For any non-singular

k × k matrix H, there is an observationally equivalent model

Xt = λHH
−1ft + εt, H−1Φ(L)HH−1ft = H−1ηt. (4)

To identify the model - up to sign identification -, we have to choose a non-singular matrix

H. As it contains k2 elements, we need k2 identifying restrictions to pin down λ and ft,

see for example Bai and Ng (2010). A standard identification scheme sets the upper

diagonal elements of the factor loading matrix λ equal to zero, λij = 0 for j > i (Geweke

and Zhou, 1996; Aguilar and West, 2000). This provides us with k(k − 1)/2 restrictions.
If we also impose the diagonality restriction on Ση and set each diagonal element to one,

Ση = I, we additionally have k(k+ 1)/2 restrictions. Thus we end up with k2 identifying

restrictions.

An alternative approach that we pursue in the paper, is to estimate the factor loadings

freely, without setting k(k − 1)/2 zero restrictions in the loadings matrix a priori, under
a sparse prior specification, see also Bhattacharya and Dunson (2011) and Knowles and

Ghahramani (2011). Details will be be provided in Section 3.1. Under the sparse prior,

the Gibbs sampler induces sparsity by setting loadings to zero, if the data support this

decision. Thus, we obtain sparsity a posteriori, if the data indeed support enough zero

restrictions. In our results we generally find a lot of support in favour of sparsity, and thus

obtain well-defined posterior samples of the loadings and factors. This approach might also

be justified, because the focus of our investigation is related somehow to variable selection

(Bhattacharya and Dunson, 2011). Note that the hypothesis of variable irrelevance as

defined in Section 2.2 is independent of the identification or rotation scheme chosen.

Partition the true variables Xt into two (N1 × 1) and (N2 × 1) blocks, Xt =
[
X ′
1,t X

′
2,t

]′
,

where the second block would have zero factor loadings, λ2 = 0. The rotation with any

invertible matrix Q

λ̃ = λQ =

(
λ1
λ2

)
Q =

(
λ1Q
λ2Q

)
(5)

yields λ̃2 = λ2Q = 0Q = 0. Thus, sparsity in the factor model in terms of zero rows

in the loadings matrix cannot be removed by rotation. Therefore, we expect that the

investigation of sparsity on the basis of zero rows in the loadings matrix will not be

heavily affected by the choice of the identification scheme.

In the literature on factor models, the issue of factor identification is crucially linked to

finding an ordering of the variables such that the k leading variables be strongly associated
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with the factors. In the lower triangular identification scheme of Geweke and Zhou (1996)

and Aguilar and West (2000), the first variable is assumed to be affected by the first factor

only, the second one by the second one and potentially by the first, etc. Large panels of

macroeconomic data are usually clustered, for example, ranking first real output variables

like industrial components and its components, then adding other categories of data as

in the benchmark dataset of Stock and Watson (2002). Given this ordering of data, a

zero upper diagonal identification scheme would establish mostly the first group of real

variables as the founders of the different factors. This might be undesirable, as we might

think of one factor mainly capturing the comovement between real variables, another one

capturing the comovement between financial variables. To resolve the issue, Carvalho

(2006) proposes an evolutionary approach to determine the number of factors and the

selection and ordering of the k leading variables. Frühwirth-Schnatter and Lopes (2010)

propose a generalized upper-zero triangular identification scheme, in which l1 < · · · < lk,
where lj denotes the row of the top non-zero entry in λ̃ for j = 1, . . . , k, such that λ̃lj ,j �= 0,
and λ̃ij = 0 ∀i < lj. As in the present paper, Frühwirth-Schnatter and Lopes (2010)

estimate zero and non-zero loadings based on a latent indicator variable γij ∈ {0, 1}, where
γij = 1, if the corresponding loading λij is unequal to zero, and γij = 0 otherwise. At each

step of the Gibbs sampler, the decision whether λij �= 0 or λij = 0 is based on the posterior
odds ratio P (λij �= 0|·) /P (λij = 0|·). Finally, Kaufmann and Schumacher (2012) propose
to identify the factors independently of the variable ordering by combining a restriction-

free sparse estimation of the factor loading matrix with the identifying restriction of

semi-orthogonal loadings, where λ′λ is a diagonal matrix.

3 Bayesian setup and MCMC estimation

3.1 Likelihood and prior specification

The complete-data likelihood takes the form

L
(
XT |f t, θ) = T∏

t=1

π
(
Xt|f t, θ

)
, (6)

where X t = (Xt, Xt−1, . . . , X1) denotes all observations up to period t and the parameter

vector θ includes all model parameters, θ = (λ,Φ,Σε). The observation density in (6) is

multivariate normal

π
(
Xt|f t, θ

)
=

1

(2π)N/2|Σε|1/2 exp
{
−1
2
(Xt − λft)′Σ−1ε (Xt − λft)

}
. (7)
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The prior density of the unobserved factors is

π
(
fT |θ) = T∏

t=p+1

π
(
ft|f t−1, θ

)
π (fp|θ) , (8)

where fp contains the initial states fp = (f−p, . . . , f−1, f0). For the parameters we assume

independent priors

π (λ,Φ,Σε) = π (λ) π (Φ) π (Σε) (9)

where apart from the sparse prior on λ, all prior distributions are conjugate distributions.

For the dynamic parameters we assume a multivariate normal prior truncated to the

stationary region, according to

π (Φ) = N (p0, P0) I{Z(Φ)>1} (10)

where I{·} is the indicator function and Z(Φ) > 1means that the roots of the characteristic

equation of the process Φ(L) lie outside the unit circle. To specify p0 and P0 of the VAR

process we implement a standard Minnesota prior. Given that Σε is diagonal, we assume

independent inverse Gamma prior distributions for the variances, π
(
σ2ε,i
)
= IG (u0, U0),

for i = 1, . . . , N .

The sparse prior specification for the loadings π (λ) follows the approach of West

(2003), Lucas et al. (2006), and Carvalho et al. (2008), and extends the variable selection

priors based on mixtures surveyed in George and McCulloch (1997):

π (λij) = (1− βij)δ0 (λij) + βijN (0, τ j) , (11)

π
(
βij
)
= (1− ρj)δ0

(
βij
)
+ ρjB (ajbj, aj(1− bj)) , (12)

π
(
ρj
)
= B (r0js0j, r0j(1− s0j)) . (13)

The sparsity prior for π (λij) in (11) assigns each loading element λij an individual proba-

bility βij of taking a non-zero value, see Carvalho et al. (2008). If the loading is non-zero,

its values are drawn from a normal prior with variance τ j, which follows an inverse Gamma

prior distribution, π (τ j) = IG (g0, G0). Otherwise, the loading is zero, as implied by the

Dirac delta function δ0(·). Layer (12) defines the element-specific probability βij of asso-
ciation between variable i and factor j and is specified such that inclusion probabilities

become either very small or very large. The prior of βij is itself a mixture of a Dirac delta

function and a Beta function B((ab, a(1− b)) with mean b and precision a. In layer (13),
the Beta prior on ρj favours very small values if the precision r0j > 0 is large and the

mean s0j, which can be regarded as prior probability of nonzero values of βij, is small.
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The prior (11)-(13) implies a common probability 1 − ρjbj across variables of a zero
loading on factor j. The hierarchical prior circumvents the observed problem that for

increasing N , the posterior of the factor loading λij is spread out, resulting in a large

uncertainty about the significance of the loading (Lucas et al., 2006). However, due to

the rich structure of the hierarchical prior, this might also come at a cost of increased

computation and perhaps reduced predictive performance, suggesting that the uncertainty

removed from the posterior actually would be important (Knowles and Ghahramani,

2011).

