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Non-technical summary

Credit default swaps (CDSs) are financial derivatives that are designed to transfer credit

risk between banks, hedge funds or asset managers in a simple way: The buyer of the CDS

is insured by the seller against the default of the underlying sovereign entity. The insurance

premium (or “the CDS spread”) of these CDSs written on sovereign entities have been

seen as an important indicator of the economic health of a given country. This paper uses

CDS spread changes as a measure for the informational efficiency of the sovereign markets

and CDS spread volatilities as a proxy for persistency of country risks. Specifically, we

test whether the dependence of consecutive observations dies out slowly over time (“long

memory”). We firstly show that there is no evidence of such behavior of CDS spread

changes for any of the 10 eurozone countries in our sample. This indicates that, despite

the financial crisis and uncertainty of financial markets, price discovery processes satisfy

the minimum requirements for a weak form of market efficiency for sovereign CDSs, i.e.

recent CDS spread changes cannot be predicted with past CDS spread changes. Second,

there is strong evidence of long memory for volatility patterns of spread changes for 6

out of 10 countries. Specifically, we observe Greece, Portugal, Ireland, Italy, Spain, and

Belgium to demonstrate such behavior. This shows that economies in the eurozone, which

have been particularly affected by the financial and the sovereign debt crisis, are exposed

to high uncertainty risk not only for a short period but over a persistent horizon. Third,

we illustrate that CDS volatility is causal to CDS levels, indicating that uncertainty in

CDS markets translates into higher risk premia for sovereign risk. Finally, we highlight

the existence of a comovement of CDS spread changes for all countries, which is more

explicit among peripheral economies. Our results have implications on selecting sovereign

risk measures: Increased global risk aversion and the uncertainty about future sovereign

debt market conditions have caused an increase in sovereign CDS volatility, which has

been shown to be a meaningful measure of sovereign risk.



Nicht-technische Zusammenfassung

Credit Default Swaps (CDS) sind Finanzderivate, die eine einfache Übertragung von

Kreditrisiken zwischen Banken, Hedgefonds oder Vermögensverwaltern ermöglichen: Der

Käufer des CDS wird vom Verkäufer gegen den Ausfall des zugrunde liegenden staatlichen

Schuldners abgesichert. Die Versicherungsprämie (oder CDS-Prämie) von CDS auf Staat-

sanleihen gilt als wichtiger Indikator für die wirtschaftliche Lage eines Landes. Die

vorliegende Arbeit untersucht anhand der Veränderungen von CDS-Prämien die Infor-

mationseffizienz der CDS-Märkte und anhand ihrer Volatilität die Persistenz von Länder-

risiken. Insbesondere wird getestet, inwiefern die fortlaufenden Beobachtungen über die

Zeit voneinander abhängig sind (“Langzeitgedächtnis”). Dabei wird gezeigt, dass sich im

Hinblick auf die Entwicklung der CDS-Prämien in den zehn untersuchten Euro-Ländern

keine Belege für ein “Langzeitgedächtnis” finden lassen. Dies deutet darauf hin, dass

aktuelle Veränderungen von CDS-Prämien nicht mit Hilfe früherer Veränderungen von

CDS-Prämien prognostiziert werden können. Folglich erfüllen die Preisbildungsprozesse

an den Märkten für CDS auf Staatsanleihen trotz der Finanzkrise und der Unsicherheit

an den Finanzmärkten die Mindestanforderungen für eine schwache Form von Marktef-

fizienz. Andererseits gibt es bei sechs der zehn in der Stichprobe untersuchten Länder

eine starke Evidenz für ein “Langzeitgedächtnis” im Hinblick auf die Volatilitätsmuster

der Prämienentwicklung. Ein solches Verhalten ist speziell in Griechenland, Portugal,

Irland, Italien, Spanien und Belgien zu beobachten; dies belegt, dass Länder des Euro-

Währungsgebiets, die von der Finanz- und Staatsschuldenkrise besonders betroffen waren,

nicht nur kurzfristig, sondern über einen längeren Zeithorizont hinweg dem Risiko hoher

Unsicherheit ausgesetzt sind. Des Weiteren wird aufgezeigt, dass sich die Volatilität

von CDS-Prämien kausal zum CDS-Niveau verhält, sodass sich Unsicherheit an den

CDS-Märkten in höheren Risikoprämien für Länderrisiken niederschlägt. Abschließend

wird aufgezeigt, dass die Veränderung der CDS-Prämien in allen untersuchten Ländern

einen Gleichlauf aufweist, der bei den Peripherieländern deutlicher zutage tritt. Unsere

Ergebnisse haben Implikationen für die Wahl geeigneter Messgrößen des Länderrisikos:

Die gestiegene globale Risikoaversion und die Unsicherheit im Hinblick auf die künftige

Entwicklung an den Staatsanleihemärkten haben einen Anstieg der an den Märkten

für CDS auf Staatsanleihen beobachteten Volatilität bewirkt, die erwiesenermaßen eine

aussagefähige Messgröße des Länderrisikos darstellt.



Sovereign Default Swap Market Efficiency and

Country Risk in the Eurozone∗
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Abstract

This paper uses sovereign CDS spread changes and their volatilities as a proxy for

the informational efficiency of the sovereign markets and persistency of country risks.

Specifically, we apply semi-parametric and parametric methods to the sovereign

CDSs of 10 eurozone countries to test the evidence of long memory behavior during

the financial crisis. Our analysis reveals that there is no evidence of long memory

for the spread changes, which indicates that the price discovery process functions

efficiently for sovereign CDS markets even during the crisis. In contrast, both

semi-parametric methods and the dual-parametric model imply persistent behavior

in the volatility of changes for Greece, Portugal, Ireland, Italy, Spain, and Belgium

addressing persistent sovereign uncertainty. We provide evidence of causality from

volatility in CDS prices to sovereign risk premiums for these peripheral economies.

We furthermore demonstrate the potential spillover effects of spread changes among
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Sovereign Default Swap Market Efficiency and

Country Risk in the Eurozone

1 Introduction

Credit default swaps (CDSs) of sovereign debt have been the subject of enormous attention

and criticism since the beginning of the credit crunch in mid 2007. Similar to other

credit derivatives, sovereign CDSs are financial derivatives that are designed to transfer

credit risk between banks, hedge funds or asset managers in a simple way: The buyer of

the CDS is insured by the seller against the default of the underlying sovereign entity.

Moreover, CDSs written on sovereign entities have been seen as an important indicator of

the economic health of a given country. They shed light on the default risk by signaling

how much investors are willing to pay to insure themselves against the sovereign risk.

It is now a known fact that many eurozone countries suffer from severe public deficit

problems which they are trying to finance through sovereign indebtedness. For instance,

Greece, being one of the most indebted countries in Europe, has a public debt level

equivalent to 113% of that country’s GDP. Other European countries such as Portugal,

Italy, Ireland, Belgium and Spain face similar public debt problems. Given that sovereign

CDSs serve as a market indicator of the riskiness of public debt, the spread changes

and volatility patterns are strongly linked to the efficient pricing of public debt and to

the fluctuations in the perception of country risk (Longstaff et al. (2011), Grossman and

Huyck (1988)).

This paper investigates the long memory properties of sovereign CDSs for 10 eurozone

countries. CDS spread changes and volatilities have been analyzed as a proxy for the

informational efficiency of the sovereign markets and the persistence of uncertainty. All

other things being equal, the long-memory behavior of sovereign CDS spread changes

would imply strong predictability and an untrustworthy price discovery process where

the most up-to-date information about the market perception of the sovereign CDSs is

not priced correctly. This indeed could create arbitrage possibilities for the issuers of
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these products. On the other hand, as a proxy for investment risk, the long memory of

volatility patterns sheds light on the overall health of the economy and can be used to

predict future economic variables such as GDP.1

We also analyze the possibility that the CDS spread changes could be correlated among

the 10 eurozone countries. A higher correlation among sovereign CDS markets of the

eurozone economies would imply a more integrated structure. The evolution of the

comovement of sovereign CDS markets as well as the magnitude of the correlations shed

light on the spillover effects, which are especially important during crisis periods.

Our analysis follows a three-step process. We first test for long memory behavior for

both CDS spread changes and squared changes employing different tests and robust-

ness parameters. Specifically, we employ the log periodogram regression of Geweke and

Porter-Hudak (1983) and the modified log periodogram regression of Phillips (2007) for

different ordinate lengths. Second, we model the long memory of spread change and

squared spread change series using a dual long memory model. The dual memory method,

which is a combination of Granger and Joyeux (1980) ARFIMA and Baillie et al. (1996)

FIGARCH models, allows us to estimate the long memory parameters of spread changes

while simultaneously estimating their volatility. Third, we focus on the spillover effects

by employing the dynamic conditional correlation model of Engle (2002) and by utilizing

a two-stage estimation methodology.

