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Non-technical summary 
 
 

Research Question 
 
The Country-Product-Dummy (CPD) method is a linear regression approach widely used for 
comparisons of regional price levels. The CPD method implicitly assumes that all products of 
the consumption basket exhibit a uniform regional price dispersion. However, the prices of 
most consumption goods are relatively constant across regions, say, while the cost of housing 
varies considerably more. Such empirical observations raise several fundamental questions. 
What are the statistical consequences when the CPD method is applied, even though the price 
dispersion is product-specific? Do the estimated regional price levels remain unbiased? Is 
inference still valid? If not, is there a practical way to check whether a set of products exhibits 
the same price dispersion? Are there alternative estimation methods that remain unbiased even 
when price dispersion is product-specific? 
 

Contribution 
 
As a solution to these problems, the present paper introduces the NLCPD method, a non-linear 
generalization of the CPD method. Both index number methods estimate the regional price 
levels and the general values of the individual products. However, only the NLCPD method 
also provides estimates of the price dispersion of the various products. These estimates indicate 
whether the assumption of a uniform price dispersion would be justified. 
 

Results 
 
The present paper shows that the CPD method’s statistical inference is invalid when there is 
product-specific price dispersion. Even worse, the estimates of the regional price levels are 
biased, unless the set of price data is complete, or the data gaps occur completely at random. By 
contrast, the regional price levels estimated by the NLCPD method remain unbiased even when 
the price data exhibit product-specific price dispersion and systematic data gaps exist. But also 
in cases where the data set is complete or the data gaps are completely at random, the NLCPD 
method outperforms the CPD method. Finally, the NLCPD method is applied to regional price 
information derived from Germany’s consumer price index micro data of May 2019, resulting 
in a price index for the 401 regions of Germany.  
 



Nichttechnische Zusammenfassung 
 
 

Fragestellung 
 
Die Country-Product-Dummy (CPD)-Methode ist ein linearer Regressionsansatz, der häufig für 
regionale Preisniveauvergleiche genutzt wird. Die CPD-Methode unterstellt allen Produkten 
des Warenkorbs eine einheitliche regionale Preisstreuung. Allerdings unterscheiden sich zum 
Beispiel die Preise vieler Konsumgüter regional kaum voneinander, während Mieten deutlich 
stärker schwanken. Solche empirischen Beobachtungen werfen mehrere grundlegende Fragen 
auf. Welche statistischen Konsequenzen ergeben sich, wenn die CPD-Methode angewendet 
wird, obwohl die Preisstreuung produktspezifisch ist? Werden die regionalen Preisniveaus 
weiterhin unverzerrt geschätzt? Ist Inferenz nach wie vor zulässig? Falls nicht, gibt es eine Mög-
lichkeit zu prüfen, ob eine Auswahl an Produkten die gleiche Preisstreuung aufweist? Existie-
ren alternative Schätzmethoden, die auch bei einer produktspezifischen Preisstreuung unver-
zerrt bleiben? 
 

Beitrag 
 
Als Lösung dieser Probleme stellt das vorliegende Papier die NLCPD-Methode vor, eine nicht-
lineare Verallgemeinerung der CPD Methode. Beide Indexmethoden schätzen die regionalen 
Preisniveaus und die überregionalen Durchschnittspreise der einzelnen Produkte. Einzig die 
NLCPD-Methode liefert jedoch auch Schätzwerte für die Preisstreuung der Produkte. Diese 
Schätzer geben an, ob die Annahme einer einheitlichen Preisstreuung gerechtfertigt ist. 
 

Ergebnisse 
 
Das vorliegende Papier zeigt, dass statistische Inferenz der CPD-Methode im Falle produktspe-
zifischer Preisstreuung nicht zulässig ist. Zudem werden die Preisniveaus verzerrt geschätzt, 
außer wenn die vorliegenden Preisdaten vollständig sind oder Lücken zufällig auftreten. Im 
Gegensatz dazu schätzt die NLCPD-Methode die Preisniveaus selbst dann unverzerrt, wenn 
die Preisdaten eine produktspezifische Preisstreuung und systematische Datenlücken aufwei-
sen. Aber auch wenn der Datensatz vollständig ist oder Datenlücken zufällig auftreten, schnei-
det die NLCPD-Methode besser als die CPD-Methode ab. Schließlich wird die NLCPD-
Methode auf regionale Preisinformationen angewendet, welche von Mikrodaten des deutschen 
Verbraucherpreisindex im Mai 2019 abgeleitet wurden. Dies liefert einen Preisindex für die 401 
Regionen Deutschlands. 
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The present paper shows that product-specific regional price dispersion usually causes
the Country-Product-Dummy (CPD) method to be biased. In cases where it is not,
this index number method is still inefficient and inference is invalid. In view of this,
a nonlinear generalization of the CPD method has been developed. This NLCPD
method can be employed at all levels of aggregation and allows for inference. A
comprehensive simulation reveals that the NLCPD method’s root mean squared error
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1 Introduction

Important areas of economic theory and economic policy utilize regional indicators of eco-
nomic activity. Well-known examples of these are regional real wages and output levels.
However, the high demand for such indicators is not matched by the available supply. The
reasons for this gap are not hard to find. The production of regional real indicators requires
reliable information on regional price levels, while national statistical offices’ primary task
is tracking intertemporal price level changes. The latter requires a very broad sample of
different products. Thus, for pasta products, say, in different regions, prices of different
types of pasta are recorded. By contrast, spatial price comparisons would benefit from a
more selective sample in which the same type of pasta is recorded in all regions. However,
it is laborious and costly to establish and maintain a sample that serves the needs of both
intertemporal and spatial price comparisons. Therefore, only very few countries publish
regional price levels (Weinand and Auer, 2020, pp. 416-418).

Matters are made worse by the methodological challenges of spatial price comparisons.
While intertemporal price comparisons usually apply bilateral index theory, spatial price
comparisons require a multilateral approach. A wide spectrum of multilateral methods are
available and have been applied in case studies of countries from all over the world (surveyed
by Majumder and Ray, 2020, pp. 111-113 and Weinand and Auer, 2020, pp. 416-419). The
choice between the various methods also depends on the available data set. Some studies
cover only parts of a country. Others cover the complete country, but the regions are very
large. Another distinguishing feature is the number and range of products for which prices
are available. For example, housing costs are not always included. Usually, the data have
been collected for other purposes. Micro price data are rarely available.

Unfortunately, large data gaps are the rule rather than the exception. Summers (1973)
proposes the Country-Product-Dummy (CPD) method for such cases. This linear regres-
sion approach also allows for statistical inference. However, the CPD method implicitly
assumes that the variance of the logarithmic prices across regions is identical for all in-
cluded products. Put more simply, the products’ (regional) price dispersion is uniform.
Whether this assumption is justified is an empirical question. The higher the level of ag-
gregation and the more heterogeneous the included products (e.g., pasta versus shoes), the
less plausible the CPD method’s assumption of a uniform price dispersion.

Accordingly, in applied work the CPD method is primarily used for the computation
of the regional price levels of products with a common consumption purpose (e.g., pasta
products). The aggregation of these regional price levels into the overall regional price
levels is usually conducted by employing an alternative method. The final result therefore
involves a mix of different methods.

The above considerations raise several fundamental questions. What are the statistical
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consequences if the CPD method is applied even though the price dispersion is not uniform,
but product-specific? Do the estimated regional price levels remain unbiased? Is inference
still valid? If not, is there a practical way to check whether a set of products exhibits a
uniform price dispersion? Are there alternative estimation methods that remain unbiased
even when price dispersion is not uniform, but product-specific?

The present paper answers all of these questions. When there is product-specific price
dispersion, the CPD method’s statistical inference is invalid. Even worse, the estimates of
the regional price levels are biased unless the set of price data is complete (a situation in
which the CPD method is rarely used) or the data gaps occur completely at random (a
situation that is difficult to achieve in real-world price data samples).

As a solution to these problems, this paper introduces the NLCPD method, a nonlinear
generalization of the CPD method. Both of these multilateral index number methods com-
pute the regional price levels and the general values of the individual products. However,
only the NLCPD method also provides estimates of the price dispersion of the various prod-
ucts. These estimates indicate whether the assumption of a uniform price dispersion would
be justified. Even more important, the paper shows that the regional price levels estimated
by the NLCPD method remain unbiased even when the price data exhibit product-specific
price dispersion and systematic data gaps exist. In addition, the variance of the estimators
can be estimated, providing a basis for valid statistical inference. Even if the data set were
complete or the data gaps were completely at random, the NLCPD method would still out-
perform the CPD method. Thus, the CPD method should be avoided unless all products
included have exactly the same price dispersion.

The rest of the paper is organized as follows. Section 2 provides an intuitive explanation
for the source of the CPD method’s bias. How the NLCPD method addresses this problem
is explained in Section 3. A more formal treatment of the NLCPD method is presented in
Section 4. Section 5 provides a comprehensive simulation that confirms and complements
the theoretical predictions and makes a strong case for use of the NLCPD method. Section
6 applies this method to a large data set of regional prices. Section 7 concludes.

2 Problem

In subnational price comparisons, the prices of manufactured goods are found to be rather
uniform across the regions, while the cost of housing varies considerably (e.g., Weinand and
Auer, 2020, pp. 430-431 for Germany; Aten, 2017, pp. 130-131 for the United States). The
prices of services take an intermediate position. Tab. 1 shows the same features. It lists the
prices of three products (i = goods, housing, services) in four different regions (r = A, B,
C, D). For simplicity, it is assumed that within each region the expenditure share of each
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product is the same.

The general price levels of the four regions can be calculated using some manner of multi-
lateral measurement approach. A well-established approach is the CPD method introduced
by Summers (1973). He emphasizes that his regression approach allows for statistical infer-
ence, which differentiates it from many other approaches to index number theory. However,
this regression approach also has a significantly understated drawback. The CPD regression
implicitly assumes that the products included have the same price dispersion. The prices in
Tab. 1 violate this assumption. The cost of housing and the prices of services considerably
vary across regions, while the prices of goods are all but constant.

In the following, we demonstrate that, with product-specific price dispersion, the CPD
regression produces biased estimates of the regional price levels (as formally shown in Ap-
pendix A.3), barring two cases that are rarely satisfied in real-world measurement problems.
Even if those two exceptional cases applied, the CPD regression would still be inefficient
and inference would become invalid (as formally shown in Appendix A.4.2).

Let pr
i denote the price of product i in region r. The CPD regression assumes that each

price can be explained by the linear relationship

lnpr
i = lnπi +lnP r +ur

i , (1)

where P r is the price level of region r, πi is the general value of product i, and ur
i ∼ N

(
0,σ2

)
is an error term (see Summers, 1973). To estimate the values of lnP r and lnπi, the CPD
model (1) is transformed into a regression equation with a set of dummy variables that
represent the regions and the products. In the example related to Tab. 1, the CPD regression
yields estimates of the logarithmic price levels, l̂nP r, of the four regions. Taking anti-logs
gives the following regional price levels:

P̂ A = 0.74 , P̂ B = 0.92 , P̂ C = 1.10 , P̂ D = 1.34 . (2)

The price levels are normalized such that P̂ A · P̂ B · P̂ C · P̂ D = 1. As a consequence, the
logarithmic prices of product i observed in regions A to D, lnpr

i , fluctuate around this
product’s estimated logarithmic general value, l̂nπi.