To obtain an intuition of the shape of the prior distribution of λij, we provide a

numerical example with 10000 draws from the prior. We first simulate out of the prior in

layer (13), where we assume a precision of ρ0j = 5 with different means s0j ∈ {0.1, 0.5, 0.9}.
Figure 1, Panel a), plots the distribution for ρ under the various parameter settings.

Obviously, with increasing mean, the distribution is shifted from left to right. In the

second layer (12), the prior for βij has a bimodal shape in Panel b), and an increase

in s0j leads to a higher probability that βij will be non-zero, given the hyperparameter

constellation of a = 1 and b = 0.9. We obtain an expected base rate of a non-zero factor

loading of 0.09. On average, 10% of the loadings will have an expected 90% probability of

a non-zero value. By additionally setting g0 = 2 and G0 = 1, which induces E (τ j) = 1, we

generally obtain a fat-tailed prior distribution for λij with a lot of mass at zero depicted

in Panel c) of Figure 1. Increasing s0j renders π (λ) less peaked and thus leads a priori to

a higher inclusion probability and a smaller degree of sparsity in the loadings.

The normal prior can be obtained from the hierarchical prior by letting s0j → 1, see

again how the distribution in Panel c) of Figure 1 converges to the normal distribution as

s0j increases. Thus, the normal prior is a special case of the hierarchical prior chosen here.

Note that macroeconomic applications of Bayesian factor models typically employ the

normal prior for the loadings (Bernanke et al., 2005; Kose et al., 2003, 2008; Mackowiak

et al., 2009). By choosing s0j < 1, we assume that there is a priori more sparsity than

in the normal prior. Note that the hierarchical prior does not only imply a different

shape compared to the normal prior. Due to the mixture specification in layer (11), we

will effectively set some λij exactly equal to zero, if sparsity matters in the data. The

continuous normal prior does not have this property. Thus, by using the hierarchical

prior, we hope to obtain a sharper distinction between relevant and irrelevant variables

in the macroeconomic applications. Note that the zero loadings can also help to identify

loadings and factors, as setting zero restrictions is a standard way of factor identification,

see the discussion in Section 2.3 above.

Compared to the existing literature, the two-layer prior can also be regarded as an
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Figure 1: Prior distributions π (ρ), π (β) and π (λ) under r0 = 5, s0 ∈ {0.1, 0.5, 0.9} and
a = 1.
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extension to priors from the Bayesian literature on variable selection (George and McCul-

loch, 1993, 1997):

π (λij) = (1− ρj)δ0 (λij) + ρjN (0, τ j) , (14)

π
(
ρj
)
= B (r0js0j, rj(1− s0j)) . (15)

This prior is equivalent to the two-layer prior (11)-(13), if we neglect the layer for βij.

Thus, the two-layer prior (11)-(13) from Carvalho et al. (2008) actually also nests the one-

layer prior from George and McCulloch (1997). Frühwirth-Schnatter and Lopes (2010)

design a hierarchical prior, in which the significance of the factor loading is governed by an

indicator γij ∈ {0, 1} with P
(
γij = 1|ρj

)
= ρj, where ρj also follows a Beta distribution.

The prior can be related to the two-layer prior by constraining ρjbj a priori to lie in [0, bj).

Thus, the prior used in Frühwirth-Schnatter and Lopes (2010) is actually closely related

to the one-layer prior from George and McCulloch (1997), see also Geweke (1996).

A contribution of the present paper is to compare the performance of the different

priors. We will do so in a simulation exercise, see Section 4, where we will compare the

different priors with respect to their ability to detect different degrees of sparsity in the

data.

3.2 Posterior inference

Updating the prior with data information yields the inference on the posterior distribution

of ϑ =
(
fT , θ

)
, π
(
ϑ|XT

) ∝ L
(
XT |fT , θ) π (fT |θ) π (θ). The sampler is based on the

following steps

(i) Simulate fT from π
(
fT |XT , θ

)
.

(ii) Simulate Φ, Σε from π
(
θ−λ|fT , XT , λ

)
, where θ−λ excludes λ from θ.

(iii) Simulate λ from π
(
λ|fT , XT ,Σε

)
under a sparse prior.

(iv) Update the hyperparameters of the sparse prior.

Step (i) and (ii) are standard by now in the Bayesian simulation setup. The path fT is

simulated using a multi-move sampler as proposed in Carter and Kohn (1994), Shephard

(1994), Frühwirth-Schnatter (1994). The parameter simulation needs further blocking.

Given the conjugate priors, the posterior distributions are multivariate normal and inverse

Wishart. The distributions can be found in the appendix.

Step (iii) and (iv) update the sparse prior of the factor loading matrix and the hy-

perparameters, respectively, given the factors. As the derivation is less standard, see also

Carvalho (2006) and Geweke (1996), we describe it in more detail. In particular, the
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posterior π
(
λij|fT , XT ,Σε

)
is obtained by first integrating out the variable specific prior

probability of zero loading for each factor j. The prior in (11)-(13) implies a common

base rate of a non-zero factor loading of E
(
βij
)
= ρjbj across variables. The marginal

prior becomes

π
(
λij|ρj

) ∼ (1− ρjbj)δ0(λij) + ρjbjN (0, τ j) (16)

For each factor j, transform the variables to

x∗it = xit −
k∑

l=1,l �=j
λilflt = λijfjt + εit

which basically isolates the effect of factor j in variable i. Combine the marginal prior

with data information to sample independently across i from

π (λij|·) =

T∏
t=q+1

π(x∗it|·)
{
(1− ρjbj)δ0(λij) + ρjbjN (0, τ j)

}
(17)

= P (λij = 0|·) δ0(λij) + P (λij �= 0|·)N (mij,Mij) (18)

with observation density π(x∗it|·) = N
(
λijfjt, σ

2
ε,i

)
and where

Mij =

(
1

σ2i,ε

T∑
t=1

f 2jt +
1

τ j

)−1
, mij =Mij

(
1

σ2ε,i

T∑
t=1

fjtx
∗
it

)
(19)

To obtain the posterior odds P (λij �= 0|·) /P (λij = 0|·) we update the prior odds of non-
zero factor loading:

POij =
P (λij �= 0|·)
P (λij = 0|·) =

π (λij) |λij=0
π (λij|·) |λij=0

ρjbj

1− ρjbj
=

N (0; 0, τ j)

N (0;mij,Mij)

ρjbj

1− ρjbj
(20)

We choose λij �= 0 if U ≤ POij/(1+POij), where U is a draw from the uniform distribution
over [0, 1]. To address the relevance of variables later we follow Frühwirth-Schnatter and

Lopes (2010) and compute the binary indicators γij defined as γij = 1 if λij �= 0, and

γij = 0 if γij = 0. Thus the indicators γij show whether variable xit is associated with

factor fjt or not.