Our main results can be summarized as follows: First, we have shown that there is

no evidence of long memory behavior of CDS spread changes for any of the countries in

our sample. This indicates that, despite the financial crisis and uncertainty of financial

markets, price discovery processes satisfy the minimum requirements for a weak form of

market efficiency for sovereign CDSs. On the other hand, there is strong evidence of long

memory for volatility patterns of spread changes for 6 out of 10 countries. Specifically,

we observe Greece, Portugal, Ireland, Italy, Spain, and Belgium to demonstrate such

behavior, which shows that the troubled economies in the eurozone which experience

1i.e. Campbell et al. (2001) show that stock market volatility helps to predict GDP growth.
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serious instability are exposed to high uncertainty risk not only for a short period but

over a persistent horizon. Third, we illustrate that CDS volatility is Granger-causal to

CDS levels, indicating that uncertainty in CDS markets translates into higher sovereign

risk levels. Finally, we highlight the existence of a comovement of CDS spread changes

for all countries, which is more explicit among less stable economies.

Our paper contributes to several strands of the literature. First and foremost, it extends

the econometric literature on the time series properties of CDS markets. Specifically, we

provide evidence of long memory properties for the volatility of sovereign CDS spread

changes. Even though CDS prices appear to have increased tremendously after the

crisis, we have shown that price discovery and information mechanisms still seem to be

functioning properly. In the light of our results, we can argue that speculative actions

using sovereign CDSs through hedge funds or banks are less likely. Previous literature

provides evidence of volatility transmissions among CDSs, equity, and bond markets

(Belke and Gokus (2011)). If the sovereign CDS market exhibits a long memory behavior

in volatilities, this may also trigger persistent volatility patterns in local stock markets

as well as in the bond markets. Finally, evidence on the comovement of sovereign CDS

markets has important implications on risk diversification with respect to eurozone debt

portfolios.

This paper is organized as follows. Section 2 introduces a brief definition of sovereign

CDSs as well as the effects of long memory behavior on financial time series. This section

emphasizes the importance of persistency patterns in sovereign CDS spread changes and

volatility. Section 3 presents the descriptive statistics of our data set and shows the time

series properties of our data. Section 4 provides the results on the semi-parametric testing

of long memory for CDS spread changes and squared changes. Section 5 applies parametric

dual long memory models to spread changes and their volatility, while disentangling

the short memory components. Section 6 analyzes the dynamic conditional correlations

between the series. Section 7 details our conclusions.
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2 Motivation

2.1 A Brief review of sovereign CDSs

CDSs are a class of credit derivatives designed to transfer the credit exposure of fixed

income products or loans, triggered by credit events such as a default or failure to pay.

In the case of default, the buyer of the CDS is compensated by the notional amount of

the CDS by the seller. Given that a CDS is an efficient diversification instrument under

economic uncertainty, the market for CDSs has received special attention in the analysis

of credit risk where its spread is regarded as an indicator of potential default risk.2

Sovereign CDS contracts are credit derivatives of fixed income government securities.

They share many of the features of their corporate counterparts with the exception of

the credit event. Typically, credit events of a sovereign CDS contract are (i) obligation

acceleration, (ii) failure to pay, (iii) restructuring, or (iv) repudiation/moratorium. Unlike

a corporate CDS, bankruptcy is not a credit event for a sovereign CDS, given that there

is no operable international bankruptcy court that applies to sovereign issuers.

Sovereign CDSs are traded for a variety of reasons. Among others, Fontana and

Scheicher (2010) mention

• Hedging against country risk as an insurance-type offsetting instrument

• Relative-value trading (having a short position in one country and a long one in

another)

• Arbitrage trading (buy/sell government bonds vs sell/buy sovereign CDS)

The first of these reasons has been perhaps the most important motive for the use of

sovereign CDS with the start of the crisis in global markets. The increasing sovereign

indebtedness of eurozone countries has given rise to a serious possibility of contagion

(Jorion and Zhang (2007), Longstaff (2010)). After the economic uncertainty in Greece,

2For a detailed analysis of CDS contract features, see Gündüz et al. (2007).
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Ireland and Portugal, now the creditworthiness of larger euro economies such as Spain

and Italy are under the spotlight.

2.2 Long memory properties of financial time series

Most financial time series indicate unit root behavior at levels, including the levels of

credit default swaps (Dieckmann and Plank (2012)). Nevertheless, spread changes3 mostly

exhibit the properties of martingale differences, which is consistent with the efficient

markets hypothesis (Tsay (2002)). While changes in a series indicate its performance,

volatility of changes (i.e. squared changes) provides information regarding the riskiness of

the relevant series. For instance, it is a well-known fact that a relationship exists between

the expected risk premiums of stocks and their volatility (French et al. (1987)).

The long memory of spread changes has various implications. If the first differences of

a time series display long-term dependence, current realizations are highly dependent on

past realizations and the remote past can help predict future returns. This distortion in

turn gives rise to the possibility of arbitrage profits, which contradicts the martingale or

random walk type behavior that is assumed by many theoretical financial asset pricing

models. As mentioned by Lo (1991), optimal consumption/savings and portfolio decisions

become sensitive to the investment horizon if stock returns were long-range dependent.

Moreover, this predictability is inconsistent with the efficient market hypothesis, which

assumes that prices on traded assets reflect all publicly available information (see Man-

delbrot (1971), Gil-Alana (2006)).

Not only the return series itself but also its volatility is an important input for in-

vestment, derivatives pricing, and financial market regulation (Taylor (2000), Poon and

Granger (2003) and Dark (2007)). Furthermore, volatility is used for the measurement

of value-at-risk (VaR) in risk management (Jorion (2000)). Implementing VaR is recom-

mended by several international institutions including the Bank for International Settle-

ments, the Federal Reserve and the Securities and Exchange Commission for derivatives

3We use the term spread changes instead of spread returns throughout the study, and distinguish the
terminology from the stock market.
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market participants. If there is evidence of persistent volatility patterns for a given series,

risk analysis methods that require variance series provide more efficient estimates, when

variance of the financial time series is filtered by the long memory model rather than short

memory models.

2.3 Why does persistence of sovereign CDS spread changes and volatility

matter?

Although there has been extensive literature on the long memory properties of stock

market returns4 as well as on the long memory properties of stock market volatility,5 to

the best of our knowledge no study has so far concentrated on the long memory properties

of sovereign CDSs. Similar to stock market volatility being viewed as an indication of

stock market risk, we test how sovereign CDS volatility provides information on country

risk. In their recent study Ericsson et al. (2009) provide evidence that equity volatility is

significant in explaining CDS spread levels and spread changes. Not only the level of CDS

volatility but also its structure matters. Periods of relatively low volatility or periods of

relatively high volatility tend to be grouped together, whereas periods of high volatility

tend to occur during economic upheavals (Belke and Gokus (2011)).

Recent empirical literature documents the significant relationship between volatility

and sovereign risk. Hilscher and Nosbusch (2010) show that countries with more volatile

fundamentals have higher sovereign bond spreads. Since CDSs are a more direct indicator

of sovereign risk, it can be argued that a high CDS volatility could be positively related

to the riskiness of the sovereign entity itself. Given the importance of CDS volatility

patterns, understanding the persistency of volatility becomes vital as well.6 The speed of

forgetting large volatility shocks in financial markets is important for at least two reasons.

First, persistent high volatility may imply a higher extent of sovereign risk, as we show

later through causality tests. Second, a persistent volatility can be used to predict the

4See Greene and Fielitz (1977), Jacobsen (1996).
5See Crato and de Lima (1994) and Bollerslev and Mikkelsen (1996).
6If values from distant time points have a significant impact on more recent time points, the series are

said to be persistent (fractionally integrated) and have long memory.
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stability structure of future economic variables.

3 The Data Set

In this section we present the descriptive statistics and time series properties of our data

set. The first subsection presents the basic descriptives and addresses the sample of

interest, as well as the reasons for sample selection. The second subsection investigates

the time series properties of the sample period.

3.1 Descriptive statistics

Time series data of CDS prices are collected from the Markit database, which provides

financial information services. We use the observations of 10-year7 senior sovereign

CDSs for 10 European Union countries. All quotes are based on euro-denominated CDS

contracts which are extensively traded in the market. The countries covered for the

analysis are Austria, Belgium, France, Germany, Greece, Ireland, Italy, the Netherlands,

Portugal and Spain, which are all members of the European Monetary Union and share

the euro as their common currency.8

Figure 1 presents the sovereign CDS spread levels from January 2004 to October 2011.9

Figure 1 clearly indicates that, prior to August 2007, the CDS spreads are broadly stable

in almost all countries. However with the start of the credit crunch, all series start to

fluctuate considerably and the spreads for all countries increase very sharply. Visual

examination of Figure 1 reveals a clear difference between the series for the pre and post

August 2007 periods which most probably address a structural change. An article on BBC

News on 9 August 2009 entitled “Timeline: Credit crunch to downturn” mentions that:

7According to Dieckmann and Plank (2012), 10-year sovereign CDS contracts are more liquid than
5-year contracts. Our results remain robust when 5-year contracts are used.

