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Abstract 

In this paper, we present a case study of the imputation in a complex household survey - the first wave 
of the German Panel on Household Finances (PHF). A household wealth survey has to be built on a 
questionnaire with rather complex logical structure mainly because the probes of many wealth items 
have to be proceeded on both intensive and extensive margins. Hence the number of potential predic-
tors for each imputation model grows and more non-compliance can confront standard modelling due 
to, e.g., irregular missing patterns, interdependent logical constraints, data anomalies etc. Our model 
selection procedure borrows the techniques for the out-of-sample prediction to handle the overfitting 
often associated with the introduction of a large number of predictors. We also take the measures to 
produce ex ante evaluation for modelling which can be more efficient than the common diagnosis 
done after imputation in practice. Solutions for the difficulties in the real data and questionnaire struc-
tures are also presented. On the other hand, we incorporate the rich flagging information in developing 
various measures of item-nonresponse to access this complication from logical structure. We find that 
information loss due to the contagion of item-nonresponse between variables is not serious in our im-
puted data.  

Keywords: Multiple imputation, Model selection, Panel on household finance, item-nonresponse 
evaluation 
JEL-Classification: C15, C52, C42 

                                                 
1 We are greatly indebted to Arthur B. Kennickell for lending us the FRITZ package he developed for years in 

the imputation of Survey of Consumer Finance (SCF). Beyond the practical application, this is also a full-
fledged model to teach us many specific aspects tailored to a complex household finance survey. In addition, 
the experience of another FRITZ user Cristina Barceló has been rather constructive for us to build the starting 
infrastructure, and we learned from her hands-on insights on this package and other imputation techniques. 
Claudia Biancotti provided us many detailed technical instructions on using this package and valuable auxilia-
ry procedures. Dimitris Christelis shared with us his rich knowledge in multiple imputation for wealth surveys. 
We often received the advice by discussing with the imputation colleagues from other NCBs and ECB - 
Nicolás Albacete, Alessandro Porpiglia, Michael Ziegelmeyer, Juha Honkkila, Laurent Van Belle, Antonis 
Loumiotis to name a few. Last but not least, our development of the imputation infrastructure cannot survive 
without the frequent support and encouragement from our Bundesbank colleagues – Ulf von Kalckreuth, Tobi-
as Schmidt, Julia Le Blanc and Christoph Weisser. All of them also deserve a special thank from us. 
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1 Introduction 

Missing data poses a tremendous challenge for both the data constructors and users. In one 
end, the whole data production process for any survey can be deemed as an imputation effort 
to fill the information into a completely missing data: the interviewer “imputes” with the val-
ues without the uncertainty induced by item-nonresponse, the editor “imputes” the implausi-
ble values by either replacing it with certain valid values or with missing values with uncer-
tainty. And the imputer imputes bearing the mind that any value imputed contains this uncer-
tainty. The imputation model is a scientific endeavor to translate this uncertainty to the data 
users. 

The multiple imputation (MI) in PHF replaced the missing cells in the data by m simulated 
values. Similar to many other imputation practices, this m is five. The simulation draws from 
a posterior distribution given the observed data. This Bayesian perspective is introduced by 
Rubin (1978) and well explored in Rubin (1987) and Rubin (2004). Suppose the complete-
data are Y = (Yobs, Ymis), which contains the observed subsample Yobs and missing subsample 
Ymis. The estimand is Q. The fundamental motivation is described by 

  𝑃(𝑄|𝑌𝑜𝑏𝑠) = ∫𝑃(𝑄|𝑌𝑜𝑏𝑠,𝑌𝑚𝑖𝑠)𝑃(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠)𝑑𝑌𝑚𝑖𝑠, 

where this integral is calculated via simulation.  Rubin (1987) shows the final estimate of Q is 
an average of multiple complete-data posterior means of Q and the final variance is the sum 
of the average of within-implicate variance and the between-implicate variance. 

In this paper, we present a discussion on the justifications and targets of imputation and mul-
tiple imputation as well as the general issues on item-nonresponse in section 2. Next, section 3 
covers the main structure and important features of the core module FRITZ we used. Section 
4 illustrates data preparations, data format and flag variable construction required for the im-
putation. We outline the general specification process for imputation models and many data 
peculiarities in PHF in sections 5 and 6. Section 7 presents an assessment of the item-
nonresponse in the first wave of PHF. Finally, the sections 8 and 9  outline the convergence 
and the evaluation of the imputation model respectively. 

 

2 The necessity of multiple imputation 

Rubin (1996) summarized the goal of imputation: “The objective is valid frequency inference 
for ultimate users who in general have access only to complete-data software and possess 
limited knowledge of specific reasons and models for nonresponse.” We will draw many of 
his discussions in this paper to explain the challenge data users are confronted with, why we 
need to impute the data, why we rely on MI instead of other competing techniques and the es-
sential purpose of MI. 
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2.1 The complication of the missing data 
When missing data is present, most procedures of data management and analysis in standard 
software will take different manners. Here are some examples: 

a) By default, for most of the update/merge routines, many statistics software (e.g. SAS 
and STATA) will not update the cell of the master data where the transaction data has 
missing values. 

b) Many operations have a unique manner when missing value is involved: e.g. there are 
some sum operations which can apply on only the nonmissing operands and treat the 
remaining missing ones as zeros; and the other kind of sum operations which yield a 
missing value as long as one operand is missing. They will obviously produce very 
different pictures even for simple tasks such as creating new variables or producing 
basic descriptive statistics. 

c) Besides the arithmetic operations, the standard statistical software provide a specific 
discussion for almost every routine in their manuals, which can highly vary across the 
routines. The sophistication lies in the fact that the missingness is often not only pre-
sent in the analysis variables but also in those by-group variables, weight variables, 
classification variables2, and many other routine specific variables. The interaction of 
these variables can naturally arise in many analyses, which means the particular care 
has to be allocated to the joint misssingness: e.g., the distinction between pairwise and 
listwise deletion is notoriously known. 

The rationale behind these actions is clear: a missing value simply systematically differs from 
a nonmissing one in many cases. For instance, Little et al. (2002) documented the caveats of 
listwise deletion: as long as the missing data is not missing completely at random, a listwise 
deletion will lead to invalid inference; furthermore, this measure can greatly shrink the data 
size which reduces the statistical power. 

2.2 Imputer: data constructor or data user 
Accordingly, we should have enough knowledge on item-nonresponse in order to well tackle 
the missing data for various demands of data users. This requires the statistical expertise, 
computing power, comprehensive understanding of different research questions, and last but 
not least, information related with nonresponse behavior which can be often confidential (e.g. 
some sample design information). Most data users are equipped with only the complete-data 
analysis tool and some ad hoc methods to “fill” in the missingness, such as “complete-case 
analysis”, “available-case analysis”, and “fill-in with means” (Little et al., 2002, Part I). 
Without the assistance of the data constructors, many users will end up with producing statis-
tically invalid results. Rubin (1996) then stated: “We cannot stop users from doing bad sci-

                                                 
2 They are the variables that enter the statistical analysis or model not through its values, but through its levels. 
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ence, but if possible we should facilitate their ability to do good science with their available 
tools, even when data sets suffer from missing values.” As he concluded and now well accept-
ed in the practice, it is the responsibility and capacity of the data constructor to “correctly” 
model the missing data. 

2.3 MI vs. other imputations 
There are many other competing methods to deal with missingness. Rubin (1996) reviewed 
the superiority of the other three main approaches:  

• It requires far less number of acceptable simulations for the MI compared to the other 
simulation-based complete-data methods which combines both imputing the missing 
values and analyzing the complete-data. The former only concentrate on filling the 
missingness while the latter has to direct the simulation resources for investigating the 
research questions. In practice, five imputations should be enough for typical situa-
tions. But 100 bootstrap or jackknife simulations are often far below the number of 
simulations recommended. On the other hand, since the main coverage of a MI model 
is on the missing part, a distorted MI model can be much less harmful than a com-
plete-data simulation method which can affect the whole data. 

• Single imputation cannot reflect the uncertainty of the imputed values because, unlike 
the MI, there is no between-imputation variance. The outcome is almost all the infer-
ence, esp. the joint one, can become significant.  

• Weighting adjustment can only deal with the missingness resulted from some well-
planned limited dimension of design features and nonresponse patterns. The reality of 
item-nonresponse often does not even come close and the mechanism is far more 
complicated. The result is some potentially important cases severely down weighted 
and some less important ones can be intensively over weighted if they are in the 
neighbor of the missing subsamples,   which can create excessive variety. 

2.4 Goal of MI 
The main objective is to provide a basis for valid statistical inference instead of optimal point 
prediction. The former is obviously the major concern for the majority users of our data: mi-
croeconometricians. Rubin (1996) provides a heuristic example: suppose we have a biased 
coin with .6 heads and .4 tails, an imputation model A claims as this fact is and model B states 
this is a two-headed coin. According to the hitting rate, model A can predict correctly for the 
chance of .52 and B can win by .6. In terms of this point prediction loss function, model B is 
better. However, model A can yield a consistent estimate for the inference on the average 
fraction of tosses that are heads. 
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3 Imputation package: FRITZ 

We only provide an outline of our core imputation routine, FRITZ, its main modules we used, 
as well as some of its important features and the strengths in this section. For more detailed 
discussions on FRITZ, MI theories and Gibbs sampling, Kennickell (1991), Kennickell 
(1998) and Barceló (2006) could be the references. As far as the reader’s interest in knowing 
the comparison of various imputation packages is concerned, the section 3.6 of Drechsler 
(2011) should serve as a comprehensive guide for many practical aspects in economic sur-
veys.3  

3.1 Outline of FRITZ 
In FRITZ, the central simulation mentioned in section 1 is achieved by an approximation to 
an actual Gibbs sampling. Raghunathan et al. (2001) illustrate this process: “the new imputed 
values for a variable are conditional on the previously imputed values of other variables, and 
the newly imputed values of variables that preceded the currently imputed variable”. These 
conditional distributions are usually modeled parametrically, e.g., as a regression. This ap-
proach avoids the complication of drawing directly the parameters in the formal Gibbs sam-
pling setting which can be practically difficult when the editing constraints, bounds and mis-
cellaneous variable types are present. Raghunathan et al. (2001) also assert that this approach 
has been proved to be empirically comparable to those based on an explicit Bayesian model in 
many real applications.  