A graphical illustration of the CPD regression is provided in the upper left panel of

A B C D
1: Goods 2.9 3.0 3.0 2.9
2: Housing 3.5 5.6 6.7 10.1
3: Services 7.0 8.3 11.7 14.8

Table 1: Prices of goods, housing, and services in four regions.
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Fig. 1. It shows on the vertical axis the observed values of the dependent variable, lnpr
i ,

and on the horizontal axis the unknown regional logarithmic price levels, lnP r. The black
diagonal indicates all points in which lnP r = lnpr

i . For each region r, three price obser-
vations exist. In the diagram, these three observations are depicted by a circle (goods), a
square (services), and a triangle (housing). The three observations are positioned along a
dashed vertical line. The position of that line is determined by the CPD regression. More
specifically, the intersection of each line with the horizontal axis is the estimated value
l̂nP r. Thus, the four intersection points indicated in the upper left panel of Fig. 1 are the
logarithms of the price levels listed in (2). To each product i, a solid straight line is depicted
that runs parallel to the diagonal. The intersection of this solid line with the vertical axis
is the estimated value of lnπi.

Changing the estimated value of lnπi causes a parallel vertical shift of the solid line
relating to product i. Changing the estimated value of lnP r causes a horizontal shift of
the dashed vertical line of region r and, therefore, of the three observations relating to
that region. Both types of shifts would alter the vertical distance between the observations
and their respective solid line. This vertical distance is the residual, ûr

i . Graphically
speaking, the CPD regression simultaneously shifts the solid lines and the dashed vertical
lines (together with their three observations) such that the sum of the (squared) vertical
distances between the observations and their respective solid lines is minimized. The upper

Figure 1: CPD and NLCPD regressions for the price data of Tab. 1, either with complete
price data (top panels) or with missing prices for “goods” (bottom panels).
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left panel of Fig. 1 depicts the solution to this minimization problem.

Let xr
i represent the regressor vector of product i in region r, that is, the values of

the two sets of dummy variables. Irrespective of the set of missing price observations,
the CPD regression assumes that the conditional expected value of the error term is zero:
E(ur

i |xr
i ) = 0. However, the left panels of Fig. 1 illustrate that missing prices usually lead to

E(ur
i |xr

i ) ̸= 0. The upper left panel’s two outer vertical dashed lines indicate the estimated
logarithmic price levels of regions A and D, respectively. Clearly, region A is the cheapest
region, while region D is the most expensive one.

Now suppose that there is a systematic pattern of missing observations. An example is
depicted in the lower left panel of Fig. 1. The product “goods” is observed in regions B and
C, but missing in regions A and D. Thus, the red circles corresponding to the latter two
regions need to be deleted. As a consequence, in region A the large positive disturbance
in the upper left panel of Fig. 1 vanishes, that is, E(uA

i |xA
i ) < 0. To reduce the sum

of squared residuals of region A’s remaining two price observations, the CPD regression
moves the vertical dashed line of region A to the left (see lower left panel of Fig. 1). More
generally, when a product with a low price dispersion is missing in the cheapest region, the
CPD method’s estimated price level of that region always decreases below the level with
complete data – in other words, downward bias arises. Similarly, the missing observation
in region D leads to E(uD

i |xD
i ) > 0. The dashed vertical line of that region moves to the

right, that is, the estimated price level of region D is upward biased (see lower left panel of
Fig. 1). The corresponding price level estimates are

P̂ A = 0.64 , P̂ B = 0.92 , P̂ C = 1.09 , P̂ D = 1.57 .

Compared to the situation with complete price data, the price level of region A falls by
14% while the price level of region D increases by 17%. The price levels of regions B and
C barely change. If the price observations missing in regions A and D were related to
“housing” (the product with the largest price dispersion) instead of “goods” (the product
with the lowest price dispersion), bias in the opposite direction would arise.

If no prices were missing, the CPD regression would be unbiased (upper left panel of
Fig. 1). The same would be true if the prices were missing completely at random. How-
ever, even if these two exceptional cases applied, the CPD regression would be inefficient
and inference would be invalid because the residuals would be both, correlated and het-
eroskedastic. This can be seen in the upper left panel of Fig. 1. The correlation arises from
the systematic relationship between the residuals and the general price levels of the regions.
For example, there is a very strong negative correlation between the residuals ûr

1 (goods)
and the estimated values of the general price levels, lnP r. This correlation is caused by
the uniform prices of goods. Similarly, there is a strong positive correlation between the
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residuals ûr
3 (housing) and the estimated values of lnP r because the differences in housing

costs are more pronounced than the differences in the general price levels. Only the price
dispersion of services is similar to that of the general price levels. As a consequence, the
CPD regression’s residuals related to services vary less than those related to goods and
housing. Thus, heteroskedasticity arises.

The residuals’ correlation and heteroskedasticity imply that the CPD regression is inef-
ficient and that the estimation of the disturbances’ standard deviation is biased. Therefore,
inference is invalid. These conclusions are formally proven in Appendix A.4.2. Theoreti-
cally, the issue of invalid inference could be remedied along the lines proposed by Crompton
(2000, p. 368), who advocates White’s heteroskedasticity-robust specification of the vari-
ance matrix for the CPD regression. Recall, however, that this remedy requires either
complete price data (as in the upper left panel of Fig. 1) or data gaps that arise completely
at random. Real-world data rarely satisfy these requirements. Therefore, a novel approach
would be desirable that can handle missing observations regardless of their structure. The
present paper introduces such an approach. It is a nonlinear generalization of the CPD
model (1) that provides for each product an estimate of its price dispersion. The following
section explains the basic concept, while the formal exposition is deferred to Section 4 and
Appendix A.

3 Solution

To begin with, we consider the case of complete data with product-specific price dispersion.
In this case, the CPD regression is unbiased, but inefficient and inference is invalid. The
three solid lines in the upper left panel of Fig. 1 have a slope of one, that is, they are
parallel to the diagonal. The residuals could be markedly reduced if each solid line had
its individual slope. This is accomplished when, instead of CPD model (1), the following
relationship is estimated:

lnpr
i = lnπi + δi lnP r +ur

i . (3)

We denote this relationship as the NLCPD regression model.

The unknown values of the parameters δi determine the slopes of the solid lines. Prod-
ucts with δi > 1 exhibit a stronger regional price dispersion than the average of all products
(in Tab. 1, the product “housing”), while products with δi < 1 exhibit a smaller price dis-
persion. Products with prices that are all but invariant with respect to the regional price
levels have a slope parameter, δi, close to 0 (in Tab. 1, the product “goods”).

CPD regressions assume that all included products exhibit a uniform price dispersion.
This assumption is formalized by the restriction δi = 1 (for all i). Thus, in the absence
of any disturbances (ur

i = 0 for all i and r), each price ratio pr
i /ps

i would coincide with
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the ratio of the regional price levels P r/P s. However, economic models (e.g., Tabuchi,
2001, p. 105) as well as empirical studies (e.g., Weinand and Auer, 2020, p. 430; Rokicki
and Hewings, 2019, p. 94; Aten, 2017, pp. 132-134) show that price dispersion is usually
product-specific. The same is true for the illustrative price data listed in Tab. 1. Therefore,
the CPD model (1) is misspecified.

The NLCPD model (3) accounts for product-specific price dispersion. Its specification
is such that the price ratios depend not only on the price level lnP r but also on δi and,
therefore, are product-specific: pr

i /ps
i = δi(P r/P s) (for all i, r, and s). On average, the

price ratios must reflect the ratios of the regional price levels P r/P s. In Section 4.2, it
is shown that this intuitive condition leads to the following restriction: ∑3

i=1 δi/3 = 1.
Since the CPD model (1) implicitly assumes that all δi-values are equal to one, that model
automatically satisfies this restriction. For the NLCPD model (3), it is a restriction that
must be appropriately implemented in the estimation procedure. The estimation of the
NLCPD model (3) uses exactly the same set of dummy variables as the estimation of the
CPD model (1).

For the price data listed in Tab. 1, the fitting of the NLCPD regression lines to the data
is depicted in the upper right panel of Fig. 1. The estimates of the slopes of the regression
lines are δ̂1 = 0.00, δ̂2 = 1.71, and δ̂3 = 1.29. The estimated price levels are

P̂ A = 0.74 , P̂ B = 0.92 , P̂ C = 1.09 , P̂ D = 1.35 .

They are very similar to those obtained from the CPD regression when no prices are missing.

The lower right panel of Fig. 1 depicts the case where the prices of “goods” are missing
in regions A and D. In contrast to the CPD regression, these data gaps cause hardly any
change in the estimated price levels P̂ A to P̂ D. In other words, incomplete data no longer
lead to estimation bias.

Another major advantage of the NLCPD regression is a better model fit. In the case of
complete data (upper panels of Fig. 1), the sum of squared residuals divided by the degrees
of freedom falls from 0.055 (CPD regression) to 0.004 (NLCPD regression). Furthermore,
in contrast to the CPD regression, the NLCPD method provides meaningful estimates of
the standard errors of all estimated parameters (formally shown in Appendix A.4.1). Thus,
the statistical significance of the coefficients l̂nP r, l̂nπi, and δ̂i can be examined. When in
the NLCPD regression at least one coefficient δ̂i significantly deviates from one, the CPD
model would have been misspecified (unless the data are complete or missing completely
at random).
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4 Method

The NLCPD model (3) is a generalization of the linear CPD model (1). The model function
is nonlinear in its parameters. Consequently, parameter estimates must be derived by
nonlinear regression. In Section 4.1, it is shown how the NLCPD model can be placed
into a proper regression model. In Section 4.2, the NLCPD estimators are derived and
compared to the formulas known for the CPD method. Since nonlinear regressions involve
iterative search procedures, parameter start values are typically required. In Section 4.3,
three strategies for the derivation of such start values are presented. Section 4.4 discusses
the issue of weighting and provides formulas of the estimators’ standard errors.

4.1 Regression model

Let R = {r : r = 1,2, . . . ,R} denote the set of regions and N = {i : i = 1,2, . . . ,N} the set of
products included in the price comparison. To transform the CPD and NLCPD models in
(1) and (3) into proper regression models, two sets of dummy variables are required. For
each region s ∈ R, a dummy variable Ds is defined such that Ds = 1 when r = s, and Ds = 0
otherwise. Similarly, for each product j ∈ N , a dummy variable Gj is defined such that
Gj = 1 when i = j, and Gj = 0 otherwise. With these dummy variables, the CPD model (1)
can be written in the form

lnpr
i =

∑
j∈N

Gj lnπj +
∑
s∈R

Ds lnP s +ur
i (4)

and the NLCPD model (3) in the form

lnpr
i =

∑
j∈N

Gj lnπj +
∑
j∈N

Gjδj

∑
s∈R

Ds lnP s +ur
i . (5)

Summers (1973) assumes that the variance of the error term is constant across products
and regions: ur

i ∼ N
(
0, σ2

)
. Thus, the CPD regression model (4) can be estimated using

ordinary least squares. When expenditure shares or other indicators of the products’ im-
portance are available, it is recommended that weighted least squares be used instead (e.g.,
Clements and Izan, 1981, pp. 745-746; Selvanathan and Rao, 1992, pp. 338-339; Diewert,
2005, pp. 562-563; Rao, 2005, pp. 574-575; Hajargasht and Rao, 2010, p. S39).

In both the CPD model (4) and the NLCPD model (5), perfect multicollinearity would
arise. To avoid this problem, one of the πj-values or lnP s-values can be set equal to 0.
Alternatively, the normalization ∑

s∈R
lnP s = 0 (6)

can be applied and one of the lnP s-parameters derived as a residual from (6) instead of
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being estimated. Any of the lnP s-parameters can be used for this purpose. If region s = 1
is chosen, the CPD model (4) becomes

lnpr
i =

∑
j∈N

Gj lnπj +
∑

s∈R\{1}̃
Ds lnP s +ur

i , (7)

where D̃s =
(
Ds −D1

)
and the parameter lnP 1 is residually calculated using the expression

lnP 1 = −∑s∈R\{1} lnP s.