8We have included the countries for which the euro-denominated spread information is available.
Furthermore we also restrict our attention to the counties in which at least 95% of the data exhibit
non-zero daily changes to avoid spurious evidence of long memory. For instance Finland is excluded from
our analysis given that Finish data includes 5% zero changes (stale prices), while for Luxembourg only
USD sovereign CDS spread information is available.

9We have interpolated one data point for Greece and 47 for Ireland for the earlier periods where
sovereign CDS data were not liquid.

7



Defined as “a severe shortage of money or credit”, the start of the phenomenon (financial

crisis) has been pinpointed as August 9, 2007, when bad news from French bank BNP

Paribas triggered a sharp rise in the cost of credit, and made the financial world realize

how serious the situation was. On the same day, the Federal Reserve’s Open Market

Trading Desk put USD 24 billion into its banking system, whereas the European Central

Bank in Frankfurt injected USD 130 billion into European institutions, and another USD

84 billion the following day. We have therefore defined the start of the crisis as August 9,

2007.

We first utilize daily observations which span the period from January 2004 to October

2011. Prior to 2004, sovereign CDS markets for advanced economies were neither traded

liquidly (Dieckmann and Plank (2012)) nor available for many countries. Table 1 and

Table 2 show the summary statistics for CDS spread levels in basis points before and

after August 9, 2007. Given the pronounced differences between the two periods, we

present the descriptives separately.

Table 1 and Table 2 present substantial differences among 10 countries both before

and after the crisis. Concentrating on Table 1, it is seen that average spreads are as

low as 2.9 basis points for the Netherlands, while as high as only 17 and 19 for Italy and

Greece respectively. Even before the crisis, spreads in Greece, Italy and Portugal are much

higher compared to all other eurozone countries. Low standard deviations among sampled

countries highlight the minimal variation in spreads before the start of the crisis. Table

1 also presents the skewness and kurtosis statistics of CDS spreads, indicating that the

level series tend to have higher peaks and fatter-tail behavior than normal distribution.

Focusing on Table 2, it is evident that the mean values of CDS levels fluctuate tremen-

dously after 9 August 2007. Among the 10 countries, the highest average spread is

obtained for Greece with a value of 568 basis points, followed by Ireland with a value

of 233 basis points. Following these two, Portugal, Italy and Spain are the countries with

relatively higher average spread values. An interesting finding is that, before the crisis,

spread values for Spain and Ireland are close to the spread values for Germany and France,
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which are considered to be stable economies. However, during the crisis period, spread

levels for these two joined the group of riskier countries such as Greece and Portugal,

indicating that the sovereign debt risk for these two countries increased concomitant with

the start of the crisis. Not only the mean values but also the maximum values of the

spreads shed light on the change in levels. Even for Germany, the maximum value of the

spread is 10 times greater after the crisis.

Table 2 also presents the standard deviations of sampled countries for the crisis period,

which highlight the variability of spreads. For instance, Greece with a deviation of 936

basis points indicates a huge variation, whereas at the other extreme, Germany with a

deviation of 21 basis points is much more stable. Not only do the deviations for the crisis

period differ among countries but deviations for all countries also exceed the pre-crisis

period. For instance, variation in Greece is 170 times more for the crisis period. Finally,

for the crisis period, skewness and kurtosis values indicate higher peaks and fatter tails.

Table 3 and Table 4 present summary statistics for CDS spread changes.10 Contrary

to the levels in the pre-crisis period, the spread changes of 10 countries seem to be rather

similar. For instance, not only mean spread changes but also minimum or maximum

changes are close for almost all countries.11 On the other hand, for the crisis period there

are still substantial differences among the descriptives of the spread changes. For instance,

the mean change in Greece is two times higher than in Germany, where minimum and

maximum changes are very different, with a range of -0.56% (Greece) to %0.54 (France).

Moreover, there are still huge variations of CDS spread changes when compared with

the pre-crisis period. Distributional characteristics of spreads seem to show similarities

with the change series before and after the crisis. For all countries, the distribution

of spread changes is positively skewed with very long right tails. Finally, Jarque-Bera

(J-B) statistics reject normality for all countries at the 1% level, indicating that there are

significant departures from normality.

10The change series addressed in this paper are log changes calculated as Rt = log(Xt/Xt−1).
11The maximum and minimum value as well as standard deviation for the Netherlands differ somewhat

from the rest of the sample for the pre-crisis period given that the sample of this country starts in June
2006.
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All in all, the descriptives of the sovereign CDS spreads for both levels and changes

highlight the transformation before and after August 9, 2007. We believe that this break

addresses a structural difference, and analyzing the whole period may cause spurious long

memory evidence.12 Based on this reasoning, we restrict our sample to the period after

August 9, 2007, and perform our analysis only for the crisis period.

3.2 Time series properties

It is important to examine the time series properties of the CDS spread changes and

squared changes before pursuing further econometric analysis. To the best of our knowl-

edge, very few studies deal with the time series properties of CDSs.13 Testing for unit

root, Cremers et al. (2008) find no strong evidence of unit root behavior for levels of CDS

spreads whereas Dieckmann and Plank (2012) find evidence of non-stationarity for Greece

and the Netherlands.

A generally accepted way of defining long range dependence is in terms of autocorre-

lation functions. A stochastic process with autocorrelation function ρ(k) is said to have

long memory if

∞∑
k=−∞

ρ(k) =∞. (1)

This process has an autocorrelation function which decays so slowly that their sum does

not converge to zero.

Given the above reasoning, we concentrate on the autocorrelation functions of changes

and squared changes of CDS spreads. If a series exhibits long memory structure, sample

autocorrelations for changes or squared changes should tend to decay slowly and remain

fairly large for long lags (Ding and Granger (1996), Bollerslev and Mikkelsen (1996)).

Looking at Figure 2, it is evident that spread changes do not exhibit lag correlations with

12The fact that structural breaks may mimic long memory behavior has been addressed by Granger
and Hyung (2004).

13Gündüz and Uhrig-Homburg (2011) look at the cross-sectional and time series prediction capabilities
of CDSs.
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distant observations.14 In some cases the autocorrelation of the spread changes happens

to be significant but disappears after the first lag. The rest of the lags are almost always

within 95% confidence bands among all countries. The autocorrelation function of spread

changes suggests no evidence of long memory.

Contrary to spread changes, the autocorrelation function of squared changes decays

slowly and exhibits long memory behavior. In almost all countries other than Ireland,

distant lags are outside 95% confidence bands. Especially for the Netherlands, Belgium

and Greece, the autocorrelation bars are out of confidence bands until the 10th lag and

the autocorrelation function of squared spread changes suggests evidence of long memory.

Before starting with long memory tests, it is necessary to examine the unit root behavior

and stationarity of the series of interest. In order to test for unit root as well as stationarity,

we apply a total of three different tests to both changes and squared changes. We

utilize the modified Dickey-Fuller(DF-GLS) unit root test (Elliott and Stock (1996)), the

Phillips-Perron(P-P) unit root test (Phillips and Perron (1988)) and the KPSS stationarity

test (Kwiatkowski et al. (1992)). The null hypothesis of the KPSS test differs from the

DF-GLS and P-P tests. The DF-GLS and P-P tests have the null hypothesis that time

series exhibit unit root behavior whereas the KPSS test has the null of trend stationarity.

The distribution of the KPSS test assumes short memory under the null hypothesis. In

this respect, the rejection of both unit root and stationarity tests signal the presence of

long memory in the series of these countries (Lee and Schmidt (1996), Su (2003)).

Table 5 shows the results of these three tests for both spread changes and squared

changes. For the spread changes of 10 countries, the DF-GLS and P-P tests reject the

null of unit root, indicating that spread changes do not follow a unit root process and can

be modeled or tested with standard methods. Similarly, squared spread changes do not

exhibit unit root behavior either. Additionally the first lag of the KPSS test fails to reject

14We also graph the autocorrelation functions for the pre-crisis period. Autocorrelation functions for
the pre-crisis period demonstrate no evidence of long memory behavior, even for squared spread changes.
The crisis period has longer lag effects for all countries for both spread changes and squared changes.
Figures of the pre-crisis period are not included in the paper but are available upon request.
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the null of stationarity for spread changes at the conventional level (%1), indicating that

spread changes neither follow unit root behavior nor are non-stationary. On the other

hand, for the squared changes, the first lag of the KPSS test rejects the hypothesis of

stationarity for Austria, Spain, the Netherlands, Portugal and Germany. As mentioned

by Su (2003), the rejection of both null hypotheses (unit root and stationarity) may simply

reflect the existence of long memory for these countries.