Like many other Gibbs sampling procedure, the program is invoked iteratively. It initially 
computes the appropriate sum-of-squares-and-cross-products (SSCP) matrix or conditional 
frequency table by restricting the data using the logical condition leading to the applicable re-
sponse of the imputed variable. This matrix or table is based on the variable to be imputed and 
all the covariates specified in each imputation model. Next, it loops over each case where 
there is the imputation flag value and the logical condition leading to the applicable response 

is met.4 Within each loop, the imputation is performed by combining the estimation infor-
mation of the observation-specific covariates drawn from the SSCP matrix or conditional fre-
quency table and the randomization process following user-specified constraints. 

3.2 Modules 
We discuss the three main modules for the corresponding data type: continuous, binary and 
categorical variables. Only main mechanisms used in our imputation are introduced here. 

3.2.1 Continuous 
The imputation value is an aggregation of the predicted value of a regression of the missing 
value on the set of explanatory variables available for a given observation and a randomized 

                                                 
3 Yucel (2011) presents a much broader overview together with many other papers in this special volume. 4 See the detailed exposition in section 4.3. 



6 
 

residual. The SSCP is constructed using all the nonmissing (observed or imputed in the last it-
eration) target variable and covariates specified (which can be a larger set than that from the 

estimation model tailored for each imputed case when some of the covariates are missing).5 
The residual is mostly drawn from a normal distribution with the variance estimated from re-
gression standard error (sigma) of each observation-specific model.  

FRTIZ takes a conservative stepwise approach for the randomization: it first draws within +/-
1.29 sigma (80%) range; if it cannot hit within the user-specified bounds after 100 draws, it 
will draw within a +/-1.96 (95%) sigma range for the other 100 draws; if it still fails, the value 
is forced to the nearest bound. This can avoid producing the extreme values and/or values 

from “seeming” truncated/restricted distribution.6 

3.2.2  Binary 
Binary variables are imputed in an analogue way using randomized linear probability models. 
FRITZ trims the “outlier” case: when the predictive probability is very close to zero or one, 
the routine will impose that value and ignore the randomization. Thus, the “rare” events can 
be excluded. 

3.2.3 Categorical 
The algorithm randomly draws the imputed values from the cell of the conditional frequency 
table with the margins matching the covariates conditioned. The randomization is based on 
the frequency distribution of the cell. There are two classifying variables we can specify. But 
we can always incorporate more covariates by forming the multiplicity variable.  

3.3 Options and advantages 
Some useful options are used in our imputation to tackle with some quite common imputation 
issues. Besides, we also summarize a couple of general strengths of FRITZ. 

One notorious issue in imputing categorical variable is the perfect prediction (White, et al., 
2010): in the FRITZ’s setting, when the cell size is too small or even zero, the point estimate 
𝑃(𝑄|𝑌𝑜𝑏𝑠) can be excessively biased and the between-imputation standard error can be erro-
neously exaggerated.  

FRITZ provides two options to maintain a minimum cell size threshold.  One is to only condi-
tion on the first covariate and examine the required minimum cell size; if it is still too low, the 
routine will then condition only on the second covariates; if it fails again, an unconditional 
frequency distribution is used. Alternatively, the program collapses the second covariate 
symmetrically around the value for the case to be imputed until the cell size threshold is hit. 

                                                 
5 Since it uses pairwise deletion, this matrix might not be invertible, esp. during the first iteration when the miss-

ing pattern can cause the number of pairwise nonmissing cases varies across each cell in the SSCP. On the oth-
er hand, sometimes the observed sample is too small which can cause the SSCP to have less than full rank. 
Generally, FRITZ uses SWEEP operator in SAS to produce generalized inverse. Alternatively, FRITZ can op-
tionally use single value decomposition to handle this case. 6 The contribution of this approach will be elaborated in section 6.4. 
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Additionally, like many other treatments, FRITZ always displays adequate warning messages 
for each steps involved.  

Two kinds of nearest-neighbor matching methods can be invoked in FRITZ: matching using 
the value or the sample residual of the nearest neighbor. The details will be explored in the 
section 6.1. There are also options to determine whether the user-specified bounds are re-
spected when they are incompatible with the bounds of the observed sample.  

Weight can be incorporated in calculating the SSCP or conditional frequency table. 

FRITZ calculates the SSCP matrix in a unique way: it uses the pairwise deletion such that the 
correlationship between any two variables is measured with the maximum information con-
tent observed. There are two advantages: 

1) It simply makes use of as much information as possible. The treatment in other impu-
tation packages is the simple listwise deletion when missingness is presented. Obvi-
ously, the information loss can be severe.  

2) Only one calculation is required for each imputation model/variable which is computa-
tionally more efficient. The estimation of each case to be imputed only has to draw the 
cells corresponding to the covariates observed out of the shared SSCP in order to build 
its own SSCPs.  

Compared to many other packages, in general, it avoids those nonlinear estimations which re-
quire iterative optimization. There are usually some regularity conditions to insure the con-
vergence of them. Unfortunately, in real survey data with complicated missing pattern, many 
of them cannot be fulfilled. For example, observed distribution is too skewed and/or multi-
modal, the size of the observed eligible sample is too small, the covariates might have (near) 
collinearities… These can cause the troubles in practice: the routine cannot converge or col-
lapse. To diagnose each can often become very difficult during imputation, particularly be-
cause all the imputation model/variables are interdependent and missing pattern varies across 
the variables and cases. Plus, many other packages do not supply adequate warnings even 
when these situations occur. FRITZ instead makes great efforts to enhance the information 
reported in the log file. In all, FRITZ is superior in this aspect for the practical imputation pro-
jects which are often constrained by time and other resources. 

4 Imputation infrastructure 
We describe the problems before kicking off the specification of imputation model and actual 
imputation. They are addressed following the sequence in which they are solved. 

4.1 Preliminary data preparations for imputation 
The foremost thing to prepare is the list of variables to be imputed. We agreed to generally 
impute all variables of the questionnaire, with some few exceptions. These exceptions are: 
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- Variables with verbatim answers (e.g. job description PNE2010) 
- Variables that specify the time period of another question (e.g. DHB2010) 
- Variables belonging to questions that only had been asked as “back-up” during the in-

terview in the case of item non response of other questions (e.g. HD0851, DHB2600) 
- Person IDs (e.g. HD0601A) 
- Other Variables where imputation had been considered as not meaningful (e.g. car 

make DHB82001A) 

It is important that every imputed variable contains values of the same dimension. Several da-
ta preparation steps are necessary to guarantee this: 

a) All net figures are converted into gross. This conversion takes into account the complex 
German taxation rules, using the information given by the respondent's answers on employ-
ment status, marital status etc. 

b) All time-related information (in many questions the respondent had the choice to give 
monthly, quarterly or yearly values) has to be converted into yearly figures. 

c) All foreign-currency- or legacy-currency-amounts in Euro value questions have to be cal-
culated into Euro amounts. 

To do the net-gross-conversion described above, we need all possible information about the 
variables which are used in the conversion algorithm, e.g.  DPA0100 (marital status) and 
DHH0900 (church tax). Due to the fact that these variables also have item non response, they 
are imputed ex ante using hot deck imputation. This preliminary imputation is solely used for 
the net-gross-conversion. All missing values are imputed again later in the main imputation. 

4.2 Data format combining household data and personal data 
How do we run the imputation jointly involved with variables of household level and personal 
level? The complications are attributed by two aspects: 

1) Generally, there are two classes of models often required.  
• The covariates are constant within each household. For example, for imputing many 

household variables, the basic aggregate statistics over household members can be 
quite informative, e.g. maximum education level, average age, existence of employed 
household member and so on. Also a household variable (e.g. HI0100) can often serve 
as a covariate for the imputation of a personal variable. 

• The covariates are not constant within each household. For example, the covariates 
needed to impute the wife's employment status can include the employment status of 
the husband or even of the adult offspring (e.g. mother might have to work if her son 
is still a "lifelong" student). 

2) The information in the household level and person level is interdependent. Therefore, 
we should consider the stability of a joint distribution over all of them as the ultimate 
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imputation goal. This can be achieved only if we allow simultaneous imputation of 
household data and personal data. 

In result, we decided to use one big dataset for imputation that contains all household level 

variables and all personal level variables.7 Then, each row contains the P-variables for each 
person. Additionally, H-variables are attached to each row in different degree according to the 
status of the person. If he is the FKP (Financially knowledgeable Person), all the H-variables 
are attached. Otherwise, we only insert the values of those which are used as covariates in the 
specification of any P-variable imputation. The rest are set as missing. This measure can 
greatly save the data size.  

When we want to impute an H-variable, we can subset the data to keep only one row for one 
household (i.e. the row for FKP). The estimation is run over them. When we want to impute a 
P-variable, we actually pool all the household members together in a regression. Then, those 
“outlier” family members (e.g. the fifth child) are not an issue any more when the sample size 
of observed cases is concerned:  they share the same estimation with all the rest.  

We constructed particular macros in SAS to realize two kinds of specification aforementioned: 
aggregate statistics over household members and the variables of another household member 
as covariates. The specification can be very flexible – this can also be contingent on the miss-
ingness: we can calculate an average employee income across household members and force 
this to be missing when, for example, some of the household members have this variable to be 
imputed. We consider this feature in order to avoid the exaggeration of the within household 
heterogeneity and/or the distortion if missing not at random is present. Another important step 
in our routine is to always update these particular covariates whenever they (or one member 
value of them, e.g. any member’s employee income when average employee income is con-
sidered) are changed during imputation.8 

4.3 Logical trees 
Every variable has a related flag variable. The coding of this flag variable consists of the 
standard values 1 (answer from respondent), 0 (system missing) and several four-digit special 
codes. Values greater or equal to 2000 indicate that they will be imputed. Thus during the 
preparation steps before imputation, all of the flags for the cases which will be imputed poten-

                                                 
7
 We are grateful to Dimitris Christelis for his suggestion on this data format. 

8
 The alternative is to use the wide-format. Here every variable from the P-file appears n-times 
(n=max.(observed HH-size)), representing the values for the 1st, 2nd, … person in the households. 