If the binary decision leads to λij �= 0 in this step, λij is drawn from N (mij,Mij), and

otherwise zero. Conditional on λij we update the variable specific probabilities βij and

sample from π(βij|λij, ·). When λij = 0,

π(βij|λij = 0, ·) ∝ (1− βij)
[
(1− ρj)δ0(βij) + ρjB (ajbj, aj(1− bj))

]
(21)

P (βij = 0|λij = 0, ·) ∝ (1− ρj), P (βij �= 0|λij = 0, ·) ∝ (1− bj)ρj
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That is, with posterior odds (1 − bj)ρj/(1 − ρj) we sample from B (ajbj, aj(1− bj) + 1)
and set otherwise βij equal to zero. Conditional on λij �= 0 we obtain

π(βij|λij �= 0, ·) ∝ βijN (λij; 0, τ j)
[
(1− ρj)δ0(βij) + ρjB (ajbj, aj(1− bj))

]
(22)

P (βij = 0|λij �= 0, ·) = 0, P (βij �= 0|λij �= 0, ·) = 1

In this case we sample βij from B (ajbj + 1, aj(1− bj)).
The posterior update of the hyperparameters τ j and ρj is sampled from an inverse

Gamma, π (τ j|·) ∼ IG (gj, Gj), and a Beta distribution, π
(
ρj|·
) ∼ B (r1j, r2j), respec-

tively, with

gj = g0 +
1

2

N∑
i=1

I{λij �=0}, Gj = G0 +
1

2

N∑
i=1

λij
2

r1j = r0js0j + Sj, r2j = r0j(1− s0j) +N − Sj,where Sj =
N∑
i=1

I{βij �=0}.

4 Simulations

With simulations, we want to investigate how the different priors in the model affect

factor estimation under different degrees of sparsity in the data. The DGP will vary

with respect to the information content of the data for the factors, which is implemented

through different specifications of the loadings, see Section 4.1. Given the simulated data,

we estimate the common components and compare them to the simulated values from

the DGP following the simulations with heterogenous data in Boivin and Ng (2006). The

specification of the estimated models is discussed in Section 4.2. We also simulate the

search for irrelevant variables. In Section 4.3 we compare different procedures to find out

whether irrelevant variables, which are defined to be idiosyncratic in the DGP, can indeed

be identified as such based on the estimation results. We do the same with simulated

relevant variables in the DGP. The simulation results are provided in Section 4.4.

4.1 Factor DGP

For the simulation study, we simulate N = 50 time series of length T = 100, driven

by a k = 2 dimensional factor process. The dataset will be simulated in two parts: In

the first part, for i = 1, . . . , 40, we simulate data with different degrees of sparsity. To

address the relevance of variables, we simulate another 10 variables in the second part,

for i = 41, . . . , 50, which are either relevant or irrelevant by definition:
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1. The DGP for the first block of variables for i = 1, . . . , 40, is a 2-factor DGP with a

factor VAR with p = 1 lags and takes the form

xit = λi·ft + εit, εit ∼ N
(
0, σ2ε,i

)
, (23)

ft =

[
0.3 0
0 0.8

]
ft−1 + ηt, ηt ∼ N (0, I) , (24)

To sample the loadings λi·, we rely on the two-layer prior distributions in equations

(11)-(13) from Section 3.1. The degree of sparsity in λi is successively relaxed by

increasing the hyperparameter s0j, namely s0j ∈ {0.1, 0.5, 0.9} for j = 1, 2, see

equation (13) above. Increasing s0j from 0.1 to 0.9 implies that the fraction of

non-zero factor loadings increases from 10% to 90% based bj = 0.8. The marginal

expected factor-specific probability of a non-zero factor loading thus increases from

8% to 72%. As regards precision, we fix r0j = 50 and aj = 0.01 for j = 1, 2. The non-

zero factor loadings are simulated out of the normal distributions N(mj,M) with

M = 0.01 and m1 = 0.60, m2 = 0.40. The variance M = 0.01 is chosen relatively

tight in order to sharply define non-zero loadings. Variances of the idiosyncratic

components are fixed to σ2ε,i = 0.74 for i = 1, . . . , 40.

2. The DGP for the second block of variables, for i = 41, . . . , 50, contains either

relevant or irrelevant variables:

(a) Irrelevant variables: We simulate 10 completely idiosyncratic variables with

DGP xit = 0.5× xit−1 + εt with εt ∼ N(0, σ2ε,i) and σ2ε,i = 0.74.
(b) Relevant variables: The DGP for relevant variables is defined by xit = λi·ft +

εit, where the loadings are sampled according to λij ∼ N(mj,M) with M =

0.01 and εt ∼ N(0, σ2ε,i) and σ
2
ε,i = 0.37. Concerning the loadings means, we

assume that one factor explains a relevant variable, but which one is randomly

determined. With equal probability, we choose for each sample whether the

first or the second factor explains the relevant variable. If the first factor is

chosen, we sample λi1 ∼ N(m1,M) with m1 = 0.60, and if the second factor

is chosen, we set m2 = 0.40 to sample λi2 ∼ N(m2,M), corresponding to the

DGP of the first block of variables above.

Overall, we obtain six different specifications of DGPs depending on the three sparsity

degrees s0j ∈ {0.1, 0.5, 0.9} for the first 40 variables and depending on whether the final
10 variables are either relevant or irrelevant. For each DGP specification, we produce

R = 50 replications of the multivariate data as well as true loadings λ(r)i· and factors f
(r)
t

for r = 1, . . . , R.
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4.2 Models for estimation

The sparse factor model is estimated for k = 2 factors under different sparse prior distrib-

utions for the loadings. We compare the results of the sparse factor model estimated with

the two-layer prior to the factor model estimated with the normal prior. Furthermore,

we compare the estimates obtained with the two-layer prior (11)-(13) against those ob-

tained with the one-layer prior (14)-(15). To estimate the factor model under the sparse

priors, we assume that the true degree of sparsity in the DGP is unknown and choose

an intermediate degree of sparsity s0j = 0.5 for j = 1, 2. Thus, we can investigate how

sparsity is detected with the different priors, when the true degree of sparsity in the DGP

is not known a priori. We additionally fix r0j = 3 and aj = 0.5 for j = 1, 2, implying low

precision a priori when estimating the model compared to the DGP. For bj, we assume

bj = 0.8. Furthermore, the prior on τ j in N (0, τ j) is parameterized by IG(2, 0.5). Con-

cerning the variances of the idiosyncratic components, we define π
(
σ2ε,i
)
= IG (u0, U0)

for i = 1, . . . , N with u0 = 2.0 and U0 = 1.0. To specify hyperparameters of the factor

VAR lag polynomial in (10), we implement a Minnesota prior with variance equal to 0.16

on the first autoregressive lag and a shrinkage factor of 0.0278 for off-diagonal parame-

ters. As regards identification, we will estimate the factor model without any identifying

restrictions following the discussion in Section 2.3. As a check for robustness, we will

later also consider the identification scheme by Geweke and Zhou (1996). To estimate

the sparse model for a given simulated dataset indexed by r for r = 1, . . . , R, we draw

5000 times from the posterior, discard the first 1000 draws, keep every second one, and

evaluate the posterior with Geff = (5000− 1000)/2 = 2000 retained iterations. Thus, we
obtain loadings and factor estimates λ(r,g)i· and f (r,g)t , respectively, for g = 1, . . . , Geff.

4.3 Statistics to evaluate the estimation performance

The results in the Tables below will be based on three different statistics. As first statistic

of estimation accuracy, we follow the simulations by Boivin and Ng (2006) and assess the

accuracy of the estimates of the common components. For that purpose, we compute the

root mean-squared error RMSEr of the common components by

RMSEr =
1

N

1

Geff

N∑
i=1

Geff∑
g=1

√√√√ 1

T

T∑
t=1

(
λ
(r,g)
i· f

(r,g)
t − λ(r)i· f (r)t

)2
, (25)

for all the r = 1, . . . , R simulated datasets. Finally, we average over the replications to

obtain the RMSE = 1
R

∑R
r=1RMSEr. We obtain RMSEs for data simulated with different
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sparsity degrees s0j ∈ {0.1, 0.5, 0.9}, and for estimating the factor model under the one-
layer, two-layer, and the normal prior.