4 Preliminary Analysis of Long Memory

In this section we present a preliminary analysis of persistency (long memory) behavior

of sovereign CDSs. The first subsection introduces the definition of the statistical tests

employed, whereas the second subsection presents the results for the financial crisis sample

(after August 9, 2007). The last subsection can be considered as a robustness analysis

where the sample is restricted such that it corresponds to the post Lehman collapse period

(after September 15, 2008)

4.1 Statistical tests for long memory

Geweke and Porter-Hudak (1983) (GPH) log periodogram regression is the most pervasive

approach for testing the fractional integration of a time series. GPH provides a semi-

parametric estimator of long memory parameter(d) in the frequency domain in which

first the periodogram of the series is estimated and then its logarithm is regressed on a

trigonometric function.15

For a fractionally integrated process Xt of the form

(1− L)dXt = εt (2)

the differencing parameter d is the slope parameter of spectral regression in Equation

3, which is

15See Banerjee and Urga (2005) for a detailed discussion.

12



ln(Ix(ωj)) = a− d · ln|1− eiωj |2 + νj (3)

where Ix(ωj) = νx(ωj) · νx(ωj)∗ is the periodogram of Xt at frequency ωj. ωj represents

harmonic ordinates ωj = 2πj
T

,(j = 1, . . . ,m) with m = T λ. Discrete Fourier transform

(DFT) of the time series Xt is defined as νx(ωj) = 1√
2πm

m∑
j=1

Xte
iωj

The choice of λ parameter is crucial given that a high number of ordinates would induce

bias to the estimator, while including too few ordinates would make the OLS regression

less reliable. Standard value suggested by Geweke and Porter-Hudak (1983) and Diebold

and Inoue (2001) is 0.5, which leads the power function to be
√
T .16

For |d| < 1
2
, the DFT and periodogram are non-stationary. Given the economic

upheavals in some countries (i.e. Greece) for the period of interest, there is no apriori

reason to believe that |d| < 1
2
. Modified log periodogram regression (MLR) (Phillips

(2007)), whose consistency property for 1
2
< d < 1 is provided by Kim and Phillips

(2006), can be employed especially for the series where non-stationarity is suspected.

Phillips modification of the DFT is given by

νx(ωj) =
νx(ωj)

1− eiωj
− eiωj

1− eiωj
· Xt√

2πm
(4)

where deterministic trends should be removed from the series before applying the

estimator.

Both the GPH and MLR estimates are based on log-periodogram regressions that utilize

the first T λ frequency ordinates. In addition to the typical value of 0.5 for λ we also employ

0.55 and 0.60 in order to evaluate the sensitivity of our results, following Barkoulas et al.

(2000).

16Other studies such as Cheung and Lai (1993) also employ values around 0.5 for robustness.
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4.2 Persistence after the start of the crisis

Table 6 shows the long memory tests for both spread changes and squared spread changes

for the period after August 9, 2007. In the below subsections, the long memory properties

will be analyzed separately.

4.2.1 Long memory of the spread changes

As seen from Panel A of Table 6, the GPH estimates show no significant evidence of a

persistence of spread changes for 8 of the 10 countries. Utilization of different powers of

the GPH shows that results are robust in terms of including more ordinates (i.e. inclusion

of more ordinates does not change the results). For Ireland and the Netherlands there

is weak evidence of long memory for the power value of 0.55 and no evidence even for

higher power values.17 This inconsistency among different power values suggests that for

these three countries long memory is rather unreliable and could be the consequence of

short-term effects.

Under the MLR for 6 of the 10 countries, conclusions from GPH are confirmed, so that

there is no statistically significant evidence of long memory. Furthermore, MLR estimates

for Ireland show no significant long memory evidence, either. All in all, Austria, Belgium,

Italy, Spain, Portugal, Greece and Ireland exhibit no significant evidence of long memory

in spread changes, implying that spread changes satisfy the requirement of weak form

efficient markets hypothesis.

On the other hand, MLR estimates show statistically significant and consistent evidence

of long memory for the Netherlands. Moreover, the estimated long memory coefficients

for these two countries are higher than 0.5, indicating that the estimates of the MLR

are more reliable compared to the GPH. As mentioned above, the evidence of long

memory for the Netherlands could be due to short-term effects. We have shown through

autocorrelation graphs that spread changes in neither of the countries show long memory

17Normally, it may be expected that the inclusion of more ordinates would increase the possibility of
long memory effect.
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behavior. Moreover, their spread changes are almost constant until the second quarter

of 2008 for these two countries, which may cause a spurious long memory effect. If the

second argument is true, we should see no long memory behavior for the post Lehman

period where invariant parts of the sample are not employed. Contrary to the GPH, we

observe evidence of long memory for Germany and France. For these two countries, the

long memory effect could be the outcome of short memory components (such as AR(1)

for France) which are evident from autocorrelation graphs.

4.2.2 Long memory of the squared spread changes

Panel B of Table 6 presents the long memory estimates for squared spread changes, which

is a proxy for spread change volatility. Contrary to spread changes, for which the evidence

of long memory is not present for many countries, there is evidence of long memory for

squared spread changes for almost all countries. Moreover, the evidence is mostly robust

across different power levels and models.

Although there is evidence of long memory for almost all countries, there is no evidence

of long memory for Austria. Across all power levels and for both GPH and MLR, evidence

on persistence of volatility does not exist. There is weak statistically significant evidence

for France for the highest power value (0.6) in both of the tests, implying that for France

squared spread changes are also less likely to have long memory. Moreover, there is weak

evidence of long memory for the lowest power value (0.5) for the Netherlands. Inclusion of

more ordinates would increase the possibility of capturing a long memory effect. However,

we have a reverse structure for the Netherlands, which implies rather weak evidence of

long memory that requires further analysis.

For all power values for Greece and Belgium, evidence is robust for both models. This

addresses long memory for squared spread changes for these two countries. Portugal, Italy

and Germany follow Greece and Belgium and present long memory behavior for both

models and for all power values other than the power value of 0.5 for the GPH. There

is evidence of long memory for Spain and Ireland with the inclusion of more ordinates,
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which indicates further analysis would be beneficial for these two countries. Concentrating

on the magnitudes of estimated long memory coefficients, it is evident that Greece and

Belgium have the highest fractional difference parameters among all specifications. This

indicates that persistence of risk exhibits explosive behavior for these series.

Among the 10 countries, Greece has the highest public debt, followed by Italy and

Belgium. All three of these countries are experiencing serious difficulties in terms of

sovereign debt and credit ratings. Portugal and Spain are considered the eurozone’s other

indebted countries open to sovereign debt repayment problems after Greece, Italy and

Belgium. Finally, Ireland has experienced a debt crisis as a direct result of its housing

bubble and accepted a massive international rescue package in 2010. We will come back

to linking persistent volatility patterns to sovereign risk in a latter section.

4.3 Persistence after the Lehman default

As mentioned by Granger and Hyung (2004), a linear process with structural breaks can

mimic the properties of long memory processes. As a robustness check to the previous

subsection, we employ an alternative break date where the structural change in time series

property may happen. Dieckmann and Plank (2012) argue that only after the default of

Lehman Brothers did the effects of the market turmoil significantly affect sovereign credit

risk. Following this argument we utilize the Lehman default (September 15, 2008) as an

alternative break point.

Confirming the results of the previous subsection where the break point was selected

as August 9, 2007, spread changes exhibit very little evidence of long memory (Table 7,

Panel A). In addition to the lack of persistence for 7 countries, the evidence in France,

Germany and the Netherlands become very weakly significant and inconsistent among

different tests and powers. This result confirms that in these three countries evidence of

long memory for spread changes is rather implausible.

Contrary to spread changes, the evidence of long memory for squared spread changes

becomes even more pronounced among all countries when the post-Lehman period is
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considered (Table 7, Panel B). In addition to the more dominant effects through all

countries, there is some evidence of long memory even for Austria. Still, Greece and

Belgium have the most dominant effects among both specifications and power values.

For the Netherlands and France, effects become more significant, whereas for Italy, GPH

estimates lose their statistical significance.

The results of this section show that spread changes of CDS show little evidence of

long memory, satisfying the minimum requirements for a weak form market efficiency.

However, contrary to spread changes, as a result of increased uncertainty in sovereign

risk, the volatility patterns of sovereign CDSs in Greece, Belgium, Italy, Spain, Portugal

and Ireland are persistent and volatility shocks die out very slowly. The possible reasons

for persistence in Germany, France and the Netherlands are analyzed in the next section,

and it is shown that evidence of long memory is mostly related to short-term effects, but

not to the persistence of risk.

5 Dual Persistence and Volatility Clustering

Usage of semi-parametric methods such as GPH or MLR is limited due to a number of

drawbacks. First, application of these methods requires a choice of bandwidth parameters

in order to find the ordinates. This is mostly non-trivial. Moreover, our results in Section

4 confirm that the bandwidth choice greatly affects the magnitude and significance of the

fractional integration parameters. Second, if the data generating process exhibits short

memory properties, semi-parametric methods are known to be biased (Agiakloglou et al.

