Certification Practice Statement
Email Security Certificates
- Counterparties -

Version 1.0
1 Introduction

1.1 Overview
This document provides both users and the Deutsche Bundesbank – as the Public Key Infrastructure (PKI) operator – with a summary of the binding contents of the Bundesbank’s security and certification concept for the live operation of the Certification Authority (CA) for Email Security Counterparties in the form of a Certification Practice Statement (CPS).

The structure of this document follows the template specified in the RFC 3647 standard.

The Bundesbank is a member of the European Bridge CA (EBCA). The certificates issued by the Bundesbank’s PKI meet the advanced signature requirements stipulated in the German electronic signature law (Gesetz über Rahmenbedingungen für elektronische Signaturen – SigG).

1.2 Document name and identification
Name: Certification Practice Statement
Email Security Certificates - Counterparties -
Version: 1.0
Date: 15 June 2016
OID: 1.3.6.1.4.1.2025.590.2.11

1.3 PKI participants

1.3.1 Certification authorities
The Bundesbank’s PKI (BBk-PKI) uses a two-stage certification structure with a self-signed root certificate.

The root CA certificate certifies only subordinate CAs for different purposes. The sub CA for Email Security Counterparties is used to create user certificates for the encryption and signing of emails from counterparties.

1.3.2 Registration authorities
The registration authorities are responsible for checking the identity and authenticity of subscribers. The registration procedure is described in point 3.2.3.

1.3.3 Subscribers
Subscribers are
− Counterparties of the Bundesbank, as well as
− Counterparties of the Financial Market Stabilisation Agency (FMSA).

Subscribers can be persons with a personal email address, persons responsible for (postmasters) or other users of (subscribers) a functional email address (non-personal email address).
1.3.4 Relying parties
Relying parties are communication partners (persons, organisations or systems) that take part in the certificate-based procedure for secure email communication with the Bundesbank and/or the FMSA.

1.3.5 Other participants
Other participants may be service providers (eg directory service operators) appointed by the BBk-PKI.

1.4 Certificate usage

1.4.1 Appropriate certificate uses
See CP Email Security Certificates - Counterparties -.

1.4.2 Prohibited certificate uses
See CP Email Security Certificates - Counterparties -.

1.5 Policy administration

1.5.1 Organisation administering the document
This CPS is maintained by the operator of the BBk-PKI.

1.5.2 Contact person
Deutsche Bundesbank
PKI Services (Deutsche Bundesbank Trust Center)
Berliner Allee 14          Postfach 10 11 48
40212 Düsseldorf        40002 Düsseldorf
Germany    Germany
Tel   +49 211 874 3815/3257/2351
Fax  +49 69 709094 9922
Email: pki@bundesbank.de

1.5.3 Person determining CPS suitability for the policy
This CPS is checked by the system owner of the BBk-PKI.
The BBk-PKI system owner checks that each CPS complies with the provisions of the CP Email Security Certificates - Counterparties -.

1.5.4 CPS approval procedures
This CPS will be published on the Bundesbank’s intranet site and website.
It is possible to pass on this documentation to other organisations to allow an independent review of the functioning of the CA for Email Security Counterparties for the BBk-PKI.
1.6 Definitions and acronyms

See abbreviations in chapter 10.
2 Publication and repository responsibilities

2.1 Repositories
The Bundesbank includes the information about the BBk-PKI on its website
- [http://www.bundesbank.de](http://www.bundesbank.de) under Service ► Services for banks an companies ► PKI

It is also available on the intranet (access limited to Bundesbank and FMSA employees as well as external employees of these institutions).

2.2 Publication of certification information
The Bundesbank publishes the following information.
- CA certificates with fingerprints
- Root CA certificates with fingerprints
- CRLs
- Details of the revocation procedure
- CPs and CPSs

2.3 Time or frequency of publication
Publication dates for CA/root CA certificates, CRLs and CPs and CPSs are as follows.
- CA/root CA certificates as soon as they are generated with fingerprints
- CRLs after revocation, otherwise according to standard frequency (see point 4.9.7)
- CPs and CPSs after generation/update

2.4 Access controls on repositories
Read access to the information listed under points 2.1 and 2.2 is not restricted. The BBk-PKI is responsible for write access.
3 Identification and authentication

3.1 Naming

3.1.1 Types of names
The names of the certificates issued (distinguished name = DN) are based on the x.509 standard.
The DN generally follows the structure below.