The NLCPD regression requires an additional condition. Since δj lnP s = (δjλ) lnP s/λ,
the estimation of the parameters in model (5) requires a restriction on the δi-values. Other-
wise, the regional price levels, lnP s, could be arbitrarily scaled up or down by the parameter
λ. We recommend the restriction ∑

i∈N
wiδi = 1 , (8)

where wi is the average expenditure share spent on product i. The justification for this
restriction is deferred to Section 4.2. Note that the CPD model (4) satisfies restriction (8)
by assumption (δi = 1 for all i ∈ N ). By contrast, the NLCPD model (5) provides estimates
for δi that have to satisfy restriction (8).

Restriction (8) implies that one of the δi-values must not be estimated but is to be
derived as a residual. As in the CPD model (4), one of the lnP r-values must also be
residually derived. Again, any product i and any region r can be chosen for these purposes.
If product i = 1 and region r = 1 are selected, the NLCPD regression model (5) becomes

lnpr
i =

∑
j∈N

Gj lnπj +
G1

w1
+
∑

j∈N \{1}̃
Gjδj

 ∑
s∈R\{1}

D̃s lnP s +ur
i , (9)

where D̃s =
(
Ds −D1

)
and G̃j = (Gj − (wj/w1)G1). The parameters δ1 and lnP 1 are

defined as δ1 =
(
1−∑

j∈N \{1} wjδj

)
/w1 and lnP 1 = −∑s∈R\{1} lnP s, respectively.

Note that the only difference between the NLCPD regression model (9) and the CPD
regression model (7) is the factor in brackets. For observations of product i = 1, this factor
simplifies to the above definition of δ1, and for all other observations, the factor simplifies
to the parameter δi.

4.2 Estimator

In the previous section, it was asserted that Eq. (8) is the appropriate restriction on the
δi-values. In the following, we justify this assertion. To this end, we apply the NLCPD
method to the bilateral case (R = 2). In such a context, the NLCPD estimators should
turn into an attractive bilateral price index.

9



As illustrated in the upper right panel of Fig. 1, the NLCPD method fits straight lines
through the observed logarithmic prices. In the bilateral case, the fit is perfect. All straight
lines run through the observed logarithmic prices, that is, all residuals become 0:

lnpr
i − (δ̂i l̂nP r + l̂nπi) = 0 (10a)

lnps
i − (δ̂i l̂nP s + l̂nπi) = 0 , (10b)

where r and s denote the two regions.

Using the normalization l̂nP s = 0, we get from Eq. (10b) the following simple estimator:

l̂nπi = lnps
i . (11)

Inserting this result into Eq. (10a), solving for δ̂i, multiplying the resulting expression by
some weight wi, and summing over all i, yields

∑
i∈N

wiδ̂i l̂nP r =
∑
i∈N

wi

(
ln pr

i

ps
i

)
. (12)

The right hand side becomes the Törnqvist index when the weights wi are defined as

wi = 1
2 (wr

i +ws
i ) , (13)

where wr
i and ws

i denote the expenditure shares of product i in regions r and s, respectively
(Diewert, 1995, pp. 11-12, Diewert, 2005, pp. 564-565).1 The generalization of definition
(13) to the case R > 2 is

wi = 1
R

∑
r∈R

wr
i . (14)

The Törnqvist index on the right hand side of Eq. (12) expresses the logarithmic price
level of region r relative to the logarithmic price level of region s, that is, to lnP s = 0. Thus,
the left hand side of Eq. (12) must simplify to l̂nP r. This requires that ∑i∈N wiδ̂i = 1, which
is restriction (8). Therefore, a case has been made for restriction (8), where the weights wi

represent average expenditure shares as defined in Eq. (14).

Substituting in Eq. (10a) the variables l̂nP r and l̂nπi with the terms ∑i∈N wi ln(pr
i /ps

i )
and lnps

i , respectively, and solving the resulting expression for δ̂i yields the intuitive esti-
mator

δ̂i = ln(pr
i /ps

i )∑
j∈N wj ln(pr

j/ps
j)

. (15)

1 If in Eq. (13), instead of an arithmetic mean of the expenditure shares wr
i and ws

i , a geometric mean
were used, the right hand side of Eq. (12) would become the Walsh-Vartia index. With a logarithmic
mean, the Sato-Vartia index would result.
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The estimators (11), (12), and (15) apply to bilateral regional price comparisons for
normalization l̂nP s = 0. In the following, we consider the multilateral case. In such com-
parisons, any direct comparison between two regions should give the same price levels as
an indirect comparison of these two regions via a third one. In index number theory, this
requirement is called transitivity (e.g., Rao and Banerjee, 1986, p. 304). Both the CPD
and the NLCPD method produce transitive price levels.

In the following, we derive the NLCPD method’s weighted least squares estimators ̂lnπi,
δ̂i, and l̂nP r as well as the CPD method’s estimators, ̂lnπ′

i and l̂nP r′, as special cases. The
residuals ûr

i of the NLCPD regression model (3) are defined by ûr
i = lnpr

i − δ̂i l̂nP r − l̂nπi.
Accordingly, the weighted sum of squared residuals, Sûr

i ûr
i
, can be written as

Sûr
i ûr

i
=
∑
r∈R

∑
i∈Nr

wi

(
lnpr

i − δ̂i l̂nP r − l̂nπi

)2
=
∑
i∈N

∑
r∈Ri

wi

(
lnpr

i − δ̂i l̂nP r − l̂nπi

)2
, (16)

where Nr defines the set of products for which a price is available in region r. Analogously,
Ri defines the set of regions in which product i is priced. The set’s number of products is
denoted by Ri. A discussion of the choice of weights, wi, is deferred to Section 4.4.

The formulas of l̂nπi, δ̂i, and l̂nP r can be derived by minimizing Sûr
i ûr

i
. In this non-

linear least squares approach, we apply normalization (6) as well as restriction (8). As a
consequence, one δ̂i-value and one l̂nP r-value cannot be used in the minimization. They
are residually derived. The first-order conditions are

∂Sûr
i ûr

i

∂ l̂nπi

=
∑

r∈Ri

wi2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)
(−1) = 0 (17a)

∂Sûr
i ûr

i

∂δ̂i

=
∑

r∈Ri

wi2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)(
−l̂nP r

)
= 0 (17b)

∂Sûr
i ûr

i

∂ l̂nP r
=
∑

i∈Nr

wi2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)(
−δ̂i

)
= 0 . (17c)

Condition (17a) gives

l̂nπi = 1
Ri

∑
r∈Ri

(
lnpr

i − δ̂i l̂nP r
)

. (18)

As the product weights are identical across regions, each region receives the same weight
in the summation. Inserting the restriction δ̂i = 1 (i ∈ N ) into the NLCPD estimator (18),
gives the corresponding CPD estimator:

̂lnπ′
i = 1

Ri

∑
r∈Ri

(
lnpr

i − l̂nP r′
)

, (19)

11



where l̂nP r′ is the CPD estimator of the regional price levels as defined in Eq. (22), below.

For a product i that is priced in all regions (Ri = R), the NLCPD estimator (18) sim-
plifies to

l̂nπi = 1
R

∑
r∈R

lnpr
i − δ̂i

1
R

=0︷ ︸︸ ︷∑
r∈R

l̂nP r = 1
R

∑
r∈R

lnpr
i ,

which coincides with the CPD estimator for such a product (e.g., Diewert, 2004, p. 7).

Condition (17b) yields

δ̂i =

∑
r∈Ri

l̂nP r
(
lnpr

i − ̂lnπi

)
∑

r∈Ri

(
l̂nP r

)2 . (20)

The numerator is the covariation (across regions) of the logarithmic regional price levels,
l̂nP r, and

(
lnpr

i − ̂lnπi

)
. The denominator is the variation (across regions) of the loga-

rithmic regional price levels. Therefore, the estimator (20) can be viewed as the ordinary
least square estimator of the slope parameter of a simple linear model where

(
lnpr

i − ̂lnπi

)
is regressed on l̂nP r. The covariation represented by the numerator is usually positive.
The larger this covariation, the larger the estimated price dispersion, δ̂i. If product i has a
uniform price, then ̂lnπi = lnpr

i and, therefore, the estimator (20) gives δ̂i = 0.

Condition (17c) can be rewritten as

l̂nP r =

∑
i∈Nr

wiδ̂i

(
lnpr

i − ̂lnπi

)
∑

i∈Nr

wi

(
δ̂i

)2 . (21)

The numerator is the covariation (across products) of
(
lnpr

i − ̂lnπi

)
and the spread parame-

ter δ̂i. The denominator is the variation (across products) of δ̂i. The same formula would be
applied in a weighted least squares regression where the dependent variable

(
lnpr

i − ̂lnπi

)
is a linear function of the independent variable δ̂i. A negative value, l̂nP r, indicates a
relatively cheap region. It arises when the numerator is negative, that is, when in region r

prices, lnpr
i , below the general value, ̂lnπi, dominate in the sense that they are either more

frequent and/or more often arise for products with a large price dispersion, δ̂i. In expensive
regions

(
l̂nP r > 0

)
, prices above the general level dominate.

Setting δ̂i = 1 for all products i ∈ Nr, the estimator (21) simplifies to the corresponding
CPD estimator:

l̂nP r′ =

∑
i∈Nr

wi

(
lnpr

i − ̂lnπ′
i

)
∑

i∈Nr

wi
. (22)

When all products i are priced in region r, we get ∑i∈Nr
wi = 1, and the resulting estimator

12



(22) simplifies to the well-known CPD formula (e.g., Rao, 2005, p. 577; Rao and Hajargasht,
2016, p. 417):

l̂nP r′ =
∑

i∈Nr

wi

(
lnpr

i − ̂lnπ′
i

)
.

For the derivation of the nonlinear least squares formulas (18), (20), and (21), the
actual definition of the weights, wi, was irrelevant. Note, however, that the weights are
assumed to be uniform across regions (wi instead of wr

i ) and add up to unity. This is in
line with the weighting information usually available for subnational price comparisons. In
other contexts, however, one may want to apply NLCPD estimators with weights that vary
across regions. These estimators are derived in Appendix A.1. To express restriction (8) in
terms of region-specific weights, wr

i , one merely has to substitute wi with the right hand
side of Eq. (14).

The nonlinear least squares formulas (18), (20), and (21) do not provide explicit solu-
tions for the parameters ̂lnπi, l̂nP r, and δ̂i. Instead, an iterative optimization routine is
necessary.2 Such routines require appropriate start values for the model parameters.

4.3 Parameter start values

The choice of appropriate start values is important for two reasons. First, it is more likely
that the optimization algorithm successfully converges in the allowed number of iterations.
Second, singularities can prevent any optimization if initial parameter start values are not
set adequately. Strategies for deriving start values are usually data and model-driven (e.g.
Gallant, 1975, p. 76). In the following, we provide three simple strategies for the derivation
of parameter start values in the NLCPD regression.

In strategy S1, parameter start values are derived from the calculation of simple price
averages across products and regions. Defining the weighted logarithmic average price in
region r as ln p̄r =∑

i∈Nr
wi lnpr

i , the start values lnP r and lnπi can be computed from

lnP r = ln p̄r − 1
Ri

∑
s∈Ri

ln p̄s and lnπi = 1
Ri

∑
r∈Ri

lnpr
i .

The start values for δi are set equal to one for all i ∈ N . This assumption satisfies restriction
(8) and is also the assumption underlying the CPD regression model. The calculations are
easy to implement and computationally efficient.

In the event of incomplete price data, however, start values for lnP r and lnπi derived

2 Common methods are Gauss-Newton, Levenberg-Marquardt, (L-)BFGS, Nelder-Mead, and gradient
descent. A comprehensive overview can be found in Kelley (1999). Our implementation of the NLCPD
method relies on a modification of the Levenberg-Marquardt algorithm (see Elzhov et al., 2016; Moré,
1978).
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by strategy S1 might be a poor guess. Using the CPD method’s estimates of lnP r and lnπi,
is a more appealing approach, irrespective of any data gaps. This is strategy S2. Again,
the start values for δi are set equal to one. When the price data are complete, this strategy
provides the same set of start values as strategy S1.