Another possibility to create a wide-format is to assign determined family patterns to the duplicates of the p-
variables (e.g. 1st=KT, 2nd=partner, 3rd=child#1…). The second one is more efficient since the first one still 
needs the efforts to determine the position of each person in the family before most specification can be estab-
lished. 
There are two disadvantages concerning the wide-format: 1) the computation time for the imputation grows dra-
matically; 2) the data observed for the 5th, 6th, … person is very sparse, so it does not make much sense to build 
imputation models for them. 
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tially, have to be replaced by a value greater or equal to 2000. The values -1 (don’t know) and 
-2 (no answer) usually have flags 1000, 1001 or 1004 (if they were not changed during edit-
ing). So all the flags that correspond to values -1 or -2 are, if necessary, increased by 1000 to 
conform to the imputation flag definition. 

During the imputation procedure no flags are changed. 

In many cases a non-response of one variable causes missing values in other related variables. 
If, for example, the question relating to the ownership of property was answered with “don’t 
know”, the entire property section of the questionnaire is left out during the interview. If the 
initial question is imputed as “yes”, then the subsequent property-related questions also have 
to be imputed.  

The logical relationships in the PHF questionnaire are reflected by logical trees of variables. 
In each tree, one variable is called head variable, and the remaining ones are branch variables 
which are logically dependent on the head variable. Of course, the branch variable of one tree 
can also be the head variable of another tree in the lower order of logical sequence. 

It is very critical to assign the correct flag value to the branch variables according to the val-
ues of the head variable since many candidates for imputation are among the branch variables 
due to the non-response of the head variables. Consequently, we assigned the flag 2002 
(meaning imputed, originally not collected due to missing answer to a previous question to 
every branch-variable) if the head-variable contains the values -1 or -2. 

Example: In the raw data, there is a case with: 

HD0100=-1 , HD0100FL=1000 , HD0200=-3 and HD0200FL=0.  

(HD0100: Investments in businesses; HD0200: Investments in self-employed businesses) 

The question for HD0200 had been asked only if HD0100=1. In the above case it was skipped 
during the interview due to the non-response in the head variable HD0100. After imputation 
preparation these turn into: 

HD0100=-1 , HD0100FL=2000 , HD0200=-3 and HD0200FL=2002. 

Branch variables in the logical trees can be imputed only if the value of the head variable im-
puted or observed satisfies the conditions that allow questioning the branches (in the above 
example: only if HD0100 is imputed to be 1, a value of HD0200 can be possibly asked and 
hence imputed). To make sure that imputation causes no inconsistencies within the logical 
structure of the questionnaire, the imputation code of every single variable contains a 
WHERE-condition that reflects the logical condition that an observed or imputed answer in 
this variable can be expected. For example, the imputation code for HD0200 contains the 
WHERE-condition “HD0100=1”. 

Since the PHF variables are imputed sequentially, we had to make sure that the head variables 
had always been imputed before their branch variables. This is also facilitated by the estab-
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lishment of logical trees. In summary, by building the logical tree, a value is imputed if and 
only if the flag value is greater or equal to 2000 and the WHERE-condition is fulfilled. 

4.4 Further preparations for imputation 
If the interviewed persons were not able to provide an exact answer to an Euro value question, 
they could instead give lower and/or upper bounds for the value. And if this was not possible, 
they could choose an interval, which fits closest to the possible value, from a list of ranges 
prepared in the questionnaire. 

In both cases, the midpoint of the interval is calculated as starting value for the imputation. 
We then specify the bounds using the intervals provided into each imputation model.  
All continuous variables are transformed into their inverse hyperbolic sine (IHS) before impu-

tation. The whole imputation is based on the distributions of the transformed values.9 Year 
values are first transformed into the difference of the provided year to the year of the inter-
view (e.g. 1998 -> 2011-1998=13) and then in a second step transformed to the inverse hy-
perbolic sine. After imputation all of these values are retransformed.  

Categorical variables have been transformed into an ordinal scale, if possible. With this ordi-
nal treatment, the categorical variables can fit the requirement of the randomized hot-deck 
imputations when we have to collapse the neighboring values of the conditional variables, i.e., 
these categorical variables in order to maintain enough cell size for random draw. For exam-
ple, DPA0300 (highest level of education) was reordered to reflect ascending educational lev-
el. 

Before imputation we constructed several auxiliary variables. They are mainly used as regres-
sors for imputation, e.g. age squared and average personal income within household. 
During the editing of the PHF data, miscellaneous consistency checks were used to assure the 
data plausibility. This was mainly done by imposing the bounds for the imputation of contin-
uous variables or by building the value set feasible for the binary or categorical variables. 

5 Model specification 
In section 5.1 we present the problems and the corresponding solutions of our model selection 
process. The practical implementations are revealed together with the diagnostic analysis in 
sections 5.2 and 5.3. 

5.1 The purposes 
In terms of the practical consideration for a large household survey, we need to consider a 
huge number of candidate covariates (main data and many auxiliary data) in imputation model. 

                                                 
9
 Even though log transformation is often used in the economic literature, the imputers might choose the other 
proper transformations: e.g., Christelis (2011) used IHS too and Drechsler (2011) adopted cubic root for vari-
ous reasons. We will explain the motive for IHS later.  
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Besides, accounting for enough interaction effects (they can be really many when there are 
categorical variables and many candidate covariates) can tame the impact of influential obser-
vations. To cope with this large scale of candidates, we resort to the technique of model selec-
tion. 

There are also many other practical considerations which require a robust model selection 
routine: 

a) We are working with real world data. There are always some anomalies. For example, 
some variables presumed to be predictive might not have enough variation (e.g. due to 
notorious issue of self-rounding/bracketing).  We do not have resource to detect one 
by one without automatic algorithm. 

b) Congeniality requirements (according to Meng (1994)), or broad conditioning, often 
suggests the imputation model to include as many predictors as possible so that any 
potentially important variables in the analyst’s model will not be ignored. Otherwise, 
there can be bias.  On the other hand, a “Full Model” with many insignificant predic-
tors can accommodate various missing pattern so that there are always enough “substi-
tute” predictors available if some others are missing.  However, the major pitfall is it is 
likely to overfit the data with a model performing poorly in out-of-sample prediction 
(i.e. imputation). Additionally, this can lead to a much longer computation time which 
might not be economic in practice. Thus, to seek a balance, we adopt the stepwise se-
lection to produce an economic model with proper fitness. This should not increase the 
risk of uncongeniality since those highly correlated variables in a joint setting will al-
ways be maintained when enough model diagnosis are applied (see this argument from 
Drechsler (2011)). 

c) Partial F-test in traditional selection method does not follow F distribution. The alter-
native solution is to use information criterion as selection and stopping rule. 

d) Models selected by the traditional criteria often do not perform well in out-of-sample 
prediction such as the case of imputation. To mimic such an environment, we always 
randomly select a test sample which has the imputation target variable all observed 
and is separate from the training sample (used for fitting the model). This test sample 
is then used for a predictive performance check. Since it is independent from the role 
of the model selection, this criterion is actually an out-of-sample prediction criterion.   

e) Due to missingness, the sample sizes available for training and test data could be often 
quite small. Hence, there can be no space left for a validation sample used to obtain 
prediction error for determining the moment to stop the selection procedure and/or in-
clusion of candidate covariates. We then reply on the cross-validation which allows 

the sharing of one sample between the test and validation stages.10 Besides, this tech-

                                                 
10 Basically, the sample is split into k parts. When model fitting is performed on one part, the omitted parts are 

used to calculate the prediction error. The process is repeated for k times. We then sum up these k sets of pre-
diction errors as one criterion.  
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nique is also known for enhancing the out-of-sample prediction performance of the se-
lected model. 

Abayomi et al. (2008) and Drechsler (2011) recommend both internal and external diagnosis 
should be evaluated in the model selection procedure. The intention of the former diagnosis is 
to examine the fitness of the selected model because our imputation is model-based. The latter 
emphasizes a subjective evaluation on the plausibility of the imputed outcome. Particularly, 
they investigated if any difference in the distributions of the covariates can explain any possi-
ble discrepancy between the distributions of observed and missing samples. Next we will 
elaborate the implementation of these two aspects in the stage of model specification. Espe-
cially, as an extension of external diagnosis, before kicking off the imputation, we also have 
an ex ante evaluation of potential imputation quality by performing an out-of-sample predic-

tion using the selected model on the missing sample.11 

5.2 The core procedure12 
We feed the module with a broad range of candidate covariates: basic demographics, house-
hold aggregate wealth and income, the variables from all the auxiliary datasets which are al-
most nonmissing such as stratification, characteristics explaining non-response behavior and 
other design features, almost all of the other variables from the same section and the case spe-
cific ones (e.g. those economically correlated but in other sections, head variables determining 
the participation of those predictive covariates included in order to correct potential selection 

issue, …).1314 

The SAS manual for PROC MI (see Imputation Model on P. 3798 of SAS/STAT ® 9.2 Us-
er’s Guide) summarizes a guide line for model specification which is well shared among 
many imputation practitioners: 

“Generally you should include as many variables as you can in the imputation model (Rubin 
1996), at the same time, however, it is important to keep the number of variables in control, as 
discussed by Barnard et al. (1999). For the imputation of a particular variable, the model 
should include variables in the complete-data model, variables that are correlated with the im-

                                                 
11 Missing or observed samples in this paper refer to the cases where the dependent/targeted variable is to be im-

puted / missing or observed. 12 This procedure is only applied to a core set of variables.  The diagnostic analysis and comparision between 
competing models are still heavily involved with human interference and determination no matter what degree 
of automation we have programmed in the rest of the procedure. A full scale of application will be confronted 
with resouce constraint. Therefore, we decide to focus on the set of variables which bear these features: eco-
nomically and/or logically pivotal, with relatively high missingness, significant in determining the household 
net wealth and potentially MNAR. The list of these variables can be available upon request. The model specifi-
cation for the rest of the variables follows the principle of broad conditioning, which is an economical version 
of the “starting point” model as described below. The sensitivity analysis shows some variation of the model 
specification on them, introducing very minor impact. The relatively low item-nonresponse rates in our survey 
might be the explanation.  13 Without including this participation (dummy) variable, the model might neglect the fact that all the non-
participants can be systematically different from the participants which can bias the prediction. Additionally, 
we replace the missing covariate of those non-participants by a constant (e.g. zero). A detailed discussion is ex-
tended in the section 6.2. 14 We always include survey weights in all the final specifications to account for the stratification and over-
sampling effect (Reiter et al., 2006). 
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puted variable, and variables that are associated with the missingness of the imputed variable 
(Schafer, 1997; van Buuren et al., 1999).” 