(1993), Banerjee and Urga (2005)). This is due to the fact that the short-term properties of

the financial series are not taken into account while estimating the fractional differencing

parameter in the two-step estimation procedure. As an outcome of this bias, long-term

parameters could be contaminated by the presence of short-term components. In this

section, we re-estimate the long memory evidence using parametric models to shed light

on the long memory properties of CDS markets more precisely. Specifically, we employ

the dual long memory ARFIMA-FIGARCH model.
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5.1 ARFIMA-FIGARCH process

We first introduce the parametric methods to estimate the components of dual memory.

The spread changes that correspond to the mean equation of the model are estimated using

an ARFIMA model, whereas the conditional variance is estimated using a FIGARCH

model. This estimation takes place jointly using the full maximum likelihood information.

ARFIMA Model

In order to model long memory of the spread changes, the ARFIMA(p, ξ, q) model, which

was developed by Granger and Joyeux (1980), is employed. ARFIMA(p, ξ, q) with mean

µ can be expressed as

φ(L)(1− L)ξXt − µ = θ(L)εt (5)

εt = σt ∗ zt

where L denotes the lag operator, φ and θ are polynomials in the lag operator of orders

p and q whose roots lie outside the unit circle. The error term εt follows a white noise

process through zt ∼ N(0, 1) with variance σ2. The key component of Equation 5 is the

fractional differencing parameter which is represented as ξ. It identifies the magnitude of

long memory (i.e. ξ = 0 represents ARMA(p, q)).

FIGARCH Model

In order to capture the long memory of conditional volatility, FIGARCH(p, d, q) by Baillie

et al. (1996) is employed. FIGARCH(p, d, q) can be expressed as:

φ(L)(1− L)dε2
t = ω + [1− β(L)]υt (6)

where υt = ε2
t − σ2

t . To ensure stationarity, roots of φ(L) and [1 − β(L)] lie outside the

unit circle. As in ARFIMA, the fractional differencing parameter d for FIGARCH is vital

which identifies the magnitude of long memory (i.e. d = 0 represents GARCH(p, q) or
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d = 1 represents IGARCH(p, q)).

5.2 Empirical results

By employing an ARFIMA-FIGARCH model we analyze the dynamic adjustments of

both the mean and conditional variance of the sovereign CDS spread changes for 10

eurozone economies. In order to estimate the joint long memory model, the quasi-

maximum likelihood method implemented by Laurent and Peters (2002) is used. Following

Bollerslev and Mikkelsen (1996), we employ a truncation lag of 1000 for the fractional

differencing operator. With the quasi-maximum likelihood method and truncation lag,

the positivity constraints documented in Bollerslev and Mikkelsen (1996) are satisfied for

all our specifications.

In order to avoid spurious short or long memory evidence, it is important to choose

the appropriate lag length for ARFIMA and FIGARCH models. We employ Akaike

and Schwarz information criteria for the model selection.18 First we model an ARMA

followed by an ARFIMA model for different lag selections with optimal lag lengths

p, q ≤ 2. Information criteria suggest alternating lag lengths for AR and MA components

for different countries. For instance ARFIMA(2,ξ,1) transpired to be optimal for some

countries, whereas ARFIMA(2,ξ,2) was preferable for others. In order to nest all countries

in terms of optimal lag length, we employ ARFIMA(2,ξ,2) for the conditional mean

equation. Meanwhile, for the implementation of GARCH or FIGARCH models it is

common to allow for one lag for each ARCH and GARCH component (Brunetti and

Gilbert (2000)). In this respect, we allow one GARCH and ARCH lag in our specifications.

In applications of GARCH(1,1) model, the sum of estimated GARCH parameters could

be close to unity by pointing out an integrated GARCH(IGARCH) process. On the

other hand, using Monte carlo simulations, Baillie et al. (1996) shows that financial data

generated by long memory models may mimic IGARCH behavior if fractional integration

18 The Schwarz criterion puts a heavier penalty on additional parameters and as a result encourages
parsimonious models. When Akaike and Schwarz criteria indicate different outcomes, we opt for the less
parsimonious model by Akaike criterion.
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is not controlled. In this sense, before pursuing with the ARFIMA-FIGARCH model, we

first examine the GARCH coefficients of the ARFIMA-GARCH model.19 The sum of the

GARCH coefficients proved to be very close to one for all the countries. For Austria,

France, Germany and the Netherlands the sums are around 0.95, whereas for Belgium,

Ireland, Italy and Spain they lie between 0.97 and 0.99. For Greece and Portugal, the

sum is even more than one, implying that unconditional variance of the model does not

exist. By virtue of the fact that the sum of the GARCH parameters is close to unity, we

continue with the ARFIMA(2,ξ,2)-FIGARCH(1,d,1).

Table 8 shows the estimates of the dual memory model for 10 eurozone countries.

The key parameters of interest are ξ and d, which are the long memory estimates for

ARFIMA and FIGARCH respectively. The long memory parameter ξ for spread changes

is insignificant among all countries. This finding with the ARFIMA model confirms

the previous section, which concluded that spread changes do not exhibit long memory.

For Belgium, Ireland and the Netherlands some of the short memory parameters are

significant that might give rise to concerns about short term predictability on these

markets. However, this might be due to the common factor problem of ARMA models.20

Moreover, it is important to note that the beginning of our sample period comprise a

number of null changes (constant CDS prices). This period of stable prices could also

be the driving factor of the short memory effect. We further test any evidence of short

memory by employing the heteroskedasticity-robust version of the Box-Pierce test Lo and

MacKinlay (1989). Allowing for autocorrelation lags up to 10, the Q-statistic is never

significant indicating that a weak form of market efficiency is satisfied.

In order to analyze the volatility of the spread changes, the FIGARCH memory parame-

ter d is relevant. Unlike spread changes, volatility of changes exhibits long memory among

the majority of the countries. Confirming the results of semi-parametric estimates, there

is no evidence of persistent volatility for Austria, France and the Netherlands. Contrary

19For the sake of brevity, estimates are not reported but are available upon request from the authors.
20For instance, in the estimated model for the Netherlands both AR and MA parameters are significant

and close to each other. This could be avoided by fractional differencing.

20



to the semi-parametric estimates, the parametric estimates show no long memory effects

for Germany. Interestingly, it is observed that the GARCH coefficient is significantly

different from zero at conventional levels, implying that long memory evidence of the

previous section could be an outcome of short memory components in this series.

The coefficient of long memory is the highest for Greece. The series for Greece is almost

characterized by an integrated GARCH model. Portugal and Ireland follow Greece in

terms of the magnitude of the coefficients. This result may indicate that the countries

with highest sovereign risk are characterized by the most persistent behavior in volatility.

There is strong evidence of long memory for volatility series not just for these three

countries but also for Italy, Spain and Belgium, indicating a potential relationship between

sovereign risk and the persistence of volatility patterns.

At this point, it is worth highlighting the differences between GARCH and FIGARCH

specifications. Excluding Ireland, ARCH parameters transpire to be insignificant for

all countries, when fractional integration is allowed. Not only the ARCH but also the

GARCH coefficients of Austria, France and the Netherlands become insignificant. The

almost integrated GARCH behaviour of Italy (0.97) transpires to be an outcome of long

memory process. On the other hand, for Belgium, Ireland, Portugal, Spain and Greece,

there is also volatility clustering behavior addressed by significant GARCH coefficients in

addition to the persistence patterns in volatility.

5.3 Granger causality tests

This section reports the results of Granger causality tests to provide evidence on the

nature of the relationship between sovereign CDS volatility and country risk. To do

so, we employ the methodology developed by Toda and Yamamoto (1995) to test the

causality between sovereign CDS volatility and sovereign CDS levels as well as sovereign

CDS changes. Their test is comparable with the χ2 distributed test statistic and is robust

to possible non-stationarity or cointegration. In order to reach the test statistic, first an

estimate of conditional variance from ARFIMA-FIGARCH model is obtained. Second, the
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optimal lag p of the vector autoregression (VAR) is estimated using information criteria

as AIC. Third, VAR of order p∗ = p+ k is estimated where k is the maximum integration

order of the system. Given that the order of integration cannot be greater than one, we

utilize k = 1 in our application. Finally, Granger causality test is performed for the VAR

equations where the null hypothesis is no causality between variables. Table 9 presents

the results of 10 countries for three different lag lengths. We test for Granger causality

at lag lengths equal to 5, 10 and the optimal lag p as described above.