If it is known that some δi-values deviate from one (e.g., for products with uniform
prices across regions), setting δi = 1 is inappropriate. Therefore, strategy S3 is identical to
strategy S2, but computes the start values of δi from Eq. (20), where the CPD estimates
of lnP r and lnπi provide the values of l̂nP r and ̂lnπi, respectively. The resulting δ̂i-values
do not necessarily satisfy restriction (8). Therefore, to obtain the proper start values, they
are divided by ∑i∈N wiδ̂i.

When the price data are complete, the choice between the three strategies hardly mat-
ters. Strategy S3 takes exactly one iteration less than the other two strategies because
start values for δ̂i are directly derived from the first-order condition. With incomplete price
data, the start values of the three strategies differ. Our simulations indicate that strat-
egy S3 outperforms strategies S2 and S1. The number of iterations until convergence is
slightly smaller, the percentage of successful completions is marginally higher, and the sum
of squared residuals achieved at convergence is slightly lower.

4.4 Weighting and standard errors

The weights in Eq. (16) are the products’ average expenditure shares, wi. This is not
necessarily the most appropriate form of weighting. Generally, the weight of an observa-
tion can represent its economic importance (e.g., Diewert, 2005, pp. 562-563; Rao, 2005,
p. 575) and/or it can reflect the reliability of the observation’s information for estimating
the regional price levels. A natural measure of an observation’s economic importance is the
product’s expenditure share, while the observation’s reliability of information is inversely
related to the variance of the error term ur

i . Thus, the economic and the econometric mo-
tivation for weighting may lead to different sets of weights. This complicates the CPD and
NLCPD estimators of the regional price levels.

In the NLCPD model (9), the error term, ur
i , can be homoskedastic or heteroskedastic.

The latter case implies that the reliability of the observations’ information is not uniform.
However, Clements and Izan (1987) argue that a product’s expenditure share usually is a
reasonable approximation to the product’s reliability of information. More specifically, they
assume that the variance of the error term, ur

i , is given by wiσ
2 where σ2 is a constant and∑

i∈N wi = 1. Weighting each observation by the square root of the product’s expenditure
share, √

wi, yields a homoskedastic weighted error term,
√

wiui. If, at the same time,
product i’s expenditure share wi is considered an appropriate measure of its economic
importance, no contradiction arises between the economic and the econometric motivation
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for weighting.

This coincidence simplifies the derivation of the NLCPD estimators’ standard errors
(see Appendix A.4.1). In nonlinear regression models, approximations of these standard
errors can be computed from the Jacobian matrix evaluated at final parameter estimates.
When the data set is complete and the weighted error term √

wiu
r
i is homoskedastic, the

approximated standard error of the NLCPD estimator l̂nπi is

ŝe
(
l̂nπi

)
= σ̂

√
1

Rwi
, (23)

with

σ̂ =

√√√√ Sûr
j ûr

j

NR −R −2N +2 .

To obtain the corresponding estimator of the CPD method, ŝe′
( ̂lnπ′

i

)
, the estimator σ̂

must be replaced with the estimator σ̂′ =
√

Sûr′
j ûr′

j
/(NR −R −N +1), with ûr′

j denoting
the residuals of the CPD regression. In Appendix A.4.2 it is shown that the estimator σ̂′

and, therefore, the estimator ŝe′
( ̂lnπ′

j

)
are biased.

The approximated standard error of the estimator of δi is

ŝe
(
δ̂i

)
= σ̂

√√√√√√ 1∑
r∈R

(
l̂nP r

)2

(1−wi

wi
+
(
δ̂i −1

)2)
. (24)

This standard error falls as the product weight, wi, increases, the fluctuation of the esti-
mated logarithmic price levels, l̂nP r, increases, and the δ̂i-value approaches one.

For the NLCPD estimator of the regional price levels, l̂nP r, the following standard error
is derived:

ŝe
(
l̂nP r

)
= σ̂

√√√√√√√√ 1∑
i∈N

wi

(
δ̂i

)2

R −1
R

+
∑

i∈N
wi

(
δ̂i

)2
−1


(
l̂nP r

)2

∑
s∈R

(
l̂nP s

)2

 . (25)

Restriction (8) and Jensen’s (1906) inequality yield

∑
i∈N

wi

(
δ̂i

)2
≥

∑
i∈N

wiδ̂i

2

= 12 = 1 .

Thus, the root term in Eq. (25) is always positive. In addition, one can show that it is
smaller or equal to

√
(R −1)/R. The root term increases with the number of regions, R,

and the estimated logarithmic price level, l̂nP r. If for all products i ∈ N the estimated

15



price dispersion were δ̂i = 1, the formula would simplify to ŝe
(
l̂nP r

)
= σ̂

√
(R −1)/R. Note

that the CPD formula, ŝe′
(
l̂nP r′

)
= σ̂′

√
(R −1)/R, would be biased because σ̂′ is biased.

By default, most statistical software would use formulas (23) to (25) to compute stan-
dard errors in a weighted NLCPD regression. In other words, such software would implicitly
follow the position of Clements and Izan (1987), who argue that the weight wi correctly
addresses product i’s economic importance and that the weighted error term

√
wiu

r
i is ho-

moskedastic because the weight wi is negatively related to the variance of the error term ur
i .

Clements et al. (2006) give two justifications for this negative relationship. First, statistical
offices spend more effort on the collection of correct prices when the products are of greater
relevance to the budget. Second, by definition, the true price level is closer to the prices of
the products with larger budget shares.

However, this justification is not always backed by empirical evidence (Diewert, 1995,
p. 20). For example, when all observations can be considered as equally reliable, the
unweighted error term, ur

i , is homoskedastic and the weighted error term,
√

wiu
r
i , is het-

eroskedastic. Rao (2004, pp. 17-18) and Hajargasht and Rao (2010, pp. S44-S46) describe
how this should be accounted for when, in a CPD regression, the standard errors of the
estimated parameters are to be computed.

Fig. 1 revealed that product-specific price dispersion results in a heteroskedastic error
term, ur

i . With this type of price dispersion, the NLCPD regression model is preferable.
If its unweighted error term, ur

i , is homoskedastic, the weighted error term,
√

wiu
r
i , is

heteroskedastic and the standard errors of the estimated parameters must be computed
using a formula that resembles the CPD formula stated in Hajargasht and Rao (2010,
pp. S45). If both, the unweighted error term, ur

i , and the weighted error term,
√

wiu
r
i , are

heteroskedastic, an even more general formula is required (see Appendix A.4.1).

5 Simulation

Imposing the restriction δi = 1 for all products i in the NLCPD model (3) yields the CPD
model (1). However, the restriction is quite unrealistic as regional price level dispersions
can be expected to vary across basic headings and sometimes even within basic headings.3

Hence, the NLCPD method should theoretically provide more accurate price level estimates
than the CPD method. To examine this hypothesis in a statistical context, we perform a
Monte Carlo simulation. The simulation setting is described in Section 5.1, while the results
are provided in Section 5.2.

3 Basic heading is the official terminology for groups of products with an identical consumption purpose.
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5.1 Setting

In the simulation, we consider N = 15 products or basic headings available in R = 20 regions.
The data generating process (DGP) in Eq. (3) assumes that each region r has a true but
unknown price level lnP r. Similarly, true values of the parameters lnπi and δi exist for
each product i. Four different scenarios are considered. They differ with respect to the
number and structure of missing observations and to the variance of the δi-values.

The true regional price levels, lnP r, are generated in two steps. First, preliminary price
levels, ln P̃ r, are independently sampled from a normal distribution with mean µ = 0 and
standard deviation σ = 0.1, that is, ln P̃ r ∼ N (µ = 0, σ = 0.1). Second, the price levels are
normalized. Subtracting the average preliminary price level of all regions from ln P̃ r yields
the true regional price levels, lnP r:

lnP r = ln P̃ r − 1
R

∑
s∈R

ln P̃ s .

By definition, their mean is zero. The resulting average price level spread between the most
expensive region and the cheapest region is almost 50%.

In the simulation, the weights wi represent the products’ expenditure shares. For each
product i, preliminary weights, w̃i, are sampled from a uniform distribution with w̃i ∼
U (min = 1, max = 100). The normalized weights are wi = w̃i/

∑
j∈N w̃j .

The products’ general values, lnπi, are drawn from a log-normal distribution with lnπi ∼
LN (µ = 0, σ = 0.5). The log-normal distribution ensures that product prices are greater
than zero while its positive skewness makes very expensive products occur less frequently.

It is only in the first scenario that the regional price dispersion of the products conforms
with the CPD assumption: δi = 1 for all N products. In the other three scenarios, the δi-
values are product-specific but equal to one on average. The preliminary values of δ̃i are
sampled from a normal distribution with δ̃i ∼ N

(
µ = 1, σ =

√
0.5
)
. The normalized values

are δi = δ̃i/(∑j∈N wj δ̃j). Thus, ∑i∈N wiδi = 1.

The error term ur
i is sampled from a normal distribution with a product-specific stan-

dard deviation: ur
i ∼ N

(
µ = 0, σi = σ/

√
wi

)
with σ = 1/100 being the “global” standard

deviation of the error term. This setting ensures that weighted variants (or weighted least
squares) of the CPD and NLCPD methods are the appropriate choice of estimation.

The first of the four scenarios represents the most artificial scenario, while the fourth
scenario is the most realistic one. The other two scenarios allow us to identify the separate
effects of missing observations and varying δi-values.

Scenario 1: We assume that the price data are complete, that is, there is exactly one
price per product and region. This gives NR = 300 observations. The true
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δi-parameters are set to 1. Note that this yields the CPD model (1).

Scenario 2: We still assume that the price data are complete. Now, however, the true
δi-parameters are allowed to differ from 1.

Scenario 3: We assume that every third price is missing. This gives a total of 200 re-
maining observations. The missing prices are chosen completely at random.
All other parameters are the same as in the second scenario.

Scenario 4: We keep the setting of the third scenario but introduce the missing prices
in a systematic manner: the larger the δi, the smaller the probability that
prices for product i are missing.

For each scenario, we perform the following steps. First, we generate the artificial price
data by inserting the sampled values of lnP r, lnπi, δi, wi, and ur

i into the DGP defined in
Eq. (3). Second, we order the regions according to their true price levels lnP r and then label
the regions by their rank. In other words, region r = 1 always denotes the cheapest region
and region r = 20 the most expensive one. Similarly, we arrange the products according to
their δi-parameter. Thus, product i = 1 always exhibits the lowest regional price dispersion.
Third, we apply both the (weighted) CPD method and the (weighted) NLCPD method to
the price data generated during the first step. For the starting values of the NLCPD
method, we apply strategy S3. That is, we use the CPD method’s estimates for lnP r and
lnπi as starting values. These values are also used to calculate the starting values of all δi

using formula (20).

We repeat these three steps L = 2,000 times (with iterations l = 1,2, . . . ,L) and obtain
for each region r a set of 2,000 l̂nP r′-values for the CPD method and 2,000 l̂nP r-values for
the NLCPD method. Afterwards, we compare the performance of the two methods. To this
end, we use the NLCPD results of the L iterations to compute for each region r the absolute
value of the bias, |Bias

(
l̂nP r

)
|, and also the root mean squared error, RMSE

(
l̂nP r

)
. Then,

we take the average of these numbers across all regions:

Bias
(̂lnP

)
= 1

R

∑
r∈R

∣∣∣Bias
(
l̂nP r

)∣∣∣= 1
R

∑
r∈R

∣∣∣∣∣∣ 1L
L∑

l=1

(
l̂nP r

l − lnP r
l

)∣∣∣∣∣∣ (26a)

RMSE
(̂lnP

)
= 1

R

∑
r∈R

RMSE
(
l̂nP r

)
= 1

R

∑
r∈R

√√√√√ 1
L

L∑
l=1

(
l̂nP r

l − lnP r
l

)2
, (26b)

where l̂nP r
l denotes the estimated parameter of region r’s price level obtained in itera-

tion l by the NLCPD method, while lnP r
l is the corresponding true parameter. For the

CPD method, Bias
( ̂lnP ′

)
and RMSE

( ̂lnP ′
)

are derived in the same way.