Our choice of candidate covariates mentioned above follows these suggestions, particularly 
the broad conditioning which intends to cover all the variables any potential data analyst 
might use. The set of these covariates themselves builds a “starting point” model. Ideally, this 
“starting point” model should not be single. One model including one particular covariate 
might exclude quite a large subsample which has missingness on this variable. For example, a 
model including the value of HMR (household main residence) cannot be applied to those 
renters. In this case, we should also consider the other “starting point” model without the val-
ue of HMR to cover the renters. Since the model selection can be deemed as a refinement 
process following each “starting point” model, there should also be equal numbers of inde-
pendent selected models to cover each subpopulation. Theoretically, this can lead to a large 
number of independent model selection procedures and constructing imputation models for 
each subset. For practical matters, we rarely do this. Instead, we parameterize these covariates 
as we elaborate in the section 6.2, which allows us to run one single set of model selection 
over the whole sample. Actually, after we select some competing models, we also run both 
the internal and external diagnoses on this “starting point” model. If there is no clear sign of 
overfitting or that the selected model outperforms the “starting point” model in an ex ante 
evaluation of the imputation outcome, the “starting point” model is always preferred. 

 Now we start to discuss the refinement process and the internal diagnosis: 

a) Selection by missing pattern. Since the model selection procedure uses the casewise 
deletion to form the samples for fitting and scoring, there is a tradeoff between larger 
training sample with enough statistical power and keeping the predictive covariates 
with high missingness.  We trim the variables by these rules: 
1) The very first set to be dropped contains those with high pairwise missingness 

w.r.t. the dependent variable. 
2) The next group consists of those pivotal variables appearing in many missing pat-

terns.15 
However, we prefer the sacrifice of the size of the training sample to the exclusion of 
any covariate bearing the mild correlationship with the dependent variable.  In practice, 
we observe our model selection procedure can be quite robust even under small sam-
ple size.  

b) Selection by the model selection technique. After the screening, we begin to run the 

PROC GLMSELECT and regression diagnosis.16 Here are the major steps: 
1) We use PROC GLMSELECT to randomly form the training and test subsamples 

from the observed sample. The cross validation will be performed within the train-

                                                 
15 We apply PROC MI in SAS/STAT to list all the missing patterns. 16 The core of this selection routine is PROC GLMSELECT, a procedure in SAS/STAT package. 
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ing data to make decisions on the covariate to choose on each step and when to 
stop. The scoring will be performed on the test subsample.  We check the sequence 
of average square error (ASE) for the test data. If this goes up, this can be a sign of 
overfitting. Under this circumstance, we could adjust the procedure for another run 
(e.g. modifying the pool of the candidate covariates, allowing more interaction 
terms to be tested, changing the selection criterion, …).  

2) The selected model is then further examined by regression diagnosis, esp. on the 
issues of fitness and influential observations: SAS/STAT provides many fit diag-
nostics, among them, the alignment of the residual and the difference between fit-
ted value and mean is a powerful tool to assess the fitness (i.e. “Proportion Less” 
plot / quantile - quantile plot). The plot of the residual and leverage is the other 
tool used to detect the influential observations. The routine will always perform 
the diagnosis both before and after dropping some outliers. This can help us to de-
termine the impact of the outliers on the model fitness. When they cause the over-
fitting, we will exclude them in the imputation model. 

Figure 0 Internal diagnosis plots for DHI0700 (self-reported household total wealth): be-
fore and after the trimming of outliers17 

 
Figure 1-A Before the trimming of outliers 

                                                 
17 This set of plots is produced by the default diagnosis graphics of PROC REG in SAS/STAT. 
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Figure 1-B After the trimming of outliers 

Figure 1 presents a case study on how the diagnosis assists us in trimming the out-
liers. Many respondents answered zeros for DHI0700 (self-reported household to-
tal wealth) which might cause the underestimation as suggested by the opposite re-
lationship between predicted value and residual in Figure 1-A (the strip results 
from these zeros). We then drop all the outliers using a common criterion: 
|RSTUDENT|>2.18  Among them are many zeros. Figure 1-B is the diagnosis re-
sult after refitting. The opposite relationship between predicted value and residual 
is not prevalent any more. “Proportion Less” (quantile/quantile plot) shows our 
model fitness improves and we can indeed reliably predict/impute those in the 
lower end of the distribution (due to maintaining some valid zeros which are not 
the outliers). 

3) As illustrated in the above example, the regression diagnosis can guide us on 
whether to accept the selected model for this stage or make further adjustments by 
repeating from the step 1). 

Sometimes, we have to run the sensitivity analysis to produce various competing models due 
to irregular missing pattern, logical constraint, and specific modeling concern etc.  

5.3 Predications of the imputed and observed samples 
Although out-of-sample prediction error is assessed by using test and validation samples dur-
ing the model selection procedure, it is still necessary to perform a prediction on the missing 
sample using the selected model and compare it with the predictive distribution of the ob-

                                                 
18

 RSTUDENT is a studentized residual with the current observation deleted. 
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served sample. The prediction on the missing sample can be considered as an approximate 
view of the imputed outcome. By our subjective evaluation on this distribution and compari-
son with the predicted observed sample, we could make a first judgment on whether the im-
puted distribution and/or single values do make sense economically and/or statistically.  

As discussed above, it is critical to capture the variables explaining the missingness. The dif-
ference between the predictive distributions on the observed and missing samples does signify 
the success of including such covariates. However, to decide the sufficient numbers of such 
variables selected in our model, we need to compare with a baseline benchmark:  the differ-
ence of the predictive distributions from the observed and missing samples using a model 
containing those covariates which are almost always nonmissing (basic demographics and 
those from the paradata).19 Our decision can be justified by the additional variation of the dif-
ference due to the newly selected variables. It is not uncommon that we might obtain several 
competing models when tuning up our selection procedure. Then this baseline benchmark be-
comes further indispensible because of the reason discussed below. 

Many models selected can pose the restriction and/or affect the impact of influential observa-
tions in various degrees. One typical concern is that the eligible training and missing samples 
might be a particular subsample. For example, when the value of HMR is included as a co-
variate, both samples should be no more than the home owner subsample. However, condi-
tional on being homeowner, the distributions of both predictive observed and missing samples 
might bear exceptional statistical features (e.g. a much more skewed distribution of self-
reported wealth). Given the comparison with the baseline benchmark, we are able to quickly 
identify and justify the source of increasing skewness. The similar comparison could also be 
informative if the explaining power of some other covariates on the missing pattern varies 
when conditional on being home owner.  

The selected model can introduce more sensitivity on some influential observations relative to 
the baseline benchmark. The parallel comparisons of both observed and missing samples with 
the baseline benchmark can provide the justification on the severity of outliers: whether there 
is overestimation/underestimation on the missing sample due to them. Figure 2-A displays a 
baseline benchmark for DHI0700 (self-reported wealth): the distributions of prediction pro-

duced by the baseline model on both the observed and missing samples.20 Figure 2-B illus-

trates the predicted distributions when an imputation model is selected.21 As presented previ-
ously, quite a few of zeros are maintained in the training sample for DHI0700. Compared with 
the baseline benchmark, they affect the predictive distribution on the selected model by creat-

                                                 
19

 This construction can serve as a baseline model because all the models selected can be considered as almost 
always the extension (e.g. containing more covariates). On the other hand, we use only those covariates rarely 
missing which can cover the most cases in the observed and missing samples. 20 The value is transformed by HIS. 21 The selected model forms the slightly different subsamples for both observed and missing samples relative to 
those in the baseline benchmark: the jointly nonmissing cases are not exactly same due to introduction of addi-
tional covariates. We have examined that this difference is not correlated with the following interpretation. 
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ing a dualism (i.e. adding the other mode in the lower end) and shift the overall distribution. 
We observe the degrees of these two impacts are equivalent in the observed and missing sam-
ples: the relative location and scale of the lower mode is almost same and the means of both 
distributions decrease by 2%. The caution that the zeros might result in extraneous imputed 

outcome seem to be unsupportive.22  

Figure 1 Predictive distributions of observed and missing samples for DHI0700 (self-
reported household total wealth): baseline benchmark vs. selected model (histogram, 
kenal density (red dashed line) and normal fitted curve (blue line) are displayed)23 
 

 
Figure 2-A baseline benchmark 

                                                 
22 We acknowledge that all the diagnosis in the model selection procedure might not be conclusive in terms of 

the final imputed outcome due to mainly two reasons: 1) the covariates and observed dependent variables can 
change when imputation iterations evolve; 2) we cannot observe the prediction on some cases with missing co-
variates within the selected set due to casewise deletion, which might be quite exceptional. However, in our 
experience, they are not detrimental. One major reason is our relatively low item-nonresponse. 23 DHI0700-2 means the second round of model selection (there are a number of competing models). LDHI0700 
denotes the DHI0700 transformed (by HIS). 
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Figure 2-B selected model 

6 Specific modelling technique for real-data problems 
The other side of challenges on imputation specification comes from the irregular data struc-
ture and the logical constraints imposed by a real-time survey. Based on the imputation of 
German Institute for Employment Research (IAB) Establishment Panel, Drechsler (2011) has 
a comprehensive discussion on many of real-data issues as well as the possible bias or incon-
sistency when standard routines are applied. Next, a number of critical problems and solutions 
in our data are visited. 