Panel A of Table 9 reports the results of the causality test where the causality runs from

sovereign CDS volatility to the sovereign CDS spread. Statistical significant effects are

present for all countries excluding the Netherlands and Ireland. The causality evidence

is highly significant for 7 countries and weakly significant for Belgium, for which only a

single lag is significant at the 1% level. These results indicate that increases in uncertainty

of sovereign CDS spreads raise the country risk itself and thus the required insurance for

a possible default. The causality at higher lags (i.e. 10 days) indicates that the impact

of uncertainty is also long-lasting. Panel B of Table 9 shows the causality that runs

from sovereign CDS volatility to the sovereign CDS changes. Since the previous panel

illustrates how high volatility is linked with higher spreads, high volatility also causes

high spread changes. For 9 out of 10 countries, null hypothesis of the absence of causality

is rejected at 1% statistical significance. This indicates that the uncertainty present in

the series also implies higher spread changes in the series itself.

The results in this section demonstrate that the volatility of CDSs is linked with CDS

levels and CDS spread changes. This implies that persistence patterns in uncertainty

are associated with the sovereign risk structure of a given country. Having already

demonstrated that some of the eurozone countries exhibit a significant d parameter, this

section provides further evidence that this is an indication of country risk. In this sense,

the results in the previous section depicting Greece, Italy, Ireland, Portugal, Spain and

Belgium as having a significant fractional integration parameter imply a higher extent of

risk in levels.
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5.4 Model specification tests

It is important to test if the implemented ARFIMA-FIGARCH model is appropriate

for the sovereign CDS data. To test for model misspecification we employ Box-Pierce

statistics on raw (Q-statistic), squared (Q2-statistic) standardized residuals and Residual-

Based Diagnostic (RBD) of Tse and Tsui (2002) for conditional heteroskedasticity.

Table 10 presents the model misspecification tests for residuals of the ARFIMA-FIGARCH

model. The null hypothesis of the Q- and the Q2-statistic is that there is no serial

correlation in lags of the standardized and squared standardized residuals. The Q- and

the Q2-statistic for up to 20 day lags fail to reject the null hypothesis at conventional

levels that there is no serial correlation. The last two columns of Table 10 present the

RBD test statistics which look at the presence of heteroskedasticity in the standardized

residuals. The results indicate that the non-heteroscedasticity hypothesis is not rejected.

Both of the test results confirm that our modelling scheme is appropriate for the sovereign

CDS data.

5.5 Robustness checks

It is known that the majority of the financial time series tend to have fat tails which may

distort the results of the GARCH type models. In this respect, we test the robustness

of our modelling scheme to the tail behaviour of the data. In order to test this, we first

allow for a generalized error distribution (GED) instead of a normal distribution in our

estimation. Second, we winsorize our data for the highest and lowest extreme values.

The GED with degrees of freedom ϑ is a symmetric distribution that can be both

leptokurtic and platykurtic depending on the degrees of freedom with ϑ > 1. For ϑ =

2, GED reduces to standard normal distribution where for ϑ < 2, it has thicker tails

than normal distribution. The first item in Table 11 presents the coefficients of long

memory parameters of conditional volatility for which GED distribution is used. In our

specification, we fix the degrees of freedom to 1.25 for all countries by allowing very
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thick tail behavior. As seen from the first line in the table, the magnitude of the d

parameter is higher for Belgium, Italy and Spain, but lower for Greece, Ireland and

Portugal. Nevertheless, the significance of the fractional integration parameter remains

unchanged, implying robust behavior when thick tails are present.

In order to avoid contamination from outliers, a second approach could be to winsorize

the extreme values. Unlike many other types of data, financial time series do not allow

the trimming of extreme values since trimming results in gaps in the estimated series.

In this respect, one can alternatively winsorize the extreme points by fixing positive or

negative outliers to a specified percentile of the data. We set the data points higher than

0.995th percentile and lower than 0.005th percentile to the 0.995th and 0.005th percentiles

respectively by modifying 1% of the data in total. The second item in Table 11 presents

the coefficients of long memory parameters of conditional volatility for which winsorized

data is used. This analysis also confirms that our results are robust and there is still

evidence of long memory in volatility for Belgium, Greece, Ireland, Italy, Portugal and

Spain.

5.6 Prediction performance

Jiang and Tian (2010) documented that forecast performance can be substantially im-

proved by incorporating long memory models. We finally evaluate the out of sample

forecast performance of ARFIMA-GARCH versus the ARFIMA-FIGARCH model for

conditional volatility. To test the prediction performance, we employ different forecast

error measures. Addressing the difference between the estimated and ex-post volatility,21

the mean absolute error (MAE) and root mean squared error (RMSE) are utilized.

21Since true volatility is never observed, it is common to use σt = (yt − ȳ)2, where ȳ is the sample
mean of yt.
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MAE =
1

T

T∑
t=1

|(σ̂t − σt)| (7)

RMSE =
1

T

T∑
t=1

√
(σ̂t − σt)2 (8)

where σt presents the true volatility versus σ̂t the estimated volatility. We also utilize the

logarithmic loss function (LL) by Pagan and Schwert (1990) which penalizes inaccurate

variance forecasts more heavily when σt is low.

LL =
1

T

T∑
t=1

(ln(σ̂t)− ln(σt))
2 (9)

Table 12 presents the forecast performance of estimated conditional volatilities for 10

countries with the GARCH and FIGARCH models. Our forecasts are out-of-sample

predictions which correspond to a time two months after our estimation period. There are

different contributions of the FIGARCH model to the forecasting. For most countries that

exhibit no long memory behavior in volatility (Austria, Germany and the Netherlands)

the prediction power of FIGARCH model is inferior to that of GARCH model. In this

sense allowing for fractional integration introduces noise to the forecasts. On the other

hand, for France, Italy, Ireland and Spain, allowing for fractional integration in volatility

improves the forecast performance of the model. Excluding France, all the mentioned

countries exhibit long memory behavior in volatility, which implies that the appropriate

modelling may also have impact on prediction performance. The FIGARCH specification

is dominantly superior for Greece and Portugal, not only with the lower MAE and RMSE

but also with lower LL. This finding addresses the fact that for the countries where the

long memory parameter is high or very close to unity, the forecasting performance of

fractionally integrated models becomes much more accurate.
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5.7 Implications

Overall, our results reveal that there is no evidence of long memory for spread changes

for any of the eurozone countries investigated. Despite the high volatility and unex-

pected shocks in sovereign CDS markets, the pricing mechanism satisfies the minimum

requirements for the weak form of price efficiency. On the other hand, increased global

risk aversion and the lack of certainty regarding future sovereign debt market conditions

have caused an increase in sovereign CDS volatility, which has been shown to be an ideal

measure of sovereign risk. More stable eurozone economies such as Austria, France, Ger-

many and the Netherlands do not exhibit persistent volatility behavior. These economies

could be viewed as being free of persistent sovereign risk uncertainty. However, less stable

eurozone economies such as Greece, Ireland, Italy, Portugal, Spain and Belgium exhibit

persistent volatility patterns. Our results reveal that, in addition to increased volatility,

the effect of these volatility patterns as well as the shocks entailed die out very slowly

and persist for long periods in these less stable economies. Moreover, it can be inferred

from causality tests that this volatility is linked to sovereign riskiness. This fact has

various implications for modeling inferences to reduce volatility and improve liquidity in

the sovereign debt market.

6 CDS Spread Change Spillovers

Given that eurozone economies are linked through the monetary union, it is important

to study the spillover possibilities in terms of sovereign CDSs. In order to analyze the

spillover effects of CDS spread changes we employ the dynamic conditional correlation

(DCC) model of Engle (2002). The novelty of DCC method is that it addresses the

dynamic correlation of two time series consistently using a two-step approach. Engle and

Sheppard (2001) demonstrate that the log-likelihood of the DCC model can be written

as the sum of a mean and volatility part in addition to a correlation part. First of all,

univariate models which allow for ARFIMA type conditional mean and FIGARCH type

variance specifications are estimated. Then, transformed residuals resulting from the first

26



stage are used to compute conditional correlation estimators where the standard errors

for the first stage parameters remain consistent.

The bivariate DCC model is formulated as;

Ht = DtRtDt (10)

Dt = diag(σ
1/2
11t . . . σ

1/2
NNt) (11)

Rt = diag(θt)
−1/2θtdiag(θt)

−1/2 (12)

θt = (1− α− β)θ + αεt−1ε
′

t−1 + βθt−1 (13)

where Ht represents the 2 × 2 variance-covariance matrix of a conditional multivariate

normal mean zero process with innovations εt, σijt representing the time varying standard

deviation of a univariate FIGARCH process, and θt standing for the conditional variance-

covariance matrix of residuals satisfying α + β < 1. θ is a 2× 2 identity matrix with the

non-diagonal entries equal to ρ.