For Scenarios 1 to 3, we expect both methods to produce unbiased estimates for lnP r.
However, when data gaps are introduced in a systematic manner, as in Scenario 4, lnP r-
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estimates of the CPD method are expected to be biased (see Section 2). Although the
degrees of freedom in the NLCPD are lower than in the CPD method, we expect that
the NLCPD model’s higher flexibility results in higher accuracy. Consequently, the RMSE
should be lower for the NLCPD method in all simulation scenarios. The only exception
should be the first scenario where the true δi-values are equal to 1, as implicitly assumed
in the CPD method.

5.2 Discussion of results

Tab. 2 shows the simulation results for the mean absolute bias and the mean RMSE of
the lnP r-estimates.4 Regional price level estimates seem to be unbiased for both the CPD
and NLCPD methods if price data are complete or if gaps occur completely at random
(Scenarios 1 to 3). The mean absolute bias over all regions is all but zero. However, if
data gaps occur systematically, the lnP r-estimates of the CPD method are – in absolute
terms – biased by more than 1% on average, while the NLCPD method’s estimates are still
unbiased (Scenario 4).

In general, a lower RMSE indicates higher accuracy. Since regional price levels are
measured on the logarithmic scale, even small differences in the RMSE significantly impact
accuracy. In Scenarios 2 to 4, the computed mean RMSE of lnP r-estimates is lower for the
NLCPD method than for the CPD method (see bottom line of Tab. 2). If the price data are
complete, the difference in the mean RMSE is relatively small. With missing prices, how-
ever, this difference noticeably increases. In Scenario 1, the RMSE of the NLCPD method
is (almost) as small as that of the CPD method. In other words, when the true δi-values
are equal to 1, the efficiency loss of the NLCPD method is negligible.

The NLCPD method’s better performance is not only valid on average, but can be
observed for each region and each scenario. This is shown in Fig. 2. Its structure is similar
to Tab. 2 but it depicts the bias and RMSE for each region r. The regions are listed on the
horizontal axis. They are ordered with respect to their true price level.

The top row of Fig. 2 reveals that in all regions both the CPD and the NLCPD method

Scenario 1 Scenario 2 Scenario 3 Scenario 4
CPD NLCPD CPD NLCPD CPD NLCPD CPD NLCPD

Bias 0.0002 0.0002 0.0002 0.0001 0.0003 0.0002 0.0133 0.0002
RMSE 0.0097 0.0097 0.0097 0.0081 0.0201 0.0110 0.0250 0.0105

Table 2: Mean absolute bias and mean RMSE of the NLCPD estimates, l̂nP r, and the CPD
estimates, l̂nP r′.

4 In Appendix B, mean absolute bias and mean RMSE are also reported for the estimates of lnπi and
δi, respectively.
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are unbiased as long as the data are complete or missing completely at random (Scenarios
1 to 3), but that the CPD method is biased when the data gaps are systematic (see the
red dots in Scenario 4). More specifically, the more a region’s true price level deviates from
the average price level of all regions, the larger the bias will be. As predicted in Section
2, in the cheap regions, downward bias arises, while the expensive regions exhibit upward
bias. Consequently, the CPD method overestimates the price level spread between the most
expensive region and the cheapest region. Recall that in Scenario 4, the number of data gaps
is negatively correlated with the product’s true regional price dispersion, δi. Switching to
a positive correlation, one would observe the opposite effects, that is, cheap regions appear
too expensive, expensive regions appear too cheap and, therefore, the regional price level
spread is underestimated. The NLCPD method avoids all these problems. Also in Scenario
4, the blue dots remain close to the horizontal baseline.

The NLCPD method outperforms the CPD method with respect to the RMSE, too.
This is shown in the bottom row of Fig. 2. The blue dots are closer to the base line. As
long as the data are complete (Scenario 2), the advantage of the NLCPD method does not
depend on a region’s true price level. However, when data gaps occur (Scenarios 3 and 4),
the accuracy problems of the CPD method become more pronounced. The u-shape of the
red dots implies that the largest inaccuracies arise for the cheapest and the most expensive
regions.

Figure 2: Bias and RMSE of the NLCPD estimates, l̂nP r, and the CPD estimates, l̂nP r′,
for the three simulation scenarios.

20



6 Empirical application

In the following, we apply the NLCPD method to regional price levels above the basic
heading level, compiled from German official consumer price index (CPI) micro data. This
is of particular interest because the degree of price dispersion can be expected to vary
between basic headings (e.g., rents versus manufactured goods), while the CPD method
assumes a uniform degree of price dispersion. Therefore, we also compare the results of
the NLCPD method to those we would obtain from the CPD method. The estimated price
levels are transformed into a regional price index for Germany.5

6.1 Price data and aggregation approach

We have the privilege to work with German CPI micro data from May 2019. These data
were provided to us by the Research Data Center of the Federal Statistical Office and Statis-
tical Offices of the Länder. In total, the data contain more than 400,000 price observations
for goods, services, and rents that were collected in the 401 districts of Germany (hence-
forth, we speak of regions). Because the prices of few items are collected in all regions, the
micro price data exhibit gaps.

The observations of the German CPI are classified into 12 divisions (see Tab. 3) and
further into 783 basic headings. This classification follows the United Nations’ Classification
of Individual Consumption by Purpose (COICOP). In the German CPI, the expenditure
weights of the basic headings are uniform across regions.

Due to methodological reasons, 70 basic headings with centrally collected prices cannot
be exploited in a regional analysis.6 They represent a combined expenditure weight of
13.44%. 36 other basic headings with a combined weight of 1.45% were too fragmentary
to convey useful information for the interregional price comparison.7 This leaves us with
677 basic headings for which the price information can be included in the regional price
comparison. As can be seen from Tab. 3, the largest problems are in division “09: Recreation
and culture”, where 2.66 percentage points of the 4.75% reported can be attributed solely to
the basic heading of package holidays. By contrast, the divisions 01 to 03 (food, beverages
and clothing) are almost fully covered by the overall price index.

For each of the remaining 677 basic headings, we assume that the price dispersion of the
items within a basic heading is identical. Thus, the set of regional price levels of a given

5 The price index numbers for the German districts are available upon request.
6 For example, prices of package holidays are collected from a big sample (e.g. Egner, 2019, p. 97).

However, this sample of prices is already aggregated by the Federal Statistical Office into a single
index number in the micro data set.

7 For example, the priced items of the basic heading “gloves” were not identical and, therefore, not
comparable.
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basic heading can be estimated with the CPD method. Since the expenditure weights of the
individual items are not known, a weighted estimation is not feasible. Principally, we apply
the CPD method to each basic heading (except for rents). However, it is worth mentioning
some of the improvements on and modifications to the data preparation and aggregation
in Weinand and Auer (2020) that we have implemented.

There are almost 300 basic headings that also contain prices related to the outlet type
“internet and mail-order business”. These prices are constant across regions. Their com-
bined expenditure weight is 2.96%. Furthermore, the prices of 56 other basic headings
(weight 10.18%) are uniform across Germany (e.g., cigarettes). We combine all prices that
are constant across regions in two separate price level vectors. Together, they account for
13.14% of the total expenditure weight.

In the German CPI, five basic headings represent rents (weight 19.63%). The rent data
are collected by the Federal Statistical Office. The sample includes the qualitative features
of the flats. Therefore, we do not use a CPD regression, but estimate the regional rent levels
by means of a hedonic regression that takes into account the individual characteristics of
each flat. The details of this procedure are documented in Weinand and Auer (2020, pp. 423-
424; see second aggregation stage). As a result, the five basic headings are aggregated into
one basic heading. However, this basic heading covers mainly existing tenancies. Therefore,
we add another basic heading featuring the rent levels of new contracts. These rent levels
were provided to us by the Federal Office for Building and Regional Planning (BBSR) for
the second quarter of 2019.

ID Division #BH Expenditure weight
Usable Unusable

01 Food and non-alcoholic beverages 172 9.69 0.00
02 Alcoholic beverages, tobacco, and narcotics 18 3.78 0.00
03 Clothing and footwear 62 4.45 0.08
04 Housing, water, electricity, gas, and other fuels 38 29.95 2.52
05 Furnishings, household equipment, and maint. 93 4.50 0.50
06 Health 31 3.92 0.69
07 Transport 53 11.29 1.62
08 Communication 1 0.05 2.62
09 Recreation and culture 100 6.58 4.75
10 Education 7 0.90 0.00
11 Restaurants and hotels 36 3.60 1.07
12 Miscellaneous goods and services 66 6.39 1.03

677 85.11 14.89

Table 3: Number of basic headings included in the price level estimation (“#BH”) and
their expenditure weights in the German CPI (as a percentage, base year 2015). Usable and
unusable weights add up to 100%. Source: Research Data Center of the Federal Statistical
Office and Statistical Offices of the Länder, CPI, May 2019; authors’ own computations.
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The prices of fuels collected by the Federal Statistical Office represent four different
basic headings. We replace them with two basic headings computed from a full sample,
which was collected by the German Market Transparency Unit for Fuels in May 2019.8

In total, our compilation procedures yield 618 price level vectors, one for each basic
heading. They cover 85.11% of the total expenditure weight. The remaining 14.89% of
total expenditure weight is proportionally assigned to these 618 basic headings. This set
of weights and price level vectors forms the data base for the NLCPD as well as the CPD
estimation. Both estimations are conducted as described in Section 4. The empirical results
not only provide us with a reliable regional price index for Germany but also allow us to
verify the theoretical predictions made in the previous sections.

6.2 Discussion of empirical results

The NLCPD and CPD methods provide estimates of the overall logarithmic price levels of
the 401 German regions, l̂nP r and l̂nP r′ (r = 1, . . . ,401), and of the basic headings’ general
values, ̂lnπi and ̂lnπ′

i (i = 1, . . . ,618), respectively. Only the NLCPD method additionally
provides estimates of the basic headings’ price dispersion, δ̂i (i = 1, . . . ,618).

Except for very few outliers, the NLCPD method’s estimates δ̂i appear highly plausible.
For the two basic headings with constant regional price levels, the NLCPD method yields
an estimated price dispersion of δ̂i = 0. For rents (existing tenancies) and for new lease
rents we get δ̂i = 3.23 and δ̂i = 4.82, respectively. On average, the δ̂i-values of goods are
the smallest ones. The δ̂i-values of rents are among the largest ones, while most of the
δ̂i-values of services take a middle position. The results clearly confirm that the regional
price dispersion varies between the basic headings. Thus, the implicit working hypothesis
of the CPD method is falsified by our results.

The logarithmic price level estimates of the CPD and NLCPD methods are found to
be highly correlated (Pearson correlation: 0.97).9 They are depicted in Fig. 3, where the
blue dots represent the seven cities with the highest number of inhabitants in Germany.
The estimated logarithmic price levels obtained from the NLCPD method range between
−0.09 and 0.22, while those of the CPD method exhibit a much larger spread ranging from
−0.17 to 0.31. This empirical finding is perfectly in line with the theoretical predictions
made in Section 2. There, it was argued that a negative correlation between a product’s
number of data gaps and its price dispersion results in an upward biased estimate of the
spread of the estimated regional price levels. In the present case, the Spearman correlation

8 The data were downloaded from https://creativecommons.tankerkoenig.de/ where historical fuel
prices are provided on a daily basis.