<table>
<thead>
<tr>
<th>EMAIL</th>
<th>&lt;Email address&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>&lt;First name Surname&gt;</td>
</tr>
<tr>
<td>OU</td>
<td>&lt;Organisational unit&gt;</td>
</tr>
<tr>
<td>O</td>
<td>&lt;Organisation&gt;</td>
</tr>
<tr>
<td>C</td>
<td>de</td>
</tr>
</tbody>
</table>

3.1.2 Need for names to be meaningful
The name of the certificate issued (DN) has to uniquely identify the subscriber. The following rules apply.
- Certificates for natural persons are to be issued in the subscriber’s name.
- Certificates for people grouped according to organisation/function or for an organisation’s email address have to be clearly distinguishable from certificates for natural persons.

3.1.3 Anonymity or pseudonymity of subscribers
See CP Email Security Certificates - Counterparties -.

3.1.4 Rules for interpreting various name forms
The DN is based on the x.509 standard.

3.1.5 Uniqueness of names
See CP Email Security Certificates - Counterparties -.

3.1.6 Recognition, authentication and role of trademarks
See CP Email Security Certificates - Counterparties -.
3.2 Initial identity validation

3.2.1 Method to prove possession of private key
See CP Email Security Certificates - Counterparties -.

3.2.2 Authentication of organisation identity
Applications for a certificate for an organisation's email addresses or for people grouped according to organisation/function are always submitted by a natural person who is authenticated using a multi-stage registration process pursuant to point 3.2.3.

3.2.3 Authentication of individual identity
When applying for a certificate for a counterparty, employees of an authorised counterparty of the Bundesbank or of the FMSA are identified by means of a copy of their official photo ID, which is forwarded to the BBk-PKI. The copy of the ID card is destroyed by the BBk-PKI once the certificate has been delivered.

3.2.4 Non-verified subscriber information
Only information required to authenticate and identify the subscriber is verified. All other information is ignored.

3.2.5 Validation of authority
The application process for certificates entails a number of stages and is conducted by means of an electronic application workflow, which is approved by the relevant business unit.

3.2.6 Criteria for interoperation
See CP Email Security Certificates - Counterparties -.

3.3 Identification and authentication for re-key requests

3.3.1 Identification and authentication for routine re-key
The subscriber will be notified by the BBK-PKI about the expiry of the certificate’s validity.
Certificate renewal and the associated identification and authentication process are similar to the initial application process initiated by Bundesbank/FMSA employees.

3.3.2 Identification and authentication for re-key after revocation
If a certificate is revoked, a new application is required.

3.4 Identification and authentication for revocation request
A revocation request can be made by the subscriber, someone appointed by the subscriber as well as his/her superior by telephone as well as by fax or in writing.
The applicant’s identity is documented. The BBk-PKI operating unit reserves the right to check the identity of the applicant as appropriate but is not required to do so. The subscriber is informed that the certificate has been revoked.
4 Certificate life cycle operational requirements

4.1 Certificate application

4.1.1 Who can submit a certificate application?
The process of applying for a certificate for a counterparty is initiated by Bundesbank/FMSA employees via an electronic application workflow, which, after being approved by the direct supervisor of the Bundesbank/FMSA employee, is sent to the BBk-PKI.
The BBk-PKI then sends an application form generated during the electronic application process to the counterparty to sign.

4.1.2 Enrolment process and responsibilities
The certificate application process entails a number of stages and is conducted by means of an electronic application workflow, which is approved by the relevant department and sent to the BBk-PKI.
When applying for a certificate, the applicant explicitly recognises the validity of the CPS of the issuing CA.
See also CP Email Security Certificates - Counterparties -.

4.2 Certificate application processing

4.2.1 Performing identification and authentication functions
Subscribers are identified and authenticated as described in chapter 3.2.

4.2.2 Approval or rejection of certificate applications
See CP Email Security Certificates - Counterparties -.

4.2.3 Time to process certificate applications
See CP Email Security Certificates - Counterparties -.

4.3 Certificate issuance

4.3.1 CA actions during certificate issuance
Once the certificate application has been processed, the key pair is created in the BBk-PKI's secure area in line with the dual control principle and the certificate is then generated.
A certificate is requested by means of an electronic application workflow and an application form completed by the subscriber. The certificate data are transferred via a secure token to the BBk-PKI, which is operated offline. The subsequent certification process is carried out automatically, but is started manually.
The certificate is delivered to the subscriber in the form of a software certificate only and is protected by a transport PIN. The certificate is either hand-delivered against confirmation of receipt or sent by secure electronic means against confirmation of receipt. The BBk-PKI sends the transport PIN to the applicant in a second step by secure electronic means against confirmation of receipt or by phone.

4.3.2 Notification to subscriber by the CA of issuance of certificate
See CP Email Security Certificates - Counterparties -.