In addition, we address the relevance or irrelevance of variables from the posterior

draws of the model parameters. From the DGP, we know where the irrelevant variables

are located, namely at the end of the dataset, i = 41, . . . , 50. To assess the relevance of a

variable, we follow two different approaches.

1. First, we look at the posterior draws of each loading λ(g)ij , g = 1, . . . , G
eff and j = 1, 2,

and search for those variables that have a loading posterior distribution which is

significantly different from zero. For this purpose, we compute 95% HPD regions

for each λij from the posterior samples and check whether zero is included or not. If

zero is not included, we say that variable xit is associated with factor fjt. To make

statements about the relevance of variables in the factor model, we have to assess

the rows of the loadings matrix, see Section 2. We term a variable xit to be relevant

if zero is outside the 95% HPD region for at least one loading element in row i of

the loadings matrix.

2. Second, we can use posterior association probabilities to assess the relevance of vari-

ables. In the sampler, step (20) above, we compute the posterior odds P (λij �= 0|·) /
P (λij = 0|·) conditional on the factors, amongst others. Based on this ratio, we de-
cide whether the loading is different from zero, λij �= 0, or not, λij = 0. Frühwirth-
Schnatter and Lopes (2010) as well as Carvalho et al. (2008) define the indicator

matrix γij = 1 if λij �= 0 and γij = 0 if λij = 0 and use the posterior distributions
of the γ(g)ij for g = 1, . . . , G

eff to obtain the posterior association probability

P (γij = 1|XT ) =
1

Geff

Geff∑
r=1

γ
(g)
ij (26)

of variable i with factor j. Again a variable is called relevant for the model, if there

is at least one loading element in row i with P (γij = 1|XT ) > 0.95.

In the simulations, we will consider 10 variables which are relevant or irrelevant in the

DGP. To provide a summary statistic across all these variables, we compute the average

inclusion frequency. In particular, we count how many of the 10 irrelevant variables are

actually regarded as relevant in the estimation of the model given a simulated dataset

based on the HPD regions of the loadings and the association probabilities. We then

average this number over the R simulation samples and the irrelevant variables. Assume

we simulate from the DGP with irrelevant data. If the average inclusion frequency is close
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to zero, we can confirm that the irrelevant variables are detected correctly. An average

inclusion frequency close to one indicate that all the irrelevant variables are regarded as

relevant in the estimation.

Note that the literature mostly employs posterior association probabilities (26) to

assess the relevance of variables rather than the posterior draws of the loadings, see

Frühwirth-Schnatter and Lopes (2010). In the exercise below, we also use the HPD

regions based on λ(g)ij for g = 1, . . . , G
eff, as this additionally allows us to address the per-

formance of the normal prior, which does not necessitate the computation of the posterior

odds P (λij �= 0|·) /P (λij = 0|·). In the simulations below, we can check how well the

HPD regions and the association probabilities work in separating relevant from irrelevant

variables.

4.4 Simulation results

Table 1 contains simulation results, where the last 10 variables are irrelevant in the DGP,

and Table 2 contains results with relevant variables in the DGP, see Section 4.1. The

standard output in the Tables below consists of five panels. In Panel A, we provide

the RMSE as defined above in (25), and in Panel B the RMSE of the model based on

the normal and one-layer prior relative to the RMSE of the model estimated using the

two-layer sparse prior. Thus, a relative RMSE greater than one indicates a superior

performance of the two-layer prior. To evaluate the relative performance of the three

priors further, Panel C contains the average differences between two RMSEr based on

different priors. The differences are computed as the RMSEr of the one-layer prior minus

the RMSEr of the two-layer prior, and the same using the normal prior. If the mean of

the sequence of differences is greater than zero, the two-layer prior is superior. We also

provide the 95% highest probability density (HPD) region to assess the significance of

the differences between priors. Panels D and E of Table 1 contain the average inclusion

frequencies of the irrelevant variables. Panel D contains results based on HPD regions

of the loadings posterior draws, whereas Panel E contains results based on the posterior

association probabilities (26). Panels A and B of Table 1 show that the differences between

the RMSEs based on the two-layer prior and one-layer prior are quite small, whereas both

clearly improve over the normal prior. The HPD regions in Panel C indicate no systematic

differences between the two-layer prior and one-layer prior, whereas the two-layer prior

yields a significantly lower RMSE than the normal prior for s0 = 0.1 and s0 = 0.5.

However, for a low degree of sparsity in the DGP (s0 = 0.9), the RMSE of the two-layer

prior is not significantly lower than the normal prior in this case. These results from
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Table 1: Simulation results with 10 irrelevant variables (out of 50) following an AR(1)
process, without setting zero loadings a priori for estimation

s0 =
0.1 0.5 0.9

A. RMSE, mean over MC replications
two-layer prior 0.0918 0.2516 0.3463
one-layer prior 0.0913 0.2514 0.3472
normal prior 0.2100 0.2941 0.3515

B. RMSE, normalized to one for two-layer prior
two-layer prior 1.0000 1.0000 1.0000
one-layer prior 0.9941 0.9991 1.0025
normal prior 2.2868 1.1690 1.0148

C. RMSE difference, mean over MC replications (95% HPD region below)
RMSE(one-layer)-RMSE(two-layer) −0.0006

(−0.0071;0.0070)
−0.0002

(−0.0011;0.0006)
0.0006

(−0.0013;0.0063)
RMSE(normal)-RMSE(two-layer) 0.1173

(0.0952;0.1394)
0.0429

(0.0308;0.0567)
0.0049

(−0.0016;0.0131)

D. Average inclusion frequency based on 95% HPD of λij with respect to irrelevant variables
two-layer prior 0.000 0.006 0.004
one-layer prior 0.000 0.006 0.002
normal prior 0.004 0.048 0.026

E. Average inclusion frequency based on γij with respect to irrelevant variables
two-layer prior 0.000 0.006 0.004
one-layer prior 0.000 0.006 0.006
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Panels A, B, and C are confirmed in Table 2.

Panels D and E of Table 1 contain the results with respect to the irrelevant variables

in the DGP. The one- and two layer priors yield an average inclusion frequency of at most

0.6% (s0 = 0.5) and thus help to identify the irrelevant variables in more than 99% of the

cases. The results for both sparsity priors do not depend much on the degree of sparsity

s0 used to simulate the first block of data. The normal prior obtains an average inclusion

frequency between 0.4% and 4.8%, and thus identifies irrelevant variables correctly in

more than 95% of the cases. Thus we can confirm that the performance of all the priors is

overall very good with respect to identify irrelevant variables; however, the sparse priors

help to separate good from bad indicators slightly better than the normal prior. If we

compare the different ways to compute average inclusion frequencies of the irrelevant

variables, we see no major differences between Panel D, which contains results based on

HPD regions of the loadings posterior draws, and Panel E, which contains results based

on the posterior association probabilities (26). Thus, both methods seem to be reliable

to find irrelevant variables.