Table 13 presents the unconditional correlation of the standardized residuals (ρ) of CDS

spread changes for 10 eurozone countries. DCCs are generated following the univariate

ARFIMA(2,ξ,2)-FIGARCH(1,d,1) estimation for all series. Consequently, pairwise DCC

correlations are computed. A higher unconditional correlation implies a stronger co-

movement as well as a more linked structure between countries. The coefficients evolve

approximately between 40% and 60% in value. The smallest coefficient is observed

between the Netherlands and Greece followed by the Netherlands and Ireland. Germany

and France also show low correlations with Ireland, Greece and Portugal. This indicates

that the less stable economies in the eurozone are least linked with the more stable

economies in terms of correlation of the sovereign CDS. The highest coefficient is observed

between Spain and Italy followed by Spain and Portugal. Moreover, Portugal has the

highest unconditional correlation with Italy. This result indicates that the comovements

of CDS spread changes for these three countries are highly integrated. Germany and
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France exhibit the highest correlation coefficient with each other. In addition, they also

exhibit high correlations with Austria, the Netherlands and Spain.

Table 13 reveals an interesting correlation pattern for the less stable economies of the

eurozone. The magnitudes of correlation coefficients between Belgium, Italy, Ireland,

Portugal, Spain and Greece are higher compared to the correlation coefficients of these

countries with Austria, France, Germany and the Netherlands.22 This result indicates that

there is a higher spillover effect of CDS spread changes between less stable economies than

more stable ones. For instance, Greece has the highest ρ coefficient with Italy and Spain,

whereas Spain has the highest correlation with Italy and Portugal.

Table 14 and 15 present the estimates of α and β coefficients of Equation 13, respectively.

The coefficient of α in Equation 13 captures the impact of recent comovements on the

correlation while coefficient β captures the persistence in correlation patterns. As seen

from Table 14, the impact of short term movements on the conditional correlation is

insignificant for 32 out of 45 cases. The magnitude of the coefficient is higher than 10%

only for two pairs, namely Spain and France, and Spain and Italy. For cases such as

Greece and Netherlands, or Belgium and Portugal, they are as low as 2%. Contrary to

the short terms movements, persistence in correlation dynamics is highly significant as

can be seen from Table 15. In 40 out of 45 cases we observe a significant coefficient of β.

Not only the significance but also the magnitudes of β coefficients are high. Observation

of values mostly over 90% indicates that modelling the correlation structure dynamically

would be the most appropriate methodology for analyzing the correlations of CDS spread

changes.

For an illustration of the correlation patterns over time, Figure 3 shows the evolution

of the conditional correlation between Greece and 4 other countries which are Germany,

Italy, Spain and Portugal. The correlation coefficients are always positive and fluctuate

around 0.5 for all specifications. As our sample corresponds to the crisis period, there

are no major shifts for any of the pairwise correlations even for the post Lehman period.

22The only exception is between Greece and Ireland where the correlation coefficient is insignificant.
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The highest jumps in DCC occur between Greece and Spain where the β parameter is the

lowest among the four countries. On the contrary, the Greece/Italy and Greece/Portugal

pairs that have the highest β exhibit a more stable correlation structure.

7 Conclusion

This article has addressed the question of whether long memory behavior is present in

the spread changes and volatility of spread changes for the sovereign CDSs of 10 eurozone

countries. We test the price efficiency and volatility persistence of these entities for the

crisis period. To do this, semi-parametric methods and parametric estimation techniques

that allow dual-memory analysis are employed. Our results indicate that, despite the

financial crisis and concerns regarding sovereign indebtedness for eurozone countries, price

discovery processes function efficiently for sovereign CDS markets. This implies that

speculative returns evolving from sovereign CDSs as the sole trading instrument would

be less likely for the period under review. Furthermore, persistence of volatility is an

issue for the majority of eurozone countries. We show that the more stable economies

of the eurozone such as Austria, the Netherlands, Germany and France are not prone

to long memory of volatility. Unlike these countries, the sovereign CDS volatility of

those economies such as Greece, Ireland, Portugal, Italy, Spain and Belgium, which have

been particularly affected by the financial and sovereign debt crisis, exhibit long memory

behavior with a causal link to sovereign CDS levels. Finally, by estimating dynamic

conditional correlations, we demonstrate the potential spillover effects that exist among

eurozone countries.

Our study has shed light on the time series properties of the sovereign CDSs of eurozone

countries, about which little is known. Future research examining different term structures

of sovereign CDSs as well as different base currencies would be an interesting supplement

to this study.
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Table 1: Summary Statistics of CDS Levels January 2004-August 2007

Mean Median Min Max SD Skewness Kurtosis N

Austria 3.96 3.95 2.37 5.24 0.80 -0.14 2.06 938

Belgium 4.79 4.72 3.16 6.41 0.83 0.32 2.31 938

Italy 17.66 15.89 11.35 27.76 4.32 0.48 1.85 938

Spain 5.59 5.47 4.42 10.93 0.90 2.36 12.73 938

Portugal 10.86 10.15 7.37 17.0 2.71 0.57 1.97 938

France 4.39 4.11 2.51 7.33 1.23 0.65 2.62 938

Germany 4.62 4.89 2.32 8.44 1.42 0.61 3.43 938

Greece 19.10 15.94 10.63 29.84 5.47 0.31 1.50 938

Ireland 4.99 5.47 2.49 6.93 1.29 -0.53 1.85 919

Netherlands 2.92 2.85 2.36 3.96 0.35 0.87 3.02 292

This table presents the descriptive statistics of the CDS levels employed in our analysis. SD
indicates standard deviation. * and ** denote significance at 5% and 1% level respectively.

Table 2: Summary Statistics of CDS Levels August 2007-October 2011

Mean Median Min Max SD Skewness Kurtosis N

Austria 68.73 69.37 3.59 266.38 46.92 0.86 4.70 1099

Belgium 80.12 66.00 5.02 254.43 56.15 0.87 3.33 1099

Italy 118.99 113.93 15.51 454.69 78.00 1.35 5.65 1099

Spain 124.68 107.31 10.57 352.65 82.07 0.59 2.46 1099

Portugal 210.51 100.03 12.55 1049.69 236.67 1.74 5.49 1099

France 52.04 49.20 4.22 169.41 36.31 0.81 3.45 1099

Germany 35.46 36.14 4.14 95.25 21.12 0.41 2.74 1099

Greece 568.97 233.08 15.56 6918.56 936.84 3.66 18.67 1099

Ireland 233.42 177.97 5.50 1050.47 202.98 0.99 3.34 1099

Netherlands 42.35 39.37 3.56 126.67 27.62 0.92 3.62 1099

This table presents the descriptive statistics of the CDS spread changes employed in our analysis. SD
indicates standard deviation. * and ** denote significance at 5% and 1% level respectively.
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Table 3: Summary Statistics of CDS Spread Changes January 2004-August 2007

Mean Median Min Max SD Skewness Kurtosis J-B N

Austria -0.0005 0.0000 -0.1187 0.1953 0.0183 1.15 28.96 26522** 937

Belgium -0.0004 0.0000 -0.1192 0.1263 0.0129 0.47 31.58 31919** 937

Italy 0.0002 0.0000 -0.0593 0.1188 0.0128 2.02 21.17 13521** 937

Spain 0.0004 0.0000 -0.0785 0.0997 0.0143 0.71 13.66 4517** 937

Portugal 0.0002 0.0000 -0.0634 0.1550 0.0140 3.57 39.26 53318** 937

France -0.0006 0.0000 -0.1991 0.1327 0.0145 -1.80 55.87 109639** 937

Germany -0.0008 0.0000 -0.1761 0.1761 0.0253 -0.09 17.78 8532** 937

Greece 0.0001 0.0000 -0.0864 0.1452 0.0161 1.62 19.39 10902** 937

Ireland -0.0001 0.0000 -0.1946 0.2885 0.0386 0.46 14.84 5384** 917

Netherlands 0.0006 0.0000 -0.2218 0.3428 0.0386 2.04 29.96 9046** 291

This table presents the descriptive statistics of the CDS levels employed in our analysis. SD indicates standard deviation.
J-B denotes Jarque-Bera (1980) normality test statistic which has a chi-square distribution with 2 degrees of freedom.
* and ** denote significance at 5% and 1% level respectively.