4.4 Certificate acceptance
See CP Email Security Certificates - Counterparties -.

4.5 Key pair and certificate usage
See CP Email Security Certificates - Counterparties -.

4.6 Certificate renewal
A certificate may not be renewed on the basis of the existing key pair. When a certificate is renewed, a new key pair is always generated.

4.7 Certificate re-key
When a certificate is renewed, a new key pair is always generated. The certificate is always modified (see chapter 4.8).

4.8 Certificate modification
In the case of the CA for Email Security Counterparties, a certificate is modified on the basis of an application and involves changing the key pair and modifying the content of the certificate as well as the technical parameters.

4.8.1 Circumstance for certificate modification
See CP for Email Security Certificates - Counterparties -.

4.8.2 Who may request certificate modification?
In case of certificates for counterparties, the application for certificate modification is initiated by Bundesbank/FMSA employees.
See also CP Email Security Certificates - Counterparties -.

4.8.3 Processing certificate modification requests
The certificate modification process is the same as the initial application process. The key pair is created in the BBk-PKI's secure area in line with the dual control principle and the certificate is generated.
4.8.4 Notification of new certificate issuance to subscriber
See CP Email Security Certificates - Counterparties -.

4.8.5 Conduct constituting acceptance of modified certificate
See CP Email Security Certificates - Counterparties -.

4.8.6 Publication of the modified certificate by the CA
See CP Email Security Certificates - Counterparties -.

4.8.7 Notification of certificate issuance by the CA to other entities
See CP Email Security Certificates - Counterparties -.

4.9 Certificate revocation and suspension

4.9.1 Circumstances for revocation
See CP Email Security Certificates - Counterparties -.

4.9.2 Who can request revocation?
See CP Email Security Certificates - Counterparties -.

4.9.3 Procedure for revocation request
A certificate can be revoked
– using the electronic application workflow
– by telephone
– by fax or
– in writing.
The BBk-PKI revokes the certificate at the CA in question and publishes the corresponding CRL. The subscriber is informed that the certificate has been revoked.
The published CRLs contain all the certificates that were revoked up until the validation end date of the respective CA.

4.9.4 Revocation request grace period
See CP Email Security Certificates - Counterparties -.

4.9.5 Time within which CA must process the revocation request
See CP Email Security Certificates - Counterparties -.

4.9.6 Revocation checking requirement for relying parties
See CP Email Security Certificates - Counterparties -.
4.9.7  CRL issuance frequency
CA CRLs are issued with a validity period of 30 days; root CA CRLs with a validity period of 180
days. A new list is issued one week prior to expiry of the most recent CRL.
If the revocation of a certificate leads to the creation of a new CRL, this is published immediately
and replaces the prevailing CRL irrespective of its original duration.
A new CRL includes the information about revoked certificates until each of the certificates are
expired.

4.9.8  Maximum latency for CRLs
See CP Email Security Certificates - Counterparties -.

4.9.9  On-line revocation/status checking availability
Not applicable. On-line revocation and status checking is currently not available.

4.9.10 On-line revocation checking requirements
Not applicable

4.9.11 Other forms of revocation advertisements available
Not applicable. Other forms of revocation advertisements are not available.

4.9.12 Special requirements re-key compromise
If a subscriber’s private key is compromised, the corresponding certificate has to be revoked
immediately. If a CA’s private key is compromised, the CA certificate and all certificates that it
has issued have to be revoked.

4.9.13 Circumstances for suspension
A temporary revocation or suspension of certificates is prohibited. Once a certificate has been
revoked, it cannot be reactivated.

4.9.14 Who can request suspension?
Not applicable

4.9.15 Procedure for suspension request
Not applicable

4.9.16 Limits on suspension period
Not applicable
4.10 Certificate status services
The BBk-PKI currently does not provide any services to check the status of certificates. See chapter 2 for information about the publication of CRLs.

4.11 End of subscription
See CP Email Security Certificates - Counterparties -.

4.12 Key escrow and recovery
It is technically possible for the BBk-PKI to provide key escrow and recovery services, however, it does not currently do so.
5 Facility, management and operational controls

5.1 Physical controls

5.1.1 Site location and construction
The CA for Email Security Counterparties is operated from within an access-protected area and has a separate secure area. In addition, it has a number of vaults to store production and backup systems and media.
Both the secure area and the vaults are connected to the building's central master alarm terminal. In addition, the secure area is connected to a local optical and acoustic alarm system.

5.1.2 Physical access
Physical access is via a multi-stage access control system. Only the PKI operating personnel that work in the BBk-PKI's secure area have access. Access is via an ID-based login.

5.1.3 Power and air conditioning
The power supply meets the required standards. An emergency power supply via diesel generators is in place. The secure area is air conditioned.