Table 2 contains the results based on relevant variables in the DGP. The one- and

two-layer sparse priors obtain similar average inclusion frequencies, which range from

95% (s0 = 0.1) to 99% (s0 = 0.9). The normal prior performs less reliable with very

sparse data, where the average inclusion frequency is 77% (s0 = 0.1), but performs only

slightly worse than the sparse priors for s0 = 0.5 and s0 = 0.9. Thus, with respect to

relevant variables in the DGP, the sparse priors show clearer advantages over the normal

prior as with respect to irrelevant data.

To summarize, we find that sparsity priors generally improve the estimation accuracy

of the common components in most of the cases over the normal prior. With a decreasing

degree of sparsity in the DGP, the efficiency gain obtained using the sparse priors decreases

over the normal prior. However, we are in general more flexible to tackle different degrees

of heterogeneity in the simulated data by using the hierarchical sparsity priors compared

to the normal prior. The two-layer prior cannot systematically improve over the one-layer

prior, the differences in RMSEs between the two are insignificant in all cases. Therefore,

the richer two-layer prior does not seem to contribute much to the simpler one-layer prior

in terms of RMSE.

With respect to finding irrelevant variables, the performance of sparsity priors is only

slightly better compared to the normal prior. However, there are clearer advantages of

the sparse priors with respect to finding relevant variables. Overall, it seems to pay off

having a more general prior specification than the normal prior. Between the one-layer

and two-layer prior, we find no systematic significant differences. Furthermore, we find
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Table 2: Simulation results with 10 relevant variables (out of 50), without setting zero
loadings a priori for estimation

s0 =
0.1 0.5 0.9

A. RMSE, mean over MC replications
two-layer prior 0.1843 0.2667 0.3040
one-layer prior 0.1838 0.2670 0.3055
normal prior 0.2605 0.2970 0.3104

B. RMSE, normalized to one for two-layer prior
two-layer prior 1.0000 1.0000 1.0000
one-layer prior 0.9974 1.0012 1.0050
normal prior 1.4139 1.1137 1.0212

C. RMSE difference, mean over MC replications (95% HPD region below)
RMSE(one-layer)-RMSE(two-layer) −0.0003

(−0.0018;0.0009)
0.0002

(−0.0009;0.0014)
0.0015

(−0.0006;0.0033)
RMSE(normal)-RMSE(two-layer) 0.0758

(0.0601;0.0943)
0.0299

(0.0203;0.0425)
0.0066

(−0.0025;0.0123)

D. Average inclusion frequency based on 95% HPD of λij with respect to relevant variables
two-layer prior 0.952 0.978 0.990
one-layer prior 0.946 0.978 0.992
normal prior 0.774 0.944 0.956

E. Average inclusion frequency based on γij with respect to relevant variables
two-layer prior 0.956 0.982 0.992
one-layer prior 0.954 0.982 0.996
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that both the HPD regions computed from the posterior samples of individual loadings

λij as well as the inclusion probabilities obtained from the posterior distribution of the

indicator matrix γij help to separate relevant from irrelevant variabes well. Thus, both

ways of searching for irrelevant variables might be helpful in practice.

4.5 Checks for robustness

To check for the robustness of the results, we carried out a number of additional simu-

lations. For example, we carried out the same exercise with 25 idiosyncratic variables in

the DGP rather than 10. We also ran the simulations with the identification scheme by

Geweke and Zhou (1996). Additionally, we changed the persistence in the DGP of the

irrelevant variables and the mean of the loadings in the prior distributions, as well as the

variance of the loadings. Finally, we carried out simulations with a different DGP for the

relevant variables, where both factors explain the relevant variables by definition. In all

the cases, we obtained very similar results to those reported above. Some of the results,

in particular those based on the identification scheme of Geweke and Zhou (1996), are

provided in Appendix C.

5 Empirical results

The methods to identify relevant variables in sparse factor models can be regarded as quite

general tools of model assessment and might be useful for many different applications.

To illustrate the approaches, we will provide empirical examples based on two different

economic datasets:

1. We use a multi-country macroeconomic dataset as in Francis et al. (2012), who

investigate the role of global business cycles for many countries in a large factor

model.

2. We investigate disaggregated US inflation data from Mackowiak et al. (2009) in

a sparse factor model setting. Mackowiak et al. (2009) use a factor model as

an empirical benchmark to compare alternative theoretical models of price-setting

behavior.

The two datasets differ quite a lot in terms of data coverage, and we can expect

to find different degrees of heterogeneity and sparsity. We estimate the sparse factor

model for each of these datasets to assess the information content in the variables for

estimating the factors. To this aim, we identify relevant and irrelevant variables by
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searching for zero loadings rows. Since we have found in Section 4 above that HPD

regions of loadings and association probabilities perform similarly, we report results for

the association probabilities in (26) only. Furthermore, given that the two-layer and the

one-layer prior perform very similarly and both tend to outperform the normal prior, we

provide empirical results below for the two-layer prior only.

5.1 Results for international GDP growth data

The empirical application follows the literature on international business cycles estimated

in large factor models such as Kose et al. (2003, 2010) and Del Negro and Otrok (2008).

Recently, Francis et al. (2012) estimate global and regional business cycles from a large set

of country-specific GDP growth series. In the application below, we follow this literature

and investigate the role of global business cycles for each country by estimating the factor

model with sparse loadings priors and searching for relevant variables. If variables for

a certain country, region or continent are all irrelevant according to our definitions, one

could conjecture that these countries are not linked to international business cycles.

We follow Francis et al. (2012) and choose the Penn World Tables (PWT) to construct

the dataset. We use the version 7.0, see Heston et al. (2011), and take all those GDP

series, which are available from 1960 onwards to match the sample period in Francis et

al. (2012). We end up with N = 57 countries, and compute GDP growth rates by taking

first differences of the logarithm of each GDP series. We estimate a sparse factor model

using this data and assess the relevance of each country in the model.

To estimate the factor model, we choose a specification with k = 3 factors, p = 4

lags in the factor VAR and q = 2 lags in the idiosyncratic components. Checks for

robustness are provided below. Regarding the prior distributions for the loadings, we

choose the two-layer prior with hyperparameters s0 = 0.5 and precision r0 = 3. The

other hyperparameters are specified as before in the Monte Carlo exercise. We sample

15000 posterior draws, and discard the first 1500 replications as burn-in draws. From the

remaining replications, we pick every third one.

In Figures 2 and 3, we provide results on the posterior distributions of the loadings λij
and the association probabilities in (26). We provide two different heat plots: In the first

one in Figure 2, black indicates a significant loading defined by P (γij = 1|XT ) > 0.95.

The entry is white otherwise. The heat plot in Figure 3 shows the mean of the posterior

distribution of λij, where from dark red to dark blue color the entries vary from positive

to negative values. In both Figures, there are a lot of white regions in the heat plots,

indicating that variables are often related only to some of the three factors. On average,
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only 17% of the elements in the loadings matrix are significantly different from zero. We

find that 27 out of 57 variables (47.4%) have at least one loading different from zero,

defined by a posterior association probabilities being greater than 0.95 for at least one

loading element in a row.

If we separate the countries into geographic regions following Kose et al. (2003) and

Francis et al. (2012), we can assess, which regions are well explained by the international

factors. Kose et al. (2003) divide the world into six regions: Africa, Asia 1 (less devel-

oped), Asia 2 (more developed), Europe, Latin America, North America and Oceania.