6.1 Semi-continuity and heteroscadacity 
It is often observed that many survey variables designed to be continuous are not fully “con-
tinuously answered”, e.g., there are spikes and truncations. Many observed values are self-
reported which are mostly the multiples of 100 (e.g. 155,000, 3,700 etc.) and concentrate on a 
small number of points (this is the notorious self-rounding issue). Respondents often do not 
have enough market information and/or are quite conservative when asked about the value of 
some assets, e.g., the value of the cars. Then they tend to answer a value of zero for those old 
and undermaintained cars. We then observe a mass point on zero. There are some institutional 
restrictions to constrain the variables. For example, almost all the hedge funds have the re-
quirement of least amount invested. The truncation is then created. 

To well maintain these data patterns and avoid imputing impossible values in the imputed 
sample, we widely adopt the predictive mean matching (PMM). This means that the initially 
imputed value (i.e. the predictive mean plus a random draw from the estimated residual distri-
bution) is matched to (or imputed by) one observed value with the smallest distance between 

this initially imputed value and the observed value.24 This mechanism is pioneered by Little 
                                                 
24 This is a variation of the inital PMM proposed by Little (1988) which defines the distance measure as the dif-

ference between the predicted means of both donor and beggar. Another kind of PMM is to add the empirical 
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(1988). One specific advantage is that it is more robust to model misspecification than simply 
drawing random residual, which can be sensitive to assumptions about the variance structure 
(David et al., 1986).  

Another advantage of PMM is its superiority in handling heteroscedasticity. For instance, rich 
respondents are generally more financially sophisticated and better informed about their fi-
nancial situation than the poor one. Thus there is supposed to be less reporting error for the 
first group in our survey. 

Like many other surveys, the spike on zero is often present in the distributions of many value 
variables.  Many of such variables are headed by a filtering variable asking the participation. 
And we always impute these filtering variables first and construct the imputation only over 
whoever participates. This is simply the two-step or hurdle model labeled in the literature 
(Cragg, 1971; Kennickell, 1998; Raghunathan et al., 2001; Barceló, 2006; Schunk, 2008).  

Given the fact there are still many zeros answered even using such a participation filtering, it 

is plausible that many of such respondents are on the margin of participation.25 On the other 
hand, it is possible some of them misreport the values in the sense that their residuals can be 
rather high in a correctly specified model. To account for these two kinds of zero reporters, 
three techniques are combined: outlier detection, inverse hyperbolic sine (IHS) transformation 
and PMM. We first screen out those zero cases when constructing imputation SSCP if they 
are assessed to be extraneous in the regression diagnosis. We adopt IHS transformation for the 
imputation model of most continuous variables. Generally, this can improve the approxima-
tion to the joint normal assumption which is required by many literatures on multiple imputa-
tion and MCMC methods. In the current application of handling zeros in the observed sample, 
the special consideration is that it is a continuous transformation crossing zero and the steep-
ness on zero is much lower than the other commonly used transformation logarithm. This fea-
ture permits the prediction of negative values for those on the margin of participation. Given 
the PMM, we could impute zeros for them as the nearest neighbor. Instead, using logarithm 
under PMM, quite a few of them would be matched to some small positive values because 
they are among the observed values. We would then possibly produce a mass on these values 
other than zeros in the imputed sample. However, these small positive values are rarely ob-
served to be the spikes in the observed sample. For many users who are less sophisticated in 
imputation, this outcome can be misleading particularly when they are interested in modeling 

the zero mass point.26 

                                                                                                                                                         
residual from the matching donor to the predictive value of the imputed beggar (Kalton et al., 1985). This 
method can avoid the clustering which can be valuable when missing rate is high. Our version can be deemed 
as a combination of these two: our distance measure is actually the intial one plus a difference between esti-
mated and empirical residuals. This additional term can introduce a penalty on the match with the outliers. 25 This is evident from many observed correlated variables. 26 For instance, those reporting zeros can be a specific subpopulation who might be unconfident, pessimistic, im-
patient or lack of financial sophistication and/or market information. 
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6.2 Jointly exclusive covariates 
Some important covariates never coexist for any case because of the logical tree in the ques-
tionnaire. For instance, the housing value of the main residence and the rental payment are 
asked separately for different subsamples depending on their residence status. Ideally, we 
should subset our imputation models: for example, one for the subpopulation of house owners 
and one for the subpopulation of renters. However, this means an overwhelming effort of data 
manipulation and model selection if these are two important covariates for many models. We 
take a compromising approach: the housing value is set as zero if the respondent is a renter 
and vice versa, plus we include the binary variable on residence status (namely a transfor-
mation of the head variable indicating the participation of housing market). This variable will 
reduce the selection issue when house owners and renters are fundamentally different group 
of population (see Albacete (2012) for the same argument).27 

6.3 Imputation of three particular multiple choice/categorical variables  
We have many categorical variables to be imputed. Questionnaire imposes some explicit or 
implicit constraints on them. We separate them into three classes: 

1) Ordered (e.g. DHI0300A-M, reason of saving). We use sequential hotdeck imputa-
tion by respecting the order while controlling the fact that the answers should be ex-
clusive with each other: it is impossible to answer the choice which has been given 
previously in the sequence. The latter is done by building an exclusion list containing 
those choice values imputed previously in the sequence. 

2) Unordered, multiple choices allowed and only joint missingness can occur (e.g for 
DPA0200A-E (legal status marriage), CAPI presents an answering box where inter-
viewer can type in any choices the respondent picked up from a list or -1/-2. The for-
mer scenario will lead to the answers of “NAMED/NOT NAMED” in DPA0200A-E 
and the latter one will produce -1/-2 to all of these five variables). A sequential impu-
tation might yield an outcome such that each variable becomes “NOT NAMED” 
which is logically wrong. Therefore, we have to control this implicit constraint. Here 
is an approach we adopt: taking DPA0200A-E as an example, we map the combina-
tions of these five variables answered to a set of index (they are actually formed as a 

binary number with each digit representing the outcome of one variable).28 All the 
missing cases will be first imputed by the hotdeck method drawing from these ob-
served indexes. Afterwards, a transformation will map the imputed index back to the 
response in each variable. 

                                                 
27 If the selection issue is really serious, the other approach is to turn on the other kind of PMM in FRITZ: use 

sample residual of the near neighbour. It will allow that the estimation of SSCP is tailored to the subset of co-
variates observed for each case to be imputed. However, this can dramatically extend the computation time 
since it can be very likely to require a large number of separate calculations of SSCP and its inverse. 28 This approach is initially proposed in SCF byArthur Kennickell. 
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3) Unordered, multiple variables in a list answered and single missingness can occur 
(e.g for dhb1200a-h (number of other vehicles), CAPI allows that a non-negative inte-
ger or -1/-2 is answered for all items). The implicit constraint is that it is impossible 
that all items are zero. The property for this kind of variables is very similar to that in 
2). But the only exception of single missingness prevents us from easily adopting the 
same approach as in 2): for example, imagining dhb1200b is two, dhb1200c is -2 and 
all the rest are zeros, we have to restrict our indexes to be hot decked in order to meet 
this particular combination. This is not so straightforward to code. Besides, it is possi-
ble this particular combination does not exist in the observed cases.  
We then resort to a compromising approach: impute the aggregate value (setting a 
lower bound of one to make sure it will be positive always) and use it as covariate to 
impute each component variables. If each component variable (observed or imputed) 
is zero, we force the lower bound of the last variable “others” to be one while imput-
ing this variable. The extra preparatory work involved is to edit this “other” variable to 
be -1/-2 whenever there is -1/-2 among other component variables and this “other” 
variable is zero (this is to assume there is possibility the respondent might have diffi-
culty to make sure of the right category when he reports -1/-2 for one category). This 
is not an ideal solution because there is no clear rationale why this “other” variable be-
comes “exit/residual” variable, particularly this might mean some insignificant/very 
idiosyncratic component in the mind of the respondent. However, it appears this is not 
the story in our data: there is a quite high frequency of positive numbers answered for 
this “others” in such kind of questions, which implies this does represent some specif-
ic categories ignored in our list. In this situation, it is relatively convincing to assign a 
positive number to this “other” variable while the respondent enters into these ques-
tions and all the rest of variables are imputed to be zeros. 

6.4 Bracket imputation and editing constraint 
There are two main bounds imposed during imputation: the intervals provided by respondents 
and many of the editing constraint, e.g., the total years employed should be smaller than the 
age minus 15.  

There are mainly two approaches to handle bounds when imputing: drawing from a truncated 
distribution using the bounding information or repeated drawing from an untruncated distribu-
tion until the value meets or is forced to hit the bounds. The first is econometrically more ac-
curate and computationally more efficient. However, this requires a subsample satisfying the 
truncation/bounding totally in order to estimate the parameters of the truncated distribution. In 
practice, this is too restrictive since this kind of subsample can often have a very small size or 
even does not exist in the observed data given the complex logical structure and missing pat-
tern. In addition, many such observed distributions are highly skewed. These factors can re-
sult in a collapse or difficulty in convergence during estimation. FRITZ uses the second ap-
proach which is more common in practice. Since it uses the information from all the observed 
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cases, we will always feasibly estimate and impute the model.29 But the pitfall is that the 
model might be misspecified. In another word, only when we do not impute many values hit-
ting the bounds, or alternately, the probability of drawing implausible values is very low, this 
approach is safe  (Drechsler, 2011).  

The PMM approach discussed previously can effectively prevent drawing implausible values. 
To make sure the bounds provided are compatible with those from the observed sample val-
ues, we resort to a feature in FRITZ to align both. In addition, it is also involved with tremen-
dous efforts in ex-post validation: we read carefully the log file to monitor the events when 
the random draws collapse on the bounds and adjust the editing constraint and/or our specifi-
cation if this count is too high. 