9 This correlation is 0.96 for the lnπi-estimates of the two methods. For the CPD method, the lnπi-
estimates range from −1.33 to 0.64, while this range is −1.33 to 0.90 for the NLCPD method.

23

https://creativecommons.tankerkoenig.de/


Figure 3: Estimates of the regional logarithmic price levels, lnP r, by NLCPD method
(horizontal axis) and CPD method (vertical axis). Ordinary least squares regression as solid
blue line.

of the number of data gaps and the NLCPD’s estimates δ̂i is −0.13. Consequently, the
CPD method produces biased price level estimates.

In order to transform the logarithmic price level estimates l̂nP r and l̂nP r′ into a regional
price index, they are expressed in relation to their respective population-weighted averages.
For the NLCPD method, the transformation is

P r = 100 · exp
(
l̂nP r − lnP Ger

)
,

where lnP Ger =∑401
r=1 gr l̂nP r and gr is the population share of region r. The same trans-

formation is applied to the CPD price level estimates l̂nP r′. Summary statistics of the
resulting price index numbers are reported in Tab. 4.

As can be seen from Tab. 4, the price level of the cheapest region is 10.8% below the
population-weighted average when the NLCPD method is applied. The most expensive
region exceeds that average by 21.8%. The spread between the most expensive and the

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd.

CPD 82.2 92.5 95.9 97.5 101.2 133.1 7.6
NLCPD 89.2 94.3 96.9 98.0 100.4 121.8 5.2

Table 4: Price index numbers in relation to population-weighted average (= 100).
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cheapest region is (121.8 − 89.2)/89.2 = 36.5%. These numbers are more pronounced for
the CPD method, resulting in a regional price spread of 61.9%. For both methods, the
unweighted mean is below the population-weighted mean, indicating that a region’s price
level tends to increase with its population.

The spatial pattern of the price index numbers of the 401 German regions is depicted
in Fig. 4. As expected, the price level dispersion estimated by the CPD method is much
larger than that estimated by the NLCPD method. The seven biggest cities in Germany all
exhibit price index numbers above the population-weighted average. The NLCPD method
ranks Munich as the most expensive region. Its price level is 21.8% above the population-
weighted average. The numbers for Stuttgart and Frankfurt are 14.7%, Hamburg 12.1%,
Cologne 9.2%, Dusseldorf 7.1%, and Berlin 5.6%. In the CPD method, the same ranking of
the seven cities arises and Starnberg, a region neighboring Munich, is the most expensive
region in Germany.

Figure 4: Price index numbers by CPD and NLCPD methods, each in relation to its
population-weighted average (= 100).

7 Concluding remarks

Spatial price comparisons often suffer from incomplete price data. To deal with such sit-
uations, Summers (1973) introduced the CPD method. This regression approach provides
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estimates of the regional price levels along with their standard errors.

The present paper has shown that it is necessary for the CPD method for the regional
price dispersion of the various products to be uniform. If it is not, the estimates of the
standard errors are biased. Even worse, when the data gaps are not completely at random,
the estimates of the regional price levels are systematically biased.

As a solution, this paper introduced the NLCPD method, a nonlinear generalization of
the CPD method. The NLCPD method expands on the CPD method to include parameters
that capture the product-specific price dispersion. Their estimates indicate whether the
CPD assumption of uniform price dispersion would have been reasonable. In a simulation,
the deficiencies of the CPD method and the superiority of the NLCPD method were shown.
Finally, in a price level comparison of the 401 German regions, the practical applicability
of the NLCPD method was demonstrated.

The only drawback of the NLCPD method as compared to the CPD method is its
nonlinear specification. As a consequence, iterative estimation procedures are required.
When the variation in the regional price levels is small and a product has only very few
observations, the iterative estimation of its price dispersion might not converge. To avoid
such problems, one may treat such a product in the same way it would have been treated
in a CPD regression. That is, instead of estimating the product’s price dispersion, one can
impose the restriction that the product’s price dispersion is unity and, thus, coincides with
the dispersion of the overall regional price levels. Recall that the CPD method imposes this
restriction on all products. Such a restricted NLCPD regression would still outperform the
CPD regression.

In the literature, it is well known that the unweighted CPD method and the GEKS-
Jevons index provide identical results when the data set is complete (e.g., World Bank,
2013, p. 108). Weinand and Auer (2019, pp. 35-37) show that the weighted CPD method
and the GEKS-Törnqvist index coincide when the weights in the CPD method are the
products’ expenditure shares and these shares are uniform across regions. Even when data
gaps are present, there is a close relationship between the two methods (Weinand, 2022).
Consequently, one could argue that any issue of one approach is likely to also apply to the
other one. This is a relevant concern because it is not only the CPD method but also the
GEKS approach that is used in the International Comparison Program (World Bank, 2020,
p. 82) and in various national studies (surveyed in Majumder and Ray, 2020, pp. 105-109;
Weinand and Auer, 2020, pp. 416-418). However, a careful analysis of this question has to
be left for future research.

The CPD method’s drawbacks in the presence of product-specific price dispersion are
of relevance not only for spatial but also for intertemporal price comparisons. Here, the
dummy variables of the regions in the CPD regression model (4) are replaced with dummy
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variables for the time of price collection. Therefore, this regression is denoted as the Time-
Product-Dummy (TPD) method (e.g., de Haan et al., 2021). The TPD method provides
estimates of the price level change over time. While the prices of some products decline
or remain constant over time, other prices increase, and some products exhibit seasonal
patterns in their price movements. Thus, it is unlikely that the intertemporal dispersion of
prices over time is uniform across products. Consequently, the TPD method has the same
statistical issues as the CPD method. Ongoing research is examining whether the nonlinear
TPD (NLTPD) method can solve these problems.

A Mathematical derivations

In the following, we provide the mathematical derivations underlying the paper. In partic-
ular, this includes results on bias and inference for the CPD method as well as the formulas
of the NLCPD method’s standard errors.

A.1 NLCPD estimators when weights are region-specific

Suppose that we have region-specific weights wr
i with ∑i∈Nr wr

i = 1 for each region r. Then,
the minimization problem is

min
l̂nP r,δ̂i,̂lnπi

Sûr
i ûr

i
,

with
Sûr

i ûr
i

=
∑
r∈R

∑
i∈Nr

wr
i

(
lnpr

i − δ̂i l̂nP r − l̂nπi

)2
.

The first-order conditions are

∂Sûr
i ûr

i

∂ l̂nP r
=
∑

i∈Nr

wr
i 2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)(
−δ̂i

)
= 0 (A.1a)

∂Sûr
i ûr

i

∂δ̂i

=
∑

r∈Ri

wr
i 2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)(
−l̂nP r

)
= 0 (A.1b)

∂Sûr
i ûr

i

∂ l̂nπi

=
∑

r∈Ri

wr
i 2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)
(−1) = 0 . (A.1c)

Rearranging condition (A.1a) gives

l̂nP r =
∑

i∈Nr
wr

i δ̂i

(
lnpr

i − l̂nπi

)
∑

i∈Nr
wr

i

(
δ̂i

)2 .
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Condition (A.1b) can be rewritten as

δ̂i =
∑

r∈Ri
wr

i l̂nP r
(
lnpr

i − l̂nπi

)
∑

r∈Ri
wr

i

(
l̂nP r

)2 .

Condition (A.1c) yields

l̂nπi =
∑

r∈Ri

wr
i∑

s∈Ri
ws

i

(
lnpr

i − δ̂i l̂nP r
)

.

A.2 NLCPD model and special cases

Model (9) can be written as

y̆ = Ğπ +
(

G1
w1

+ G̃δ
)

⊙
(
D̆p

)
+ ŭ , (A.2)

where D̆ =
(
D̃2 . . . D̃R

)
, Ğ = (G1 . . . GN ) and G̃ =

(
G̃2 . . . G̃N

)
. The vectors y̆ and

ŭ contain the logarithmic prices, lnpr
i , and the errors, ur

i , respectively. The parameters are
π = (lnπ1 . . . lnπN )⊺, p =

(
lnP 2 . . . lnP R

)⊺
, and δ = (δ2 . . . δN )⊺, where the symbol ⊺

denotes the transpose. The operator ⊙ denotes the Hadamard product, that is, the ele-
mentwise multiplication of the column vectors

(
G1/w1 + G̃δ

)
and

(
D̆p

)
. The observations

are sorted by product and then region. When the price data are complete, the number of
price observations, B, is equal to NR.

If all δi-values were known (but possibly different from unity), we could define the
matrix H̆ =

(
H2 . . . HR

)
with Hs =

(
G1/w1 +∑

j∈N\{1} G̃jδj

)
D̃s and we could write the

NLCPD model (A.2) in the following linear form:

y̆ = Ğπ +H̆p+ ŭ . (A.3)

To apply a weighted least squares approach, we define for each product i a diagonal
(Ri ×Ri)-matrix of weights, Wi = diag

(√
wi . . .

√
wi

)
, and combine them in the diagonal

(B ×B)-matrix

W =


W1 0R1×R2 . . . 0R1×RN

0R2×R1 W2 . . . 0R2×RN

... ... . . . ...
0RN ×R1 0RN ×R2 . . . WN

 ,

where 0Ri×Rj
is a (Ri ×Rj)-matrix, all of whose entries are zero.
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Furthermore, we define the three matrices G, D, and H . The matrix G is defined by

G = W Ğ =



√
w1Ğ1

√
w2Ğ2

...
√

wN ĞN

 ,

with the (Ri ×N)-matrices

Ğ1 =


1 0 · · · 0
1 0 · · · 0
... ... . . . ...
1 0 · · · 0

 , . . . ,ĞN =


0 0 · · · 1
0 0 · · · 1
... ... . . . ...
0 0 · · · 1

 .

The matrices D and H are given by

D =


D1

D2
...

DN

=



√
w1 D̆1

√
w2 D̆2

...
√

wN D̆N

 and H =


H1

H2
...

HN

=



√
w1 H̆1

√
w2 H̆2

...
√

wN H̆N

 , (A.4)

where

D̆i =



−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


and H̆i =



−δi −δi · · · −δi

δi 0 · · · 0
0 δi · · · 0
... ... . . . ...
0 0 · · · δi


= δiD̆i ,

(A.5)
when product i is priced in all regions. When product i is missing in some region r, line r

of D̆i and H̆i must be deleted. In any case, D̆i and H̆i are (Ri × (R −1))-matrices.

Weighted least squares of model (A.3) with the weighting matrix W is equivalent to
ordinary least squares of the model

y = Gπ +Hp+u , (A.6)

where y = W y̆ and u = W ŭ.
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The least squares estimators of model (A.6) are

π̂

p̂

=
 G⊺G G⊺H

H⊺G H⊺H

−1 G⊺y

H⊺y


=
 (G⊺LG)−1 G⊺Ly

(H⊺MH)−1 H⊺My

 , (A.7)

with π̂ =
(
l̂nπ1 . . . l̂nπN

)⊺
, p̂ =

(
l̂nP 2 . . . l̂nP R

)⊺
, and

L = IB −H (H⊺H)−1 H⊺ (A.8)

M = IB −G(G⊺G)−1 G⊺ , (A.9)

where IB is the identity matrix with dimensions B ×B.

When all δi (i ∈ N ) are equal to unity, we get H = D, and model (A.6) becomes the
CPD model:

y = Gπ +Dp+u . (A.10)

The corresponding estimators are
π̂′

p̂′

=
 (G⊺KG)−1 G⊺Ky

(D⊺MD)−1 D⊺My

 , (A.11)

with
K = IB −D (D⊺D)−1 D⊺ . (A.12)

For the following derivations, some useful results are established. It can be shown that

G(G⊺G)−1 G⊺ =


G11 0R1×R2 · · · 0R1×RN

0R2×R1 G22 · · · 0R2×RN

... ... . . . ...
0RN ×R1 0RN ×R2 · · · GNN

 , (A.13)

with the (Ri ×Ri)-submatrices

Gii =


1/Ri 1/Ri · · · 1/Ri

1/Ri 1/Ri · · · 1/Ri
... ... . . . ...