The detailed country classification can be found in Appendix B. In each group, the pro-

portion of variables with at least one loading different from zero is (absolute numbers

in brackets): Africa 0% (0 of 6 countries), Asia I 16.7% (1 of 6), Asia II 83.3% (5 of

6), Europe 94.4% (17 of 18), Latin America 6.3% (1 of 16), North America 66.7% (2 of

3), Oceania 50% (1 of 2). According to these results, African countries are not at all

explained by international factors. In Latin America, there is only one country related to

the international factors. Overall, sparsity seems to matter quite a lot in the international

GDP growth data.

To check the robustness of the results, we tried different settings of the hyperparameter

s0, which is key for determining prior sparsity in the loadings, the number of factors k,

and different identification schemes. In particular, we also use s0j ∈ {0.25, 0.75}. The
results are summarized in Table 3. In all the alternative applications, we can confirm our

main finding of sparsity. In particular, the number of variables affected by at least one

factor is around 50%. The number of significant loadings varies between 13% and 25%

across all factors and variables. This stability of the results with respect to changes in the

priors indicate that the priors do not dominate the likelihood in this application. How the

different regions of the world are represented by relevant countries can be verified in Table

4. Again, we find that all African countries are not explained by the factors in the different

specifications. Latin America is only represented with at most one country. Following the

logic of the empirical literature on international business cycles such as Kose et al. (2003,

2010), one could conjecture that these countries are not linked to international business

cycles. On the other hand, most or almost all of the variables in the regions Europe,

North America, and Asia II, are relevant in the model. These findings are robust across

the various estimated specifications.
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Table 3: Summary statistics on sparsity based on international growth data with alter-
native specifications

variant 1 variant 2 variant 3 variant 4

a-priori zero restrictions - - - Geweke, Zhou (1996)
s0 0.5 0.5 0.5 0.5
k 2 3 4 3

percent of variables with at
least one significant loading 49.1 47.4 49.1 47.4

average number of relevant
factors for each variable 0.49 0.51 0.53 0.51

percent of significant
loadings in λ 24.6 16.9 13.1 16.9

variant 5 variant 6

a-priori zero restrictions - -
s0 0.25 0.75
k 3 3

percent of variables with at least
one significant loading 45.6 47.4

average number of relevant factors
for each variable 0.49 0.49

percent of significant
loadings in λ 16.4 16.4

Note: We identify a loading as being significantly different from zero, if the inclusion probability
is greater than 95%, as measured using the draws from the posterior of γij . More details can be
found in the main text.
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Table 4: Percent of relevant countries by world region under alternative specifications

variant 1 variant 2 variant 3 variant 4

a-priori zero restrictions - - - Geweke, Zhou (1996)
s0 0.5 0.5 0.5 0.5
k 2 3 4 3

Africa 0.0 (0/6) 0.0 (0/6) 0.0 (0/6) 0.0 (0/6)
Asia I 16.7 (1/6) 16.7 (1/6) 16.7 (1/6) 16.7 (1/6)
Asia II 83.3(5/6) 83.3(5/6) 83.3(5/6) 83.3(5/6)
Europe 100.0 (18/18) 94.4 (17/18) 88.9 (16/18) 94.4 (17/18)
Latin America 6.3 (1/16) 6.3 (1/16) 18.8 (3/16) 6.3 (1/16)
North America 100.0 (2/3) 66.7 (2/3) 66.7 (2/3) 66.7 (2/3)
Oceania 0.0 (0/2) 50.0 (1/2) 50.0 (1/2) 50.0 (1/2)

variant 5 variant 6

a-priori zero restrictions - -
s0 0.25 0.75
k 3 3

Africa 0.0 (0/6) 0.0 (0/6)
Asia I 16.7 (1/6) 16.7 (1/6)
Asia II 83.3(5/6) 83.3(5/6)
Europe 88.9 (16/18) 94.4 (17/18)
Latin America 6.3 (1/16) 6.3 (1/16)
North America 66.7 (2/3) 100.0 (2/3)
Oceania 50.0 (1/2) 0.0 (0/2)

Note: We identify a loading as being significantly different from zero, if the inclusion probability
is greater than 95%, as measured using the draws from the posterior of γij . More details can be
found in the main text.
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5.2 Results for US sectoral inflation data

Mackowiak et al. (2009) estimate a factor model as an empirical benchmark to identify

sector-specifc and aggregate shocks. Identification is obtained through the assumption

that sector-specific shocks are entirely idiosyncratic, whereas aggregate shocks are shocks

to the common factors. The estimatd impulse-response functions for the subindices of the

US consumer price index (CPI) help to differentiate between different theoretical models

of price-setting behavior. According to their empirical results focussed on the median

sector, Mackowiak et al. (2009) find that price-setters in firms pay much more attention

to sector-specific conditions than to aggregate (common) conditions.

The sparse factor model proposed here allows us to provide more results on the rela-

tive importance of aggregate and sector-specific determinants. In particular, we can in-

vestigate, which sectoral price inflation rates contain relevant information on the factors.

Finding the relevant sectoral price inflation rates in the model might help to determine,

which sectoral inflation rates comove with others and might be driven by common shocks,

and which sectoral inflation rates are not explained by common factors, and thus are

irrelevant according to the model.

The disaggregated US inflation data of Mackowiak et al. (2009) contain N = 79

subindices of the US consumer CPI. We follow Mackowiak et al. (2009) and use k = 1

factor. In our model, we also specify p = 12 lags in the factor VAR and q = 6 lags in

the idiosyncratic components. The sparsity prior is specified with s0 = 0.5 and precision

r0 = 3 as before.

According to the estimated inclusion probabilities, we find that 28 (35.4%) of the 79

variables have a non-zero factor loading. Thus, about 65% of the variables are not driven

by the common inflation factor. Nakamura and Steinsson (2008) collect subincides of

sectoral CPI in groups. If we summarize the results within their categories of data, we

find that almost all groups of variables contain at least one series that obtains a non-

zero factor loading. In particular, the proportions of variables with at least one non-zero

loading are (absolute numbers in brackets): apparel 36.4% (4 of 11 variables), education

and communication 25.0% (1 of 4), food and beverages 24.1% (7 of 29), housing 27.3%

(3 of 11), medical care 100% (5 of 5), other goods and services 0% (0 of 2), recreation

71.4% (5 of 7), transportation 30.0% (3 of 10). Thus, other goods and services, food and

beverages, and education and communication are, respectively, not at all or only weakly

associated with the common factor. The other variable groups have two or more sectoral

inflation rates that are relevant in the model. More details on the inclusion for each

variable in the data are provided in the Figures 4 and 5. Overall, we find that sparsity
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matters a lot in the disaggregated CPI inflation data. The majority of loadings is not

significantly different from zero, and only a subset of the indicators are influenced by the

common factor. The results are robust to changes in the model specification, in particular,

when the number of factors is increased to k = 2.

The identification of irrelevant sectoral inflation rates here expands quantitatively on

the results by Mackowiak et al. (2009), who find that price-setters in firms mainly pay

attention to sector-specific conditions rather than to aggregate conditions. According to

our results, we can conclude that about 65% of the sectoral inflation rates are entirely

determined by sector-specific developments. Related to shocks, this implies that these

sectoral inflation rates are driven by sector-specific shocks only, as irrelevant variables have

zero rows in the loadings and thus cannot be influenced by shocks hitting the common

factors.