6.5 Multiple assets answered in order. 
The PHF questionnaire contains several loops asking for details of e.g. the three most im-
portant mortgages or the three most important loans. In case there was too much non response 
in the key variables of the loop (e.g. more than 50% don’t know or no answer in hb170$x) the 
interview continues with an additional question about the total value of all mortgages/loans 
(e.g. dhb2600). These additional variables have not been imputed; instead they serve as upper 
bounds for the imputation of the key variables in the loops. Mostly, the answering order 
means something different and a separate specification for each asset is more proper. 

The deviations between the sum of the single values and the estimated sum value are possible 
and generally not corrected. Schenker (2006) summarized the reasons not to enforce this kind 
of consistency: the size of inequality is not ignorable in the observed data, the effort to impose 
such equality constraint tends to distort the marginal distribution and this does not have much 
impact on the core research question. Jaenichen (2012) also discussed many institutional rea-
sons on the similar issue for the income variables in Panel Arbeitsmarkt und Soziale Sicher-
ung (PASS).30 Besides these two studies, Barceló (2006) also left alone such inconsistency in 
Spanish Survey of Household Finances (EEF).  Likewise, we take no action for this case as 
well as for some other implicit constraints with similar characteristics. 

                                                 
29

 We would like to give credit to Cristina Barceló for her comment on this point in the mailing list of imputation 
subgroup of HFCN. 30 We thank Tobias Schimdt for drawing our attention to this study. 
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7 Item-nonresponse in PHF31 

In order to obtain a comprehensive picture on our item-nonresponse, we selected a number of 
variables from each section and calculated their item-nonresponse (missing) rate in Table 1 
according to a couple of definitions. Here are the selection criteria which can be jointly satis-
fied in some cases: they are economically critical (i.e. many of them are pivotal covariates 
used in many imputation specifications), they are representative for the distribution of the 
missingness in each section (i.e. those with high, middle and low missing rates are picked or 
otherwise single variable is presented when the distribution is flat), they well spread across 
each unit of the section and/or they are the exceptional cases. In doing so, we believe this pre-
sents a representative subsample where our analysis of the item-nonresponse can be reasona-
bly well extended to the whole sample. 

In order to address the impact from the filtering structure of the questionnaire, availability of 
additional bounding information and the imputation of filtering variables, we calculate five 
missing rates:  

a) Missingness by DK/NA (% of ex ante applicable cases).32 This ex ante appli-
cable cases exclude the case which is filtered by the head variable, and thus, 
which the response flow never arrives. This is the item-nonresponse rate many 
surveys report and use as a benchmark for comparison (e.g. Christelis (2011)). 
However, this ignores two important features:  

 
i. The filtering can also happen due to the fact that some of the head variables 

in the higher order of the logical tree are not answered (e.g. some cases of 
HB0900 (value of household main residence/HMR) are filtered because the 
respondents answered DK/NA in the head variable DHB0200A-D (owner-
ship share of HMR)). These are actually the cases which will be potentially 
imputed as long as these head variables are imputed such that the response 
flow can arrive this variable (this is also called “participation”). Therefore, 
they should also be counted as the cases to be imputed.  

 
ii. As illustrated previously, all Euro value variables allow the user to answer 

a bound information if they respond DK/NA. Whenever this information is 
given, the imputation should be much more accurate.  An effective item-
nonresponse rate should exclude the cases when a bound is provided. 

 

                                                 
31 Above all, our questionnaire team should be given the credit because we observe some of the careful design 

helps in reducing item-nonresponse (though a thorough comparative study is required to formally evaluate the-
se observations): 

i. Respondents have various flexibilities to answer many value variables which each might know in terms 
of different reference period (yearly, quarterly, monthly and some months of the year if the cash flow 
does not last for the whole year). 

ii. It is creative and effective to allow the respondent to answer either gross or net income. It is quite plau-
sible that many respondents have only the information on one kind of income (e.g. many low-paid em-
ployees do not have full access to the payrolls and/or they do not often intend to maintain them well). 32 The number of DK/NA counts the total number of cases answering “don’t know” or “no answer”. 
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b) Missingness by DK/NA in a variable itself or any higher order head variables (% 
of total number of ex ante applicable cases and cases with DK/NA in any high-
er order head variables): this is to account for the potential imputations dis-
cussed in a) i.  

 
c) Missingness by DK/NA in a variable itself or any higher order head variables 

excluding the cases with bounds (% of total number of ex ante applicable cases 
and cases with DK/NA in any higher order head variables): this is to account 
for the feature in a) ii. 

 
d) Missingness by DK/NA in a variable itself or any higher order head variables 

excluding the cases with non-participation imputed ex post (% of total number 
of ex ante applicable cases and DK/NA in any higher order head variables): 
this is to count only those cases with variable participation, or say to condition 
on the imputed participation. 

 
e) Missingness by DK/NA (% of ex post applicable cases). This corresponds to 

definition a), but uses the number of realized imputed cases (imputed participa-
tion) for enumerator and denominator. 

Notice these rates are calculated based on different datasets. a) uses the raw one. As discussed 
before, there is an imputation preparation step to assign the imputation flag value according to 
the missingness of the head variables. Both b) and c) are calculated after the raw data went 
through this step.  Finally, d) and e) have to rely on the imputed data. The calculations are as 
follows: 

a) # Missings / # Cases (ex ante) 

b) # Missings + # Missings in higher order head variables / # Cases (ex ante) + # Missings in 
higher order head variables 

c) # Missings + # Missings in higher order head variables - # Interval values / # Cases (ex 
ante) + # Missings in higher order head variables 

d) # Imputes cases (ex post) / # Cases (ex ante) + # Missings in higher order head variables 

e) # Imputes cases (ex post) / # Cases (ex post) 

Due to logical constraints, the rate in a) is smaller equal than the rate b), and c) smaller equal 
b), d) smaller equal b), a) smaller equal e). 

We focus on the comparison across sections and variables in our survey to shed light on the 
potential behavioral interpretation of individual item-non response and its impact on the in-
formation content from imputation. There is a baseline friction for the general degree of item-
nonresponse. This can be derived from the levels of cooperation, trust, attentativeness as well 
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as the recall efforts required for household financial questions. However, this paper is not go-

ing to address these factors.33  

Generally, according to the benchmark rate - and more effective rate -, the item-nonresponse 
is not severe in our data ((a) will be cited in the following discussion). Notice we sort the Ta-
ble 1 according to the section average rate (a). Particularly, many economically critical varia-
bles were answered quite well in terms of item-nonresponse relative to the other variables in 
our survey: e.g., most variables about HMR in the housing section (section 3) have quite low 
item-nonresponse rates (between 0.5% on size and 8.9% on value). The information on em-
ployment status and time/history (section 7) is even better (between 0.1% on current employ-
ment status and 1.3% on total time in employment). Following them is the consumption sec-
tion (section 2; between 0.25% on food consumption and 11.1% on estimation of wealth). Our 
respondents seem to not have much reluctance in answering income questions (particularly 
6.8% on income from employment and 4.4% on social transfer income) (section 9 and 9.2), 
which surprisingly contrasts with the suffering in many other surveys. The exceptions are the 

private pension incomes (23.9%) and income from financial investment (21.9%).34 Respond-
ents do not have difficulty in recalling the values of donations and gift/inheritances but church 
tax seems to be challenging (section 6; between 1.4 and 7.5% for the former two and 25.5% 
for the latter). 

The following variables/sections are relatively worse. Respondents seem to have difficulty in 

recalling/reporting the debt on credit card (section 4).35 It is not surprising that owners might 
not precisely know the value of their business (24.7%) and both the flow (e.g. 42.9% on sav-
ing in certificates) and stock (e.g. 35.1% on bond) values of saving in financial vehicles (they 
are not answered well except the questions on saving account (0.4%; section 5). Many ques-
tions in the section of pension and insurance have quite high missingness (section 8; with 
many well above 30%). In general, we can postulate that 

 
• the respondents make good effort to trace the information as long as the reference 

documents can be reachable and straightforward (e.g housing transaction statements 
and bank statements about saving accounts and payrolls),  

 

• they have difficulty in recollecting the information when the question might involve 
with reference documents which are associated with multiple sources, uneasy to be 

                                                 
33 ECB will soon publish a metadata report, where a cross country view is provided on missing rate. This might 

offer some benchmarks for assessing these underlying frictions. 34 Neverthless, the questions on the ownership of these incomes (e.g. financial investment income) are not sub-
ject to high missingness. 35 One important feature in German credit card industry might explain this: many debitors will allow the banks to 
pay off the whole or part of the debt by an automatical transfer from their linked current accounts in the end of 
each billing cycle. They often just ignore the monthly statement or there is almost zero balance duto automatic 
transfer.The distributions of DHC0610 and HC0320 do mass over some positive neighbor of zero. 
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identified or even unavailable (e.g. questions on private pension, financial investment, 
church tax, business value, particular saving contracts), 

 

• they intend to reveal what they are proud of and meaningful in their lives (e.g. dona-
tion and gift/inheritance), 

 

• and it seems questions requiring incidental instititutional knowledge are challenging 
for them (e.g. private pension and particular saving contracts). 

Furthermore, we define three types of change: I. between (a) and (b); II. between (b) and (d); 
and III. between (b) and (c). The first and second comparisions can reveal the ex ante and ex 
post impacts of logical trees in the questionnaire (i.e., additional missingness caused by the 
variables in the higher order of logical trees). The third one can shed light on the quality of the 
possiblity to anwer a value bound. 

The significant increase in type I change of item-nonresponse naturally concentrates on those 
with multiple head variables and/or in the downstream of long logical trees (e.g. HB3701, 
DHC0610 and many in section 8). The complication of logical structure in questionnaires is 
obviously positively related with item-nonresponse. 

The type I and II changes are very close for most variables. This is equivalent to state that 
missing rate (a) and (d) are quite close (most exceptions concentrate on the sections 5, 7 and 

8).36 Relative to (a), both the denominator and numerator increase by the same amount: the 
additionally imputed cases induced by the missingness in the head variables to be finally im-
puted as participation. Given this evidence, we can infer that many respondents answering 
DK/NA in the head variables are really those on the margin of owning the content of these 
variables (e.g. HMR). Therefore, they are then mostly imputed as not owning them (i.e. non-
participation). The potential concern of inflation of missing rate depicted as type I change can 
be mitigated by this fact. Adding simple logical structure in the questionnaire (e.g. asking the 
ownership before the values of many asset questions) does not de facto aggravate the infor-
mation loss due to item-nonresponse. 