1/Ri 1/Ri · · · 1/Ri

= 1
Ri

1Ri×Ri
. (A.14)
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Thus,
tr
(
G(G⊺G)−1 G⊺

)
=
∑
i∈N

Ri
1

Ri
= N . (A.15)

For the matrix D, we get the following result:

D⊺D = D̆⊺W ⊺W D̆ =
∑
i∈N

wiD̆
⊺
i D̆i =

∑
i∈N

wi (IR−1 +Ci) ,

where the (R −1)× (R −1)-matrix Ci is defined by

Ci =


c1 c1 . . . c1

c1 c2 . . . c1

... ... . . . ...
c1 c1 . . . cR−1

 ,

with cr = 1 when product i is observed in region r and cr = 0 otherwise. Note that

D⊺MD =
∑
i∈N

wi

(
D̆⊺

i D̆i − 1
Ri

D̆⊺
i 1Ri×Ri

D̆i

)
. (A.16)

For the matrix H we get

H⊺H =
∑
i∈N

(δi)2 wiD̆
⊺
i D̆i =

∑
i∈N

(δi)2 wi (IR−1 +Ci) .

Furthermore,

D⊺MH =
∑
i∈N

δiwi

(
D̆⊺

i D̆i − 1
Ri

D̆⊺
i 1Ri×Ri

D̆i

)
.

When the data set is complete, some additonal results can be derived. First, we get
Ci = 1(R−1)×(R−1). Thus, D⊺D = IR−1 +1(R−1)×(R−1) and

(D⊺D)−1 = IR−1 − 1
R

1(R−1)×(R−1) , (A.17)

where we exploited the rule that the inverse of some matrix [IZ +k1Z×Z ], with k being
some constant, is

[IZ +k1Z×Z ]−1 = IZ − k

Zk +11Z×Z . (A.18)
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Furthermore,

D (D⊺D)−1 D⊺ =


D11 D12 . . . D1N

D21 D22 . . . D2N
... ... . . . ...

DN1 DN2 . . . DNN

 , (A.19)

with the (R ×R)-matrices

Dij = √
wiwj

(
IR − 1

R
1R×R

)
. (A.20)

Thus,
tr
(
D (D⊺D)−1 D⊺

)
= R −1 . (A.21)

Concerning the two components of D⊺MD as specified in (A.16) we get

D̆⊺
i D̆i = IR−1 +1(R−1)×(R−1) (A.22)

and
1

Ri
D̆⊺

i 1R×RD̆i = 0(R−1)×(R−1) . (A.23)

Thus, D⊺MD = IR−1 +1(R−1)×(R−1) = D⊺D and, therefore,

(D⊺MD)−1 = (D⊺D)−1 . (A.24)

Furthermore,

D⊺MH = IR−1 +1(R−1)×(R−1) (A.25)

= D⊺D , (A.26)

where we exploited the restriction ∑i∈N wiδi = 1. It can be easily checked that

D⊺M = D⊺ . (A.27)

Thus,
D⊺H = D⊺D . (A.28)

Since Ğ⊺
i D̆i = 0N×(R−1) and G⊺D =∑

i∈N wiĞ
⊺
i D̆i, we get

G⊺D = 0N×(R−1) and D⊺G = 0(R−1)×N . (A.29)

As a consequence,
G⊺K = G⊺ −G⊺D (D⊺D)−1 D⊺ = G⊺ . (A.30)
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Analogously, we have

G⊺H = 0N×(R−1) and H⊺G = 0(R−1)×N (A.31)

and
G⊺L = G⊺ . (A.32)

A.3 Bias of the CPD estimators

We use u′ to denote the vector of errors arising in the estimation of the CPD model (A.10)
when model (A.6) is the correct model:

y = Gπ +Dp+u′ . (A.33)

Therefore, Hp+u = Dp+u′ and the expected value of the error term of the CPD model
(A.33) is given by

E
(
u′
)

= (H −D)p . (A.34)

The estimators of the NLCPD model (A.6) were stated in (A.7). They can be written
in the form

p̂ = p+(H⊺MH)−1 H⊺Mu (A.35)

and
π̂ = π +(G⊺LG)−1 G⊺Lu . (A.36)

Since E (u) = 0B×1, we get E (p̂) = p and E (π̂) = π. Thus, the estimators (A.35) and
(A.36) would be unbiased.

The estimators of the CPD model (A.33) can be written in the form

p̂′ = p+(D⊺MD)−1 D⊺Mu′ (A.37)

and
π̂′ = π +(G⊺KG)−1 G⊺Ku′ . (A.38)

Inserting (A.34) and taking expectations yields

E
(
p̂′
)

= (D⊺MD)−1 D⊺MHp (A.39)

and

E
(
π̂′
)

= π +(G⊺KG)−1 G⊺KHp .
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For a complete data set, we get the following result:

(D⊺MD)−1 D⊺MH = IR−1 . (A.40)

Thus, the CPD estimators p̂′ remain unbiased, provided the data set is complete. The
same is true for the CPD estimators π̂′, because (A.30) and (A.31) imply that G⊺KH =
G⊺H = 0N×(R−1).

With data gaps, however, the matrix (D⊺MD)−1 D⊺MH does not simplify to the
identity matrix. Suppose that the only data gap is product j in region 1 (B = NR −1 and
Rj = R −1). Then, instead of (A.22) and (A.23), we get for product j

wj

(
D̆⊺

j D̆j − 1
Rj

D̆⊺
j 1Rj×Rj

D̆j

)
= wj

(
IR−1 − 1

R −11(R−1)×(R−1)

)
.

However, for the other products, i ̸= j, relationships (A.22) and (A.23) remain valid. Thus,

D⊺MD = IR−1 +
(

1− wjR

R −1

)
1(R−1)×(R−1) . (A.41)

Also, relationship (A.25) no longer applies. For product j we have

wjδj

(
IR−1 +1(R−1)×(R−1)

)
= wjδj

(
I(R−1) − 1

R −11(R−1)×(R−1)

)
,

while for the other products, i ̸= j, relationships (A.22) and (A.23) remain valid. Thus,

D⊺MH = IR−1 +
(

1− wjδjR

R −1

)
1(R−1)×(R−1) . (A.42)

Inserting (A.41) and (A.42) in (A.39) yields

E
(
p̂′
)

=
(

IR−1 +
(

1− wjR

R −1

)
1(R−1)×(R−1)

)−1(
IR−1 +

(
1− wjδjR

R −1

)
1(R−1)×(R−1)

)
p .

Rule (A.18) implies that

(
IR−1 +

(
1− wjR

R −1

)
1(R−1)×(R−1)

)−1
= IR−1 + 1−R (1−wj)

(R −1)R (1−wj)
1(R−1)×(R−1) .

Furthermore,

1− wjδjR

R −1 = R −1−wjδjR

R −1 = (R −1−wjδjR)R (1−wj)
(R −1)R (1−wj)

.
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Thus,

E
(
p̂′
)

=
(

IR−1 + wj (1− δj)
(1−wj)(R −1)1(R−1)×(R−1)

)
p

and for each entry E
(
l̂nP r′

)
of the vector E (p̂′) we get

E
(
l̂nP r′

)
= lnP r + wj (1− δj)

(1−wj)(R −1)
∑

s∈R\{1}
lnP s for r = 2, ...,R . (A.43)

For δj = 1, the quotient in (A.43) is equal to 0 and we get E (p̂′) = p. For δj < 1, the
quotient becomes positive. If region 1 (the region where product j is missing) is cheaper
than average, the average of the logarithmic price levels of the other regions is positive:∑

s∈R\{1} lnP s > 0. Thus, the estimated logarithmic price levels l̂nP r′ (r = 2, ...,R) are
biased upward. Since l̂nP 1′ = −∑s∈R\{1} l̂nP s′, the estimated logarithmic price level of
region 1 is biased downward. If region 1 were more expensive than the average of all regions,
the opposite bias would arise. For δj > 1, the directions of bias are exactly opposite to those
arising with δj < 1.

A.4 Inference in the NLCPD and CPD models

A.4.1 NLCPD model

The NLCPD estimators that minimize the sum of squared residuals defined in Eq. (16) can
be combined in the vector β̂ =

(
π̂⊺ δ̂⊺ p̂⊺

)⊺
, where π̂ =

(
l̂nπ1 . . . l̂nπN

)⊺
, δ̂ =

(
δ̂2 . . . δ̂N

)⊺
,

and p̂ =
(

l̂nP 2 . . . l̂nP R
)⊺

. The estimated NLCPD model can be written in the form

̂lnpr
i = δ̂i l̂nP r + l̂nπi , (A.44)

where ̂lnpr
i is the estimated logarithmic price of product i in region r. Each of the B

estimated logarithmic prices is a function of the NLCPD estimators β̂: ̂lnpr
i = f r

i (β̂). More
specifically, these functions have the following form:

̂lnp1
1 = f1

1 (β̂) = −1−∑N
i=2 wiδ̂i

w1

R∑
r=2

l̂nP r + l̂nπ1

...

l̂npR
N = fR

N (β̂) = δ̂N l̂nP R + l̂nπN .
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Each of these functions can be differentiated with respect to each of its arguments in β̂.
Combining these derivatives in the Jacobian matrix J yields

J =



∂f1
1

∂ ̂lnπ1
· · · ∂f1

1
∂ ̂lnπN

∂f1
1

∂δ̂2
· · · ∂f1

1
∂δ̂N

∂f1
1

∂ l̂nP 2
· · · ∂f1

1
∂ l̂nP R

∂f2
1

∂ ̂lnπ1
· · · ∂f2

1
∂ ̂lnπN

∂f2
1

∂δ̂2
· · · ∂f2

1
∂δ̂N

∂f2
1

∂ l̂nP 2
· · · ∂f2

1
∂ l̂nP R

... . . . ... ... . . . ... ... . . . ...
∂fR

N

∂ ̂lnπ1
· · · ∂fR

N

∂ ̂lnπN

∂fR
N

∂δ̂2
· · · ∂fR

N

∂δ̂N

∂fR
N

∂ l̂nP 2
· · · ∂fR

N

∂ l̂nP R


.

Approximated standard errors of the NLCPD estimators β̂ can be derived from the
estimated asymptotic variance matrix, V̂

(
β̂
)
. Following Cameron and Trivedi (2005, pp.

156-157), this matrix is

V̂
(
β̂
)

= (J⊺W ⊺W J)−1 J⊺W ⊺W Ω̂W ⊺W J (J⊺W ⊺W J)−1

= (X⊺X)−1 X⊺W Ω̂W ⊺X (X⊺X)−1 , (A.45)

with X = W J and Ω̂ = diag
((

û1
1
)2

. . .
(
ûR

N

)2)
, where ûr

i = lnpr
i − δ̂i l̂nP r − l̂nπi. If the

unweighted error term, ur
i , is homoskedastic, we get Ω̂ = σ̂2I and Eq. (A.45) becomes

V̂
(
β̂
)

= σ̂2 (X⊺X)−1 X⊺W W ⊺X (X⊺X)−1 .

If the weighted error term, √
wiu

r
i , is homoskedastic, then W Ω̂W ⊺ = σ̂2I and, therefore,

Eq. (A.45) simplifies to
V̂
(
β̂
)

= σ̂2 (X⊺X)−1 .

The latter case was considered in Section 4.4 when the standard errors of the NLCPD
estimators β̂ were discussed. For a complete data set, the estimated standard errors were
given by formulas (23) to (25). In the following, these formulas are derived.