6 Conclusion

In this paper, we discuss factor estimation with Bayesian methods, when some of the

variables in the data are noisy and perhaps not informative to estimate the factors. In

this sense, we define irrelevant variables as being entirely driven by idiosyncratic noise and

not the common factors. For various economic questions, it might helpful to know which

variables in the data are actually irrelevant. Based on posterior inference, we provide

different ways to separate the irrelevant variables from the relevant ones. We also propose

to use a sparse prior distribution of the loadings matrix to sharply discriminate between

the two types of variables. This prior is more general than the normal prior, which has

often been used in the economic factor model literature so far.

In Monte Carlo simulations we show that the proposed sparse prior specification of

the loadings generally improves the estimation accuracy compared to the standard normal

prior used in the literature. In particular, estimates with the sparse prior are robust to

different degrees of sparsity in the DGP. The higher the degree of sparsity in the data,

the better is the estimation performance of the sparse prior over the normal prior. Even

in the case of little sparsity in the DGP, working with the sparse prior does generally

not lead to a worse estimation performance in comparison to the normal prior. To find

relevant variables, we generally obtain good results by either using HPD regions based on

the posterior samples of the loadings or posterior association probabilities. Searching for

relevant variables is in general successful under different degrees of sparsity in the data.

In the empirical exercise, we search for relevant variables in two datasets from the

literature. In the first empirical application, we estimate the sparse factor model using
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an international dataset, which is used to analyse global business cycles in the literature

by Francis et al. (2012) and Kose et al. (2003). The results show that only less that 50%

of the countries are explained by the factors. In particular, Africa and Latin America

seem to play only a minor role in international business cycles. An additional application

concerns disaggregated CPI inflation in the US following Mackowiak et al. (2009). In

this data, we find even more sparsity, as only about 35% of the sectoral inflation rates are

informative about the factors. Thus, sectoral price developments seem to be mostly driven

by sector-specific rather than aggregate determinants. Overall, we find a high degree of

sparsity in both datasets. In general, however, we can expect that results will highly

depend on the data and empirical application chosen. Overall, the methods discussed

here seem to be flexible tools to estimate factors and determine relevant variables in the

presence of heterogenous information in economic datasets.
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Appendix

A Posterior distributions

To derive the sampler, we cast model (1) into its state space form:

Xt = ΛFt + εt, εt ∼ N (0,Σε)
Ft = ΦFt−1 + ηt, ηt ∼ N (0,Ση) (27)

where the state vector contains ft augmented by the appropriate number of lagged values,

Ft =
(
f ′t , . . . , f

′
t−p
)′
. The system matrices Λ and Φ are of dimension N × k(p + 1) and

square k(p+ 1), respectively:

Λ =
[
λ 0N×kp

]
, Φ =

[
Φ1
Φ2

]
, with

Φ1 = [Φ1 . . . Φp]
Φ2 = [Ikp 0kp×k]

The matrix Ση contains the identity matrix in the upper left k × k sub-matrix.
In short form, the sampler proposed in Section 3.2 consists in iterating over the fol-

lowing steps:

(i) Simulate fT from π
(
fT |XT , θ

)
.

(ii) Simulate the parameters from π
(
θ−λ|fT , XT , λ

)
.

(iii) Simulate λ from π
(
λ|fT , XTΣε

)
and update hyperparameters.

Step (iii) has been described in the main part of the paper. Here we derive the relevant

posterior distributions for step (i) and (ii).

A.1 Step (i): Simulate fT from π
(
fT |XT , θ

)
Given the prior density in (8) we can factorize the posterior distribution

π
(
fT |XT , θ

)
= π

(
fT |XT , θ

) T−1∏
t=1

π
(
ft|ft+1, X t, θ

)
(28)

= π
(
fT |XT , θ

) T−1∏
t=1

π
(
ft|X t, θ

)
π (ft|ft+1, θ) (29)

The factorization has as typical element π (ft|X t, θ) which we call the filter distribution

of the unobservable factor ft given information up to time t. Given Gaussian errors, the

distribution is normal with mean ft|t and variance Vt|t. We derive the filter distribution
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for Ft using the state space form in (27). The relevant moments of π (ft|X t, θ) can be

recovered using the selection matrix ı = [Ik 0k×kp] given that:

ft = ıFt

Since the state equation is stable and does not contain a constant term, the initial

state F0|0 is set to E(Ft) = 0, see Hamilton (1995), p. 378. The initial covariance V0|0
follows from Ft = ΦFt−1+ηt, E(FtF

′
t) = ΦE(Ft−1F

′
t−1)Φ

′+Ση and ΣF = ΦΣFΦ′+Ση.

The vec operator recovers

vec(ΣF) =
[
Isize(F,1)−(Φ⊗Φ)

]−1 × vec(Ση) (30)

the coefficients ΣF. Then,

vec(V0|0) = vec(ΣF) (31)

Given an initial state F0|0 we iterate through the sample for t = 1, . . . , T to obtain

π (Ft|X t, θ) with mean Ft|t and covariance Vt|t given by

Ft|t = Ft|t−1 +V′
t|t−1Λ

′ (ΛVt|t−1Λ′ + Σε
)−1 (

Xt −ΛFt|t−1
)

(32)

Vt|t = Vt|t−1 −V′
t|t−1Λ

′ (ΛVt|t−1Λ′ + Σε
)−1

ΛVt|t−1 (33)

and Ft|t−1 and Vt|t−1 are obtained by the prediction equations:

Ft|t−1 = ΦFt−1|t−1 (34)

Vt|t−1 = ΦV′
t−1|t−1Φ

′ + Ση (35)

Then, beginning in T we first sample fT |XT , θ from N
(
fT |T , vT |T

)
where

fT |T = ıFT |T (36)

vT |T = ıVT |T ı′ (37)

Then, for t = T − 1, . . . , 1, we derive

π
(
ft|ft+1, X t, θ

)
= N

(
ft|T , vt|T

)
treating the simulated ft+1 as an additional observation. We update the filter densities

Ft|T = Ft|t +Vt|t (ıΦ)
′ (ıVt+1|tı′

)−1 (
ft+1 − ıFt+1|t

)
Vt|T = Vt|t −Vt|t (ıΦ)

′ (ıVt+1|tı′
)−1

(ıΦ)Vt|t

Again, the relevant moments ft|T and vt|T are obtained using (36) and (37), respectively.
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A.2 Step (ii): Simulate the parameters from π
(
θ−λ|fT , XT , λ

)
We block the posterior simulation of the parameters.

The dynamics of the common factors Φ = [Φ1 . . . Φp]
′ are jointly sampled from

π
(
vec (Φ) |fT ) = N (p,P) I{Z(Φ)>1}

where

P =
([
Ik ⊗ f−

]′ [
Ik ⊗ f−

]
+ P−10

)−1
p = P×

([
Ik ⊗ f−

]′
vec (f ) + P−10 p0

)
where f = [fp+1 . . . fT ]

′ and

f− =

⎡⎢⎣ f ′p · · · f ′1
...

...
f ′T−1 · · · f ′T−p

⎤⎥⎦
We simulate σ2ε,i from independent IG (ui, Ui) distributions, i = 1, . . . , N , with ui =

u0 + 0.5T and Ui = U0 + 0.5
∑T

t=1 (xit − λift)2.

B Country coverage in the international GDP growth
dataset

Below, the countries covered in the international dataset used in Section above are

shown. Each country belongs to a geographical region Africa, Asia 1 (less developed),

Asia 2 (more developed), Europe, Latin America, North Americam and Oceania. The

definition of geographical regions follows Kose et al. (2003).