Many noticeable drops in type III change of item-nonresponse occur among the economically 
critical variables and/or many suffering high missingness in (b) definition: e.g. DHI0700, 
DHI0600, HB0800, HB0900, DHG0800T1, DHH0905T1 and HD0801. This is quite a posi-
tive evidence for the effectiveness of offering a possibility to answer the value bounds as well 
as information loss due to item-nonresponse because the variables with bound information 
provided will be much more accurately imputed.  
                                                 
36 These three sections have quite long multi-level logical trees, or say, there are multiple head variables deter-

mining the participation condition parallely. As long as one participation condition is finally imputed, the miss-
ing rate (d) and (a) can be different. 
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8 Convergence 

We adopt two classes of convergence measurement: 

The first one assesses the distributional stability across iterations. Euclidean distances of the 
statistics (mean, median and interquantile range) aggregating over almost each continuous 
variable (about 220 variables in our data) are calculated during the end of each iteration from 
the second on. A detailed discussion on this measure can be found in section 6.2 of Barceló 
(2006).  

The other one is the Gelman-Rubin convergence criterion which is quite popular among Mar-
kov chain Monte Carlo (MCMC) literature. It penalizes a high variance between implicates 
since this means the imputed values of each implicate are not close enough. It rewards a high 
variance within implicates which implies imputation can cover well the domain of the joint 
distribution. This is a necessary condition for the convergence in the context of joint distribu-
tion as emphasized by theory for multiple imputation (Gelman et al., 1992; Christelis, 2011). 
Gelman (1992) suggests that 1.1 is a signal that convergence has reached. We calculated this 
measure over the mean of each continuous variable. For all the iterations, all the variables 
have this figure smaller than 1.0. 

9 Evaluation 
First, we should define a couple of concepts. If the response and sampling mechanism are 
both ignorable, the missingness in the data obtains the property missing at random (MAR 
(Rubin, 1987)). Otherwise, the data is missing not at random (MNAR). The sampling mecha-
nism is ignorable if the sampling probability only depends on the observed data. This is true 
in most scientific surveys including PHF. As long as the sampling mechanism is ignorable, 
the response mechanism is also ignorable if the response probability depends on the observed 
data too. A special MAR is missing completely at random (MCAR) which means the response 
mechanism does not depend on either observed or unobserved data.  

If the distributions of the missing sample and observed sample are close, we can at least assert 
that there is no evidence to turn down MCAR. This is a strong form of MAR. The latter is a 
necessary condition to allow any imputation based on the observed information to achieve 
valid inference. When there is discrepancy between these two distributions and it can be at-
tributed to the observed information (i.e. any covariates in the imputation model), the MAR is 
still not violated.  

The external diagnosis proposed in Abayomi (2008) follows this reasoning.37 We also per-
form this ex post comparision of observed and imputed samples. For almost all the variables, 

                                                 
37 See the end of section 5.1 for the introduction of internal and external diagnoses.  
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the messages we learn from does not deviate from what comes out of the ex ante evaluation of 
these two distributions as elaborated in the section 5.3. 

Figure 3 contains this comparision for HB0900 (value of HMR) where Figure 3-A is a pdf 
version and Figure 3-B is a cdf version. Since we do not spot the evidence that two distribu-
tions differ systematically, no further examination is pursued. However, the imputed sample is 
obviously richer than the observed one for HD0801 (value of the business) as illustrated by 
Figure 4 which has the same setup as Figure 3 (the median of the imputed sample is 58,000 
euro which contrasts with 25,000 euro in the observed sample). Our investigation reveals re-
spondents with more children, lower stock in saving account and less value of gift/inheritance 

tend not to disclose the value of business but they also tend to hold higher value of business.38 

Figure 2 The distributional comparisons of imputed and missing samples for HB0900 
(current value of HMR): pdf and cdf versions (histogram, kenal density (red dashed 
line) and normal fitted curve (blue line) are displayed in the pdf version) 
 

 
Figure 3-A PDF comparison 

                                                 
38 These variables appear to be quite significant in the logit regression of the missing indicator of HD0801 but 

not in a regression of HD0801 itself. However, some descriptive statistics, as we explore, can also conclude 
this association between missing patterns and the difference in two distributions. 
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Figure 3-B CDF comparison 

Figure 3 The distributional comparisons of imputed and missing samples for HD0801 
(value of the business): pdf and cdf versions (histogram, kenal density (red dashed line) 
and normal fitted curve (blue line) are displayed in the pdf version) 

 
Figure 4-A PDF comparison 
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Figure 4-B CDF comparison 

 

10 Conclusions 
To disentangle the item-nonresponse in the first wave of PHF, we apply the multiple imputa-
tion proposed by Rubin (1987). FRITZ developed by Arthur Kennickell from US Federal Re-
serve Board is used as a robust imputation implementation. We made huge efforts to build the 
infrastructure ranging from a net-gross-conversion for income, adapting the data format for 
imputing jointly household and personal level variables, cleaning the flags etc. 

On the other hand, we adopt the measures for improving the out-of-sample prediction perfor-
mance to the environment of imputation: using validation and test samples in the model selec-
tion stage. Beyond the common diagnosis to compare the imputed and observed samples, a 
comparison of predictive distributions on the imputed and missing samples is performed and 
evaluated before the stage of imputation. This indeed can provide the early stage signal on the 
implausible values, singularity in the subsample constrained by the selected model and outli-
ers which allows adjusting the model before the time consuming formal imputation stage. 

It is prevalent in our survey that the respondents have to confront with multi-level filtering 
structures before they can participate to answer the value questions of many asset and liability 
items. This complication can increase the item-nonresponse and degree of imputation depend-
ency between the variables with logical connection. Using the flagging information, we de-
velop a set of measures of item-nonresponse to access these issues. We find that many re-
spondents turn out to be on the margin of participation which they are hesitant to reveal. In-
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formation loss due to the contagion of item-nonresponse between variables is not serious in 
our imputed data.  

Moreover, the treatments for several practical problems are also discussed: semi-continuity 
(esp. spike in zero), jointly exclusive covariates, imputation of multiple choice variables and 
so on. Measuring the convergence and imputation evaluation are briefly exposed which can 
be enriched in the future development and research. 
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Table 1: Item-nonresponse rate in the first wave of PHF: representative variables (rate 
in terms of percentage) 
Missing rate definitions: 

a) Missingness by DK/NA (% of ex ante applicable cases) 
b) Missingness by DK/NA in variable itself or any higher order head variables (% 

of total number of ex ante applicable cases and cases with DK/NA in any high-
er order head variables) 

c) Missingness by DK/NA in variable itself or any higher order head variables 
excluding the cases with bounds (% of total number of ex ante applicable cases 
and cases with DK/NA in any higher order head variables) 

d) Missingness by DK/NA in a variable itself or any higher order head variables 
excluding the cases with non-participation imputed ex post (% of total number 
of ex ante applicable cases and DK/NA in any higher order head variables) 

e) Missingness by DK/NA (% of ex post applicable cases) 

Missingness by DK/NA in variable itself or any higher order head variables excluding the 
cases with non-participation imputed ex post (% of total number of ex ante applicable cases 
and DK/NA in any higher order head variables ex post) 
Section Variable Label Number 

of 
DK/NA 

(a) (b) (c)  (d) (e) 

1 DPA0500 EMPLOYED 2 0 0 0 0 0 
1 DPA0300 HIGHEST LEVEL OF 

EDUCATION COM-
PLETED 

10 0.2 0.2 0.2 0.2 0.2 

7 DPE1275 NUMBER OF CHIL-
DREN 

0 0 0.5 0 0.5 0.1 

7 DPE0100A CURRENT EMPLOY-
MENT STATUS - 
MAIN STATUS 

4 0.1 0.1 0.1 0.1 1.1 

7 DPE0500A TYPE OF EMPLOY-
MENT RELATION-
SHIP - LAST JOB 

8 0.3 1.4 1.4 1.1 0.6 

7 DPE0200A TYPE OF EMPLOY-
MENT RELATION-
SHIP - CURRENT 

16 0.5 0.6 0.6 0.6 0.5 

7 PE0700 TIME IN MAIN JOB 36 1.1 1.2 1.2 1.1 1.1 
7 PNE2100 TIME IN LAST JOB 33 1.3 2.4 2.4 2.1 1.6 
7 PE1000 TOTAL TIME IN EM-

PLOYMENT 
77 1.3 1.8 1.8 1.6 2.1 
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7 PE0600 WORKING HOURS 
PER WEEK - MAIN 
JOB 

66 1.9 2 2 2 2 

2 HI0100 AMOUNT SPENT ON 
FOOD AT HOME 

8 0.2 1.7 0.2 1.7 0.2 

2 DHI0200 SAVING BEHAVIOUR 7 0.2 0.2 0.2 0.2 1.7 
2 DHI0600 ESTIMATION OF 

MONTHLY HOUSE-
HOLD INCOME 

182 5.1 5.1 1.7 5.1 5.1 

2 DHI0700 ESTIMATION OF 
WEALTH 

394 11.1 11.1 3.6 11.1 11.1 

3 HB0100 SIZE OF HOUSEHOLD 
MAIN RESIDENCE 

18 0.5 0.5 0.5 0.5 0.5 

3 DHB0300 AMOUNT OF RENT 
PAID FOR HOUSE-
HOLD MAIN RESI-
DENCE (EXCLUDING 
BILLS) 

20 1.5 1.6 1.1 1.5 1.5 

3 HB1401 INITIAL AMOUNT 
BORROWED 

26 3.3 7.8 6.4 4.3 4.5 

3 DHB0810 VALUE OF ALL CARS 
OWNED BY HOUSE-
HOLD 

119 4.2 4.6 2.2 4.6 4.6 

3 HB0800 PROPERTY VALUE 
AT THE TIME OF ITS 
ACQUISITION 

158 7.8 7.9 3.9 7.8 7.8 

3 HB3701 AMOUNT STILL 
OWED 

24 8.1 20.6 16.2 11.7 12.9 

3 HB0900 CURRENT VALUE OF 
HOUSEHOLD MAIN 
RESIDENCE 

179 8.9 8.9 3.6 8.9 8.9 

9.2 HG0400 INCOME FROM FI-
NANCIAL INVEST-
MENT 

46 1.3 1.3 1.3 1.3 1.3 

9.2 DHG0200T1 TOTAL INCOME 
FROM REGULAR SO-
CIAL TRANSFERS 
(YEARLY ) 

57 4.4 5.2 2.4 4.8 4.9 

9.2 DHG0600T1 TOTAL RENTAL IN- 52 7.5 8.7 7 7.6 7.8 
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COME FROM REAL 
ESTATE PROPERTY 
(YEARLY ) 