The (NR) × (2N + R − 2)-matrix X has three submatrices. The first one is formed by
the N columns related to the derivatives with respect to l̂nπi. This submatrix is equal to
G. The second submatrix is formed by the (N −1) columns related to the derivatives with
respect to δ̂i (i ∈ N \{1}). Defining the (NR × (N −1))-matrices

Q = W
(
1N×(N−1) ⊗

(
−11×(R−1)p̂ p̂⊺

)⊺)
S =

1R×(N−1) diag(−w2/w1 −w3/w1 . . . −wN /w1)
IN−1 ⊗1R×1

 ,

they can be written as Q⊙S. The third submatrix of X is formed by the (R−1) columns
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related to the derivatives with respect to l̂nP r. This submatrix is equal to

Ĥ = W


Ĥ1

Ĥ2
...

ĤN

 , with Ĥi =



−δ̂i −δ̂i · · · −δ̂i

δ̂i 0 · · · 0
0 δ̂i · · · 0
... ... . . . ...
0 0 · · · δ̂i


for i ∈ N ,

where δ̂1 =
(
1−w⊺δ̂

)/
w1 and w = (w2 w3 . . . wN )⊺.

Putting the three submatrices together, the matrix X can be stated in the following
compact form:

X =
[

G Q⊙S Ĥ
]

. (A.46)

Thus,

X⊺X =


A11 0N×(N−1) 0N×(R−1)

0(N−1)×N A22 A23

0(R−1)×N A32 A33

 , (A.47)

with

A11 = R diag(w1 w)

A22 =
(

diag(w)+ w⊺w

w1

)∑
r∈R

(
l̂nP r

)2

A33 =
(
I(R−1) +1(R−1)×(R−1)

) ∑
i∈N

wi

(
δ̂i

)2

A23 = (A32)⊺ = diag(w) d̃p̃⊺ ,

where d̃ =
(
δ̂ − δ̂1 1(N−1)×1

)
and p̃ =

(
p̂− l̂nP 1 1(R−1)×1

)
.

The inverse of the matrix (A.47) is denoted by

(X⊺X)−1 =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 , (A.48)

with

B11 = A−1
11

B22 =
(
A22 −A23A−1

33 A32
)−1

(A.49)

B33 =
(
A33 −A32A−1

22 A23
)−1

. (A.50)
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Obviously, B11 = (1/R) diag(w1 w)−1. For the derivation of B22 and B33 we need the
inverses of A22 and A33. For the latter, we can invoke rule (A.18) and get

A−1
33 =

IR−1 − 1
R

1(R−1)×(R−1)

∑
i∈N

wi

(
δ̂i

)2
−1

.

For the derivation of A−1
22 we make use of a generalization of rule (A.18) that is due to

Miller (1981, pp.68-69) and obtain

A−1
22 =

diag(w)−1 −1(N−1)×(N−1)

 1∑
r∈R

(
l̂nP r

)2 .

Next, we insert the definitions of A−1
22 and A−1

33 into (A.49) and (A.50) and, finally,
obtain

B22 = A−1
22 + 1∑

r∈R

(
l̂nP r

)2 V

B33 = A−1
33 − 1∑

r∈R

(
l̂nP r

)2

1− ∑
i∈N

wi

(
δ̂i

)2

∑
i∈N

wi

(
δ̂i

)2 Z ,

where

V = d̃d̃⊺ +
(
δ̂1 −1

) (
d̃11×(N−1) +1(N−1)×1d̃⊺

)
+
(
δ̂1 −1

)2
1(N−1)×(N−1)

Z = p̃p̃⊺ + l̂nP 1
(
p̃11×(R−1) +1(R−1)×1p̃⊺

)
+
(

l̂nP 1
)2

1(R−1)×(R−1) .

Multiplying the diagonal elements of B11, B22, and B33 by the estimated model vari-
ance,

σ̂2 =
Sûr

i ûr
i

RN −2N −R +2 , (A.51)

and taking the square root of each of these products, gives the formulas (23) to (25).

A.4.2 CPD model

When at least one δi-value is different from one and observations are (non-randomly) miss-
ing, the weighted CPD estimators p̂′ are biased and, therefore, inference is invalid. Thus,
the following analysis can be restricted to the case of complete data. In the following, the
formulas for the standard errors of the weighted CPD estimators π̂′ and p̂′ are derived. For
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comparability with the corresponding formulas of the NLCPD method, it is assumed that
the weighted error term, √

wiu
r
i , is homoskedastic:

var(√wiu
r
i ) = σ2 . (A.52)

It is shown that the estimated standard errors of the CPD method are upward biased.

Exploiting (A.11), (A.27), and (A.30), the estimated CPD model can be written in the
form

ŷ′ =
(
G(G⊺G)−1 G⊺ +D (D⊺D)−1 D⊺

)
y .

Inserting this result in û′ = y − ŷ′ yields

û′ = Ny , (A.53)

with
N = INR −G(G⊺G)−1 G⊺ −D (D⊺D)−1 D⊺ . (A.54)

Relationships (A.28), (A.29), and (A.31) imply that D⊺H = D⊺D, G⊺D = 0N×(R−1),
D⊺G = 0(R−1)×N , and G⊺H = 0N×(R−1), respectively. Thus,

ND = 0NR×(R−1) , NG = 0NR×N , and NH = H −D . (A.55)

We know that u′ = (H −D)p+u = NHp+u and E(u) = 0NR×1. Thus,

E
(
u′u′⊺

)
= E ((NHp+u)(p⊺H⊺N +u⊺)) = NHpp⊺H⊺N +σ2INR , (A.56)

where σ2 is the variance used in (A.52).

Since (A.27) to (A.32) as well as (A.37) apply, the variance-covariance matrix of the
CPD estimators p̂′ is

V
(
p̂′
)

= E
[(

p̂′ −p
)(

p̂′ −p
)⊺]

= (D⊺D)−1 D⊺E
(
u′u′⊺

)
D (D⊺D)−1 . (A.57)

Inserting expression (A.56) in (A.57) and using (A.55) yields

V
(
p̂′
)

= σ2 (D⊺D)−1 , (A.58)

where the precise form of (D⊺D)−1 was given in (A.17).

Using (A.30), the variance-covariance matrix of the CPD estimators π̂′ is

V
(
π̂′
)

= (G⊺G)−1 G⊺E
(
u′u′⊺

)
G(G⊺G)−1 . (A.59)
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Inserting expression (A.56) in (A.59) and using (A.55) yields

V
(
π̂′
)

= σ2 (G⊺G)−1 . (A.60)

Substituting in (A.58) and (A.60) the variance σ2 with its CPD estimator,

(σ̂′)2 = û′⊺û′

NR −N −R +1 , (A.61)

yields the estimated CPD variance-covariance matrices V̂ (p̂′) and V̂ (π̂′). The square roots
of the diagonal elements of V̂ (p̂′) and V̂ (π̂′) are the estimators of the standard errors of
the CPD estimators:

ŝe′
(
l̂nP r′

)
= σ̂′

√
(R −1)/R

ŝe′
( ̂lnπ′

i

)
= σ̂′

/√
Rwi .

For these estimators to be unbiased, the estimate of σ2 must be unbiased. Thus, we have
to examine whether

E
(
û′⊺û′

)
= σ2/(NR −N −R +1) . (A.62)

Substituting in (A.53) the vector y with (Gπ +Dp+u′) yields

û′ = NGπ +NDp+Nu′ = Nu′ .

Therefore,
û′⊺û′ = u′⊺N⊺Nu′ = tr

(
u′⊺Nu′

)
= tr

(
uu′⊺N

)
.

Taking expections gives

E
(
û′⊺û′

)
= E

(
tr
(
u′u′⊺N

))
= tr

(
E
(
u′u′⊺

)
N
)

.

Inserting (A.56) yields

E
(
û′⊺û′

)
= tr(NHpp⊺H⊺N )+tr

(
σ2N

)
. (A.63)

Note that

tr
(
σ2N

)
= σ2 (NR −N −R +1) , (A.64)

where we exploited the results (A.15) and (A.21). Thus, unbiasedness requires that in (A.63)
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we have tr(NHpp⊺NH⊺) = 0 or, equivalently, tr(H −D)pp⊺ (H⊺ −D⊺) = 0. However,

(H −D)pp⊺ (H −D)⊺ =

√
w1

√
w1 (δ1 −1)(δ1 −1) √

w1
√

w2 (δ1 −1)(δ2 −1) . . .
√

w1
√

wN (δ1 −1)(δN −1)
√

w2
√

w1 (δ2 −1)(δ1 −1) √
w2

√
w2 (δ2 −1)(δ2 −1) . . .

√
w2

√
wN (δ2 −1)(δN −1)

... ... . . . ...
√

wN
√

w1 (δN −1)(δ1 −1) √
wN

√
w2 (δN −1)(δ2 −1) . . .

√
wN

√
wN (δN −1)(δN −1)



⊗



(∑
r∈R\{1} lnP r

)2
−
(∑

r∈R\{1} lnP r
)

lnP 2 . . . −
(∑

r∈R\{1} lnP r
)

lnP R

− lnP 2
(∑

r∈R\{1} lnP r
)

lnP 2 lnP 2 . . . lnP 2 lnP R

... ... . . . ...
− lnP R

(∑
r∈R\{1} lnP r

)
lnP R lnP 2 . . . lnP R lnP R

 ,

where ⊗ denotes the Kronecker product. The trace of this matrix is

tr
(
(H −D)pp⊺ (H −D)⊺

)
=
∑
i∈N

wi (δi −1)2


 ∑

r∈R\{1}
lnP r

2

+
∑

r∈R\{1}
(lnP r)2

 . (A.65)

This expression is larger than zero and, therefore, the estimator (σ̂′)2 is larger than σ2,
except when δi = 1 for all i ∈ N .

B Simulation results

Tab. 5 provides error metrics for all parameters of the simulation setting described in
Section 5.1. Mean absolute bias and mean RMSE of the estimates of lnP r are replicated
from Tab. 2. Mean absolute bias and mean RMSE of the estimates of lnπ and δ are
analogously defined to Eq. (26), but averaged over products instead of regions, e.g.:

Bias
(
l̂nπ

)
= 1

N

∑
i∈N

Bias
(
l̂nπi

)
= 1

N

∑
i∈N

1
L

L∑
l=1

(
l̂nπi,l − lnπi,l

)

RMSE
(
l̂nπ

)
= 1

N

∑
i∈N

RMSE
(
l̂nπi

)
= 1

N

∑
i∈N

√√√√√ 1
L

L∑
l=1

(
l̂nπi,l − lnπi,l

)2
.

for the lnπi-parameters of the NLCPD method. For the CPD method, Bias
( ̂lnπ′

)
and

RMSE
( ̂lnπ′

)
are defined in the same way.

The CPD method does not provide any estimates for δi but implicitly assumes that
δi = 1. Consequently, in the computation of Bias(δ̂′) and RMSE(δ̂′) we set δ̂′

i,l = 1 for
all products i and iterations l. Due to this exogenous restriction of the CPD model, the
estimates δ̂′ are found to be markedly biased except for Scenario 1 (see third line of Tab. 5).
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
CPD NLCPD CPD NLCPD CPD NLCPD CPD NLCPD

B
ia

s lnP r 0.0002 0.0002 0.0002 0.0001 0.0003 0.0002 0.0133 0.0002
lnπi 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0.0004
δi 0.0000 0.0021 0.5527 0.0023 0.5527 0.0035 0.5527 0.0035

R
M

SE

lnP r 0.0097 0.0097 0.0097 0.0081 0.0201 0.0110 0.0250 0.0105
lnπi 0.0130 0.0130 0.0130 0.0130 0.0205 0.0167 0.0218 0.0178
δi 0.0000 0.1398 0.6262 0.1397 0.6262 0.1850 0.6262 0.2157

Table 5: Mean absolute bias and mean RMSE of estimated parameters.
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