1. Africa:

(a) Cameroon

(b) Kenya

(c) Morocco

(d) Senegal

(e) South Africa

(f) Zimbabwe
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2. Asia 1:

(a) Bangladesh

(b) India

(c) Indonesia

(d) Pakistan

(e) Philippines

(f) Singapore

(g) Sri Lanka

3. Asia 2:

(a) Hong Kong

(b) Japan

(c) Korea

(d) Malaysia

(e) Thailand

4. Europe

(a) Austria

(b) Belgium

(c) Denmark

(d) Finland

(e) France

(f) Germany

(g) Greece

(h) Iceland

(i) Ireland

(j) Italy

(k) Luxembourg

(l) Netherlands
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(m) Norway

(n) Portugal

(o) Spain

(p) Sweden

(q) Switzerland

(r) United Kingdom

5. Latin America

(a) Argentina

(b) Bolivia

(c) Brazil

(d) Chile

(e) Colombia

(f) Costa Rica

(g) Ecuador

(h) El Salvador

(i) Guatemala

(j) Honduras

(k) Jamaica

(l) Panama

(m) Paraguay

(n) Peru

(o) Uruguay

(p) Venezuela

6. North America

(a) Canada

(b) Mexico

(c) USA
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7. Oceania

(a) Australia

(b) New Zealand

C Additional simulation results

The two tables in this section contain results under the identifying restrictions following

Geweke and Zhou (1996). Table 5 contains simulation results, where the last 10 variables

are irrelevant in the DGP, and Table 6 contains results with relevant variables in the DGP,

see Section 4.1.

Table 5: Simulation results with 10 irrelevant variables (out of 50) following an AR(1)
process, with Geweke and Zhou (1996) identification

s0 =
0.1 0.5 0.9

A. RMSE, mean over MC replications
two-layer prior 0.0893 0.2516 0.3471
one-layer prior 0.0882 0.2509 0.3473
normal prior 0.2039 0.2902 0.3518

B. RMSE, normalized to one for two-layer prior
two-layer prior 1.0000 1.0000 1.0000
one-layer prior 0.9879 0.9970 1.0005
normal prior 2.2830 1.1534 1.0134

C. RMSE difference, mean over MC replications (95% HPD region below)
RMSE(one-layer)-RMSE(two-layer) −0.0009

(−0.0073;0.0033)
−0.0003

(−0.0143;0.0073)
0.0008

(−0.0113;0.0085)
RMSE(normal)-RMSE(two-layer) 0.1163

(0.0877;0.1390)
0.0392

(0.0224;0.0610)
0.0049

(−0.0086;0.0150)

D. Average inclusion frequency based on 95% HPD of λij with respect to irrelevant variables
two-layer prior 0.000 0.006 0.000
one-layer prior 0.000 0.006 0.000
normal prior 0.020 0.076 0.058

E. Average inclusion frequency based on γij with respect to irrelevant variables
two-layer prior 0.000 0.006 0.002
one-layer prior 0.000 0.006 0.008

As another robustness check, we also respecified the hyperparameter of the variance of

the loadings τ j when estimating the model, see equation (11). When estimating the factor

model, the prior on τ j in N (0, τ j) is parameterized by IG(2, 2.5), compared to IG(2, 0.5)
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Table 6: Simulation results with 10 relevant variables (out of 50), with Geweke and Zhou
(1996) identification

s0 =
0.1 0.5 0.9

A. RMSE, mean over MC replications
two-layer prior 0.1874 0.2686 0.3071
one-layer prior 0.1864 0.2691 0.3074
normal prior 0.2628 0.2973 0.3115

B. RMSE, normalized to one for two-layer prior
two-layer prior 1.0000 1.0000 1.0000
one-layer prior 0.9949 1.0019 1.0008
normal prior 1.4023 1.1071 1.0142

C. RMSE difference, mean over MC replications (95% HPD region below)
RMSE(one-layer)-RMSE(two-layer) −0.0005

(−0.0105;0.0015)
0.0005

(−0.0120;0.0068)
0.0016

(−0.0081;0.0037)
RMSE(normal)-RMSE(two-layer) 0.0729

(0.0569;0.1054)
0.0287

(0.0177;0.0417)
0.0041

(−0.0062;0.0126)

D. Average inclusion frequency based on 95% HPD of λij with respect to relevant variables
two-layer prior 0.976 0.976 0.974
one-layer prior 0.978 0.964 0.938
normal prior 0.894 0.992 0.988

E. Average inclusion frequency based on γij with respect to relevant variables
two-layer prior 0.982 0.984 0.982
one-layer prior 0.982 0.976 0.944
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in the baseline simulations in the main text. Table 7 contains simulation results, where

the last 10 variables are irrelevant in the DGP, and Table 8 contains results with relevant

variables in the DGP.

Table 7: Simulation results with 10 irrelevant variables (out of 50) following an AR(1)
process, without setting zero loadings a priori for estimation, with larger prior variance
of loadings

s0 =
0.1 0.5 0.9

A. RMSE, mean over MC replications
two-layer prior 0.0935 0.2523 0.3418
one-layer prior 0.0927 0.2521 0.3426
normal prior 0.2215 0.2988 0.3508

B. RMSE, normalized to one for two-layer prior
two-layer prior 1.0000 1.0000 1.0000
one-layer prior 0.9907 0.9993 1.0023
normal prior 2.3682 1.1841 1.0262

C. RMSE difference, mean over MC replications (95% HPD region below)
RMSE(one-layer)-RMSE(two-layer) −0.0006

(−0.0178;0.0117)
−0.0002

(−0.0011;0.0006)
0.0008

(−0.0071;0.0028)
RMSE(normal)-RMSE(two-layer) 0.1286

(0.1096;0.1562)
0.0475

(0.0272;0.0612)
0.0079

(−0.0030;0.0186)

D. Average inclusion frequency based on 95% HPD of λij with respect to irrelevant variables
two-layer prior 0.000 0.002 0.004
one-layer prior 0.000 0.002 0.010
normal prior 0.010 0.038 0.016

E. Average inclusion frequency based on γij with respect to irrelevant variables
two-layer prior 0.000 0.002 0.006
one-layer prior 0.000 0.002 0.010
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Table 8: Simulation results with 10 relevant variables (out of 50), without setting zero
loadings a priori for estimation, with larger prior variance of loadings

s0 =
0.1 0.5 0.9

A. RMSE, mean over MC replications
two-layer prior 0.1856 0.2667 0.2997
one-layer prior 0.1841 0.2668 0.3013
normal prior 0.2764 0.3023 0.3089

B. RMSE, normalized to one for two-layer prior
two-layer prior 1.0000 1.0000 1.0000
one-layer prior 0.9919 1.0004 1.0054
normal prior 1.4891 1.1336 1.0307

C. RMSE difference, mean over MC replications (95% HPD region below)
RMSE(one-layer)-RMSE(two-layer) −0.0005

(−0.0049;0.0091)
0.0000

(−0.0007;0.0014)
0.0014

(−0.0018;0.0049)
RMSE(normal)-RMSE(two-layer) 0.0895

(0.0667;0.1220)
0.0355

(0.0250;0.0467)
0.0093

(0.0046;0.0157)

D. Average inclusion frequency based on 95% HPD of λij with respect to relevant variables
two-layer prior 0.966 0.984 0.986
one-layer prior 0.964 0.982 0.992
normal prior 0.540 0.918 0.996

E. Average inclusion frequency based on γij with respect to relevant variables
two-layer prior 0.968 0.986 0.994
one-layer prior 0.968 0.986 0.994
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