5.1.4 Water exposures
The rooms have adequate protection from exposure to water.

5.1.5 Fire prevention and protection
Fire prevention and protection regulations have been met. The rooms are connected to the fire alarm system via smoke alarms. There is an adequate number of hand-held fire extinguishers. An INERGEN fire suppression system is installed in the floor.

5.1.6 Media storage
All data media with software and all daily backups are kept in multiple copies as original and backup versions and are stored securely in different sections of the building. In addition, all software no longer in use as well as old data backups are stored in an archive.
All data media are kept in multi-level, application-specific steel boxes which are securely stored in safes which are placed in vaults.

5.1.7 Waste disposal
Electronic data media are destroyed and disposed of on site in an appropriate manner. Paper data media are shredded and disposed of on site in an appropriate manner.

5.1.8 Off-site backup
There is no off-site data backup at service providers external to the BBk-PKI.
5.2 Procedural controls

5.2.1 Trusted roles
Trusted roles are established to ensure that individuals are not able to change any of the BBk-PKI's security-critical components or view, generate or manipulate certificates or private keys without being noticed. The names of the people involved in generating and delivering keys and certificates are logged.

5.2.2 Number of persons required per task
In live operations, the BBk-PKI applies a dual control principle as standard for the use of highly security-critical access media, cryptographic key materials and certificates.
This ensures that the storage, access to and use of highly secure access media by PKI operating staff is always subject to the dual control principle. In addition, the entire process of generating cryptographic key material and certificates up to the stage where they are passed on is also subject to the dual control principle. Using the dual control principle as standard requires the roles of those people involved in the generation process to be documented in various logs that are to be created or generated by the system (see point 5.2.1).

5.2.3 Identification and authentication for each role
The role concept is implemented using a number of technical and organisational measures. Roles are identified and authenticated when accessing
- the secure areas and vaults
- secure storage or security-critical systems and applications
by using SmartCards, hardware tokens, user IDs and passwords.
The roles are documented in various logs that are to be created or generated by the system (see point 5.2.1).

5.2.4 Roles requiring separation of duties
By separating certain roles and duties, the concept ensures that no one person alone can generate a key or issue and pass on a certificate.
5.3 Personnel controls

5.3.1 Qualifications, experience and clearance requirements
In its operations, the BBk-PKI ensures that it uses experienced staff who have the necessary IT expertise and specific knowledge of CA operations.

5.3.2 Background check procedures
The Bundesbank subjects BBk-PKI staff to an advanced security check regarding sabotage protection in accordance with the Security Check Act (Sicherheitsüberprüfungsgesetz – SÜG).

5.3.3 Training requirements
Staff undertaking BBk-PKI operations receive regular and ad hoc training. They are made aware of the security relevance of their work.

5.3.4 Retraining frequency and requirements
Retraining is provided in particular when new directives, IT systems and IT processes are implemented.

5.3.5 Job rotation frequency and sequence
PKI operations staff are deployed in all areas of CA operations.

5.3.6 Sanctions for unauthorised actions
Unauthorised actions that endanger the security of the BBk-PKI or breach data protection requirements are sanctioned/prosecuted via the HR department.

5.3.7 Independent contractor requirements
Not applicable

5.3.8 Documentation supplied to personnel
In order to ensure that they can conduct operations correctly, PKI staff receive the following documentation.
- Certificate Policy (CP)
- Certification Practice Statement (CPS)
- Operating manuals
- User instructions
- Staff rules and regulations
5.4 Audit logging procedures

5.4.1 Types of events recorded
The following events are logged and recorded.
- System initialisation
- Certification applications
- User registration
- Key generation for the CA, root CA and users
- Certificate issuance for the CA, root CA and users
- Data backups for the CA and root CA
- Certification publication for the CA and root CA
- Delivery of private key and certificate
- Revocation requests
- Revocation of a certificate
- Drawing up of a CRL
- Publication of a CRL
Any malfunctions or one-off operating situations are also recorded.

5.4.2 Frequency of processing log
The Bundesbank’s Controlling Department checks that certification operations are as they should be as part of its risk-oriented checks. If there is suspicion of irregularities, a more detailed check is scheduled.

5.4.3 Retention period for audit log
Retention periods are based on the times stipulated in law, audit compliance provisions as well as other internal rules and regulations.

5.4.4 Protection of audit log
The logs are protected against unauthorised access, manipulation and destruction.

5.4.5 Audit log backup procedures
Log data are backed up regularly along with other relevant data. Paper logs are stored in lockable cupboards.

5.4.6 Audit collection system (internal vs external)
Not applicable

5.4.7 Notification to event-causing subject
If a security-critical event arises, the BBk-PKI notifies those responsible for IT