Table 4: Summary Statistics of CDS Spread Changes August 2007-October 2011

Mean Median Min Max SD Skewness Kurtosis J-B N

Austria 0.0032 0.0004 -0.2701 0.4225 0.0527 0.94 12.1 3946** 1098

Belgium 0.0035 0.0007 -0.2281 0.2660 0.0516 0.22 7.06 763** 1098

Italy 0.0029 0.0011 -0.3705 0.2055 0.0450 -0.34 9.03 1687** 1098

Spain 0.0030 0.0005 -0.3331 0.2317 0.0467 -0.17 7.28 845** 1098

Portugal 0.0039 0.0015 -0.5271 0.3233 0.0566 -0.60 15.95 7736** 1098

France 0.0032 0.0006 -0.3807 0.5478 0.0640 0.63 14.23 5844** 1098

Germany 0.0025 0.0003 -0.3005 0.2626 0.0520 -0.16 6.63 607** 1098

Greece 0.0052 0.0031 -0.5602 0.3053 0.0522 -1.49 24.97 22486** 1098

Ireland 0.0043 0.0011 -0.3254 0.3809 0.0452 0.63 12.75 4419** 1098

Netherlands 0.0029 0.0001 -0.3191 0.2992 0.0566 0.09 8.14 1212** 1098

This table presents the descriptive statistics of the CDS spread changes employed in our analysis. SD indicates standard
deviation. J-B denotes Jarque-Bera (1980) normality test statistic which has a chi-square distribution with 2 degrees
of freedom. * and ** denote significance at 5% and 1% level respectively.
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Figure 2: Autocorrelation Functions August 2007-October 2011
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Table 5: Tests of Unit Root

CDS Changes Squared CDS Changes

DF-GLS P-P KPSS DF-GLS P-P KPSS

Austria -13.9** -29.7** 0.115 -18.1** -29.8** 0.320**

Belgium -15.6** -28.7** 0.085 -17.4** -28.1** 0.157

Italy -16.5** -25.2** 0.090 -16.0** -31.1** 0.104

Spain -16.9** -26.2** 0.039 -16.0** -30.7** 0.196*

Portugal -16.7** -30.0** 0.041 -18.3** -29.5** 0.590**

France -11.1** -38.3** 0.055 -13.4** -25.8** 0.116

Germany -10.4** -32.5** 0.057 -8.9** -28.5** 0.296**

Greece -14.4** -29.2** 0.079 -18.4** -29.8** 0.278**

Ireland -16.2** -27.5** 0.085 -21.4** -31.1** 0.085

Netherlands -12.8** -34.6** 0.108 -14.6** -28.3** 0.246**

DF-GLS indicates the Elliott and Stock (1996) unit root test, P-P indicates Phillips
and Perron (1988) unit root test and KPSS indicates the Kwiatkowski et al. (1992)
test for stationarity. For DF-GLS and KPSS, max number of lags are determined using
Schwert criterion which is 21. For P-P, in order to calculate standard errors Newey-West
criterion is employed, which is 6. Critical value at 1% for DF-GLS is -3.480, where it
is -3.430 for P-P and 0.216 for KPSS. * and ** denote significance at 5% and 1% level
respectively.
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Table 10: Model Misspecification Tests

Q-Statistics Q2-Statistics RBD

Country

Days
5 10 20 5 10 20 2 5

Austria 1.44 5.20 17.35 0.66 4.12 7.10 0.10 0.64

(0.23) (0.52) (0.36) (0.88) (0.85) (0.99) (0.95) (0.99)

Belgium 4.38 7.46 20.58 2.10 4.21 7.07 0.75 2.57

(0.04) (0.28) (0.20) (0.55) (0.84) (0.99) (0.69) (0.77)

France 3.29 8.90 31.97* 0.55 1.17 2.26 0.27 0.59

(0.07) (0.18) (0.01) (0.91) (1.00) (1.00) (0.87) 0.99

Germany 1.65 3.32 14.80 2.42 4.85 12.95 1.97 3.97

(0.20) (0.77) (0.54) (0.49) (0.77) (0.79) (0.37) (0.55)

Greece 0.35 4.56 21.15 1.58 2.98 12.09 0.35 1.13

(0.56) (0.60) (0.17) (0.66) (0.94) (0.84) (0.84) (0.95)

Ireland 3.50 9.08 29.78 4.53 7.85 17.38 -18.28 -18.12

(0.06) (0.17) (0.02) (0.21) (0.45) (0.50) (1.00) (1.00)

Italy 2.26 6.49 27.07 2.18 4.20 14.20 0.22 3.50

(0.13) (0.37) (0.04) (0.54) (0.84) (0.72) (0.90) (0.62)

Netherlands 3.58 14.79 28.88 1.25 2.09 5.48 0.85 1.02

(0.06) (0.02) (0.02) (0.74) (0.98) (1.00) (0.66) (0.96)

Portugal 3.16 13.74 29.78 1.22 4.36 8.99 0.33 1.65

(0.08) (0.03) (0.02) (0.75) (0.82) (0.96) (0.85) (0.90)

Spain 3.93 9.78 30.85* 0.80 1.23 4.34 -0.51 1.08

(0.05) (0.13) (0.01) (0.85) (1.00) (1.00) (1.00) (0.96)

This table presents the Q-statistic, Q2-statistic for standardized residuals and Residual-Based Diagnostic test
of Tse and Tsui (2002). Days present the number of lags being tested. p-values are presented in parentheses. *
indicates significance at 1% level.

Table 11: Tests for the Tail Behavior

AU BE FR GE GR IR IT NE PT SP

GED 0.440 0.632* 0.462 0.603 0.923* 0.640* 0.608* 0.450 0.847* 0.646*

(0.196) (0.167) (0.291) (0.368) (0.186) (0.214) (0.234) (0.178) (0.125) (0.127)

Winsorize 0.326 0.560* 0.718 0.485 0.532* 0.814* 0.492* 0.478 0.675* 0.473*

(0.143) (0.150) (0.217) (0.164) (0.136) (0.131) (0.260) (0.248) (0.213) (0.192)

This table presents the conditional variance fractional integration parameter d. GED results are based on ARMA(2,2)-
FIGARCH(1,d,1) model for ease of convergence. Winsorized extreme points correspond to 1% of the total data. *
represents significance at 1%. Robust standard errors are presented in parentheses.
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Table 12: Prediction Power of GARCH versus FIGARCH

GARCH FIGARCH

MAE RMSE LL MAE RMSE LL

AU 66.37 107.00 11.79 86.91 114.50 13.84

BE 50.33 69.32 9.69 59.98 75.80 10.65

GRE 890.9 932.00 22.11 499.80 525.00 18.45

GER 46.55 55.07 7.85 65.05 71.53 10.17

FR 86.39 154.10 8.35 81.79 151.80 8.06

ITA 36.27 53.18 9.80 35.44 52.39 9.64

IR 33.07 37.33 16.91 30.67 36.01 16.25

NET 165.40 306.00 4.27 184.00 287.20 5.11

PT 114.60 119.40 20.65 65.53 66.92 16.89

SP 52.50 62.62 10.22 50.42 61.50 10.06

This table presents the out-of-sample forecast performance of conditional
volatility estimated by ARFIMA-GARCH versus ARFIMA-FIGARCH
models. Forecast period corresponds to 47 daily data points for November
and December 2011, which are not used for estimation. All values are
comparable to squared basis points.

Table 13: Unconditional Correlation

AU FR GER NET BE IT IR PT SP GRE

AU 1.000

FR 0.475 1.000

GER 0.551 0.560 1.000

NET 0.510 0.501 0.559 1.000

BE 0.614 0.523 0.526 0.511 1.000

IT 0.584 0.510 0.547 0.492 0.654 1.000

IR 0.532 0.424 0.424 0.380 0.596 0.597 1.000

PT 0.572 0.449 0.451 0.511 0.627 0.664 0.574 1.000

SP 0.566 0.513 0.516 0.523 0.699 0.776 0.591 0.772 1.000

GRE 0.483 0.435 0.430 0.368 0.514 0.609 0.476 0.559 0.585 1.000

This table presents the unconditional correlation coefficients ρ of Equation 13. Correlation coefficients in bold are
significant at 1%.
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Table 14: Recent Comovements

AU FR GER NET BE IT IR PT SP GRE

AU 1.000

FR 0.015 1.000

GER 0.020 0.050 1.000

NET 0.023 0.038 0.029 1.000

BE 0.096 0.036 0.056 0.019 1.000

IT 0.094 0.018 0.017 0.069 0.018 1.000

IR 0.000 0.013 0.028 0.021 0.019 0.026 1.000

PT 0.059 0.024 0.026 0.019 0.019 0.021 0.017 1.000

SP 0.071 0.135 0.051 0.016 0.104 0.116 0.024 0.056 1.000

GRE 0.001 0.054 0.040 0.017 0.023 0.017 0.025 0.021 0.103 1.000

This table presents the recent comovement coefficients α of Equation 13. Coefficients in bold are significant at 1%.

Table 15: Persistent Comovements

AU FR GER NET BE IT IR PT SP GRE

AU 1.000

FR 0.515 1.000

GER 0.966 0.927 1.000

NET 0.962 0.938 0.957 1.000

BE 0.453 0.881 0.839 0.949 1.000

IT 0.404 0.762 0.958 0.968 0.819 1.000

IR 0.760 0.939 0.917 0.962 0.946 0.946 1.000

PT 0.000 0.964 0.951 0.967 0.948 0.939 0.969 1.000

SP 0.726 0.355 0.885 0.969 0.787 0.686 0.943 0.922 1.000

GRE 0.984 0.854 0.826 0.972 0.906 0.970 0.964 0.947 0.649 1.000

This table presents the persistent comovement coefficients β of Equation 13. Coefficients in bold are significant at 1%.
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