9.2 DHG0800T1 AMOUNT OF IN-
COME FROM FINAN-
CIAL INVESTMENT 
(YEARLY GROSS) 

381 21.9 23.9 10.7 22.8 23.1 

6 DHH0805 VALUE OF DONA-
TIONS - AMOUNT 

30 1.4 1.9 1.2 1.7 5.6 

6 HH0401 VALUE OF 
GIFT/INHERITANCE 

93 7.5 8.4 5.1 7.8 7 

6 DHH0905T1 VALUE OF CHURCH 
TAX - AMOUNT 
(YEARLY ) 

508 25.5 26.4 12.9 25.7 24.1 

9 DPG0210T1 EMPLOYEE INCOME 
- AMOUNT OF BO-
NUS PAYMENTS 
(YEARLY GROSS) 

153 5.6 6 4.3 5.4 1.7 

9 DPG0200T1 AMOUNT OF EM-
PLOYEE INCOME 
(YEARLY GROSS) 

218 6.8 7.2 4.7 7 7.8 

9 DPG0800T1 TOTAL GROSS IN-
COME FROM PRI-
VATE PENSIONS 
(YEARLY GROSS) 

115 23.9 22 18 16.5 25.9 

4 DHC0610 AMOUNT OF POSI-
TIVE BALANCE ON 
CREDIT CARD AC-
COUNT 

32 14.9 24.4 16.5 14.5 16.1 

5 DHD0500 SAVING - SAVINGS 
ACCOUNT 

10 0.4 0.8 0.8 0.7 0.7 

5 DHD3200 VALUE OF SIGHT 
DEPOSITS 

223 6.9 6.4 3.5 6.3 6.3 

5 DHD0620T1 SAVINGS AMOUNT - 
HOME PURCHASE 
SAVINGS - AMOUNT 
(YEARLY ) 

153 11.9 12.4 10.2 12 12 

5 DHD0610 POSITIVE BALANCE 
ON SAVINGS AND 

167 13 13.5 7.9 13.1 14.5 
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LOAN CONTRACT 
5 DHD2610 VALUE OF LISTED 

SHARES 
147 23.1 17.8 13.2 13.9 13.1 

5 HD0801 VALUE OF THE 
BUSINESS 

114 24.7 26.8 16 25.7 19.5 

5 DHD2520 MARKET VALUE OF 
GOVERNMENT 
BONDS 

112 35.1 26.1 21.8 17.9 26 

5 DHD1010T1 SAVINGS AMOUNT - 
CERTIFICATES - 
AMOUNT (YEARLY ) 

3 42.9 91.1 91.1 7.1 44.4 

8 DPF1800ST1 CURRENT OWN 
CONTRIBUTIONS - 
RIESTER OR RÜRUP 
BANK SAV-
INGS/LOAN CON-
TRACTS - AMNT 

8 19.5 97 97 1.4 32.1 

8 DPF1300H CURRENT BALANCE 
PENSION ACCOUNT - 
NON-STATE-
SUBSIDISED LIFE IN-
SURANCE POLICIES 

452 24.6 25.9 17 24.1 24.9 

8 DPF1910GT1 EMPLOYER CON-
TRIBUTION - DIRECT 
INSURANCE - 
RIESTER/RÜRUP 
PLANS - AMOUNT 
(YEARLY 

20 33.3 96.5 96.2 3.3 48.5 

 

Table 2: Changes of item-nonresponse rate in the first wave of PHF: representative var-
iables (rate in terms of percentage; (a)-(d) follows the definitions in Table 1) 
Types of changes: I. (b)-(a), II. (b)-(d) and III. (b)-(c) 

Section Variable Label I II III 
1 DPA0500 EMPLOYED 0.0 0.0 0.0 
1 DPA0300 HIGHEST LEVEL OF EDUCATION 

COMPLETED 
0.0 0.0 0.0 

7 DPE1275 NUMBER OF CHILDREN 0.5 0.0 0.5 
7 DPE0100A CURRENT EMPLOYMENT STATUS - 0.0 0.0 0.0 
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MAIN STATUS 
7 DPE0500A TYPE OF EMPLOYMENT RELATION-

SHIP - LAST JOB 
1.1 0.3 0.0 

7 DPE0200A TYPE OF EMPLOYMENT RELATION-
SHIP - CURRENT 

0.1 0.0 0.0 

7 PE0700 TIME IN MAIN JOB 0.1 0.1 0.0 
7 PNE2100 TIME IN LAST JOB 1.1 0.3 0.0 
7 PE1000 TOTAL TIME IN EMPLOYMENT 0.5 0.2 0.0 
7 PE0600 WORKING HOURS PER WEEK - MAIN 

JOB 
0.1 0.0 0.0 

2 HI0100 AMOUNT SPENT ON FOOD AT HOME 0.0 0.0 1.5 
2 DHI0200 SAVING BEHAVIOUR 0.0 0.0 0.0 
2 DHI0600 ESTIMATION OF MONTHLY HOUSE-

HOLD INCOME 
0.0 0.0 3.4 

2 DHI0700 ESTIMATION OF WEALTH 0.0 0.0 7.5 
3 HB0100 SIZE OF HOUSEHOLD MAIN RESI-

DENCE 
0.0 0.0 0.0 

3 DHB0300 AMOUNT OF RENT PAID FOR HOUSE-
HOLD MAIN RESIDENCE (EXCLUDING 
BILLS) 

0.1 0.1 0.5 

3 HB1401 INITIAL AMOUNT BORROWED 4.5 3.5 1.4 
3 DHB0810 VALUE OF ALL CARS OWNED BY 

HOUSEHOLD 
0.4 0.0 2.4 

3 HB0800 PROPERTY VALUE AT THE TIME OF 
ITS ACQUISITION 

0.1 0.1 4.0 

3 HB3701 AMOUNT STILL OWED 12.5 8.9 4.4 
3 HB0900 CURRENT VALUE OF HOUSEHOLD 

MAIN RESIDENCE 
0.0 0.0 5.3 

9.2 HG0400 INCOME FROM FINANCIAL INVEST-
MENT 

0.0 0.0 0.0 

9.2 DHG0200T1 TOTAL INCOME FROM REGULAR SO-
CIAL TRANSFERS (YEARLY ) 

0.8 0.4 2.8 

9.2 DHG0600T1 TOTAL RENTAL INCOME FROM REAL 
ESTATE PROPERTY (YEARLY ) 

1.2 1.1 1.7 

9.2 DHG0800T1 AMOUNT OF INCOME FROM FINAN-
CIAL INVESTMENT (YEARLY GROSS) 

2.0 1.1 13.2 

6 DHH0805 VALUE OF DONATIONS - AMOUNT 0.5 0.2 0.7 
6 HH0401 VALUE OF GIFT/INHERITANCE 0.9 0.6 3.3 
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6 DHH0905T1 VALUE OF CHURCH TAX - AMOUNT 
(YEARLY ) 

0.9 0.7 13.5 

9 DPG0210T1 EMPLOYEE INCOME - AMOUNT OF 
BONUS PAYMENTS (YEARLY GROSS) 

0.4 0.6 1.7 

9 DPG0200T1 AMOUNT OF EMPLOYEE INCOME 
(YEARLY GROSS) 

0.4 0.2 2.5 

9 DPG0800T1 TOTAL GROSS INCOME FROM PRI-
VATE PENSIONS (YEARLY GROSS) 

-1.9 5.5 4.0 

4 DHC0610 AMOUNT OF POSITIVE BALANCE ON 
CREDIT CARD ACCOUNT 

9.5 9.9 7.9 

5 DHD0500 SAVING - SAVINGS ACCOUNT 0.4 0.1 0.0 
5 DHD3200 VALUE OF SIGHT DEPOSITS -0.5 0.1 2.9 
5 DHD0620T1 SAVINGS AMOUNT - HOME PUR-

CHASE SAVINGS - AMOUNT (YEAR-
LY ) 

0.5 0.4 2.2 

5 DHD0610 POSITIVE BALANCE ON SAVINGS 
AND LOAN CONTRACT 

0.5 0.4 5.6 

5 DHD2610 VALUE OF LISTED SHARES -5.3 3.9 4.6 
5 HD0801 VALUE OF THE BUSINESS 2.1 1.1 10.8 
5 DHD2520 MARKET VALUE OF GOVERNMENT 

BONDS 
-9.0 8.2 4.3 

5 DHD1010T1 SAVINGS AMOUNT - CERTIFICATES - 
AMOUNT (YEARLY ) 

48.2 84.0 0.0 

8 DPF1800ST1 CURRENT OWN CONTRIBUTIONS - 
RIESTER OR RÜRUP BANK SAV-
INGS/LOAN CONTRACTS - AMNT 

77.5 95.6 0.0 

8 DPF1300H CURRENT BALANCE PENSION AC-
COUNT - NON-STATE-SUBSIDISED 
LIFE INSURANCE POLICIES 

1.3 1.8 8.9 

8 DPF1910GT1 EMPLOYER CONTRIBUTION - DIRECT 
INSURANCE - RIESTER/RÜRUP PLANS 
- AMOUNT (YEARLY 

63.2 93.2 0.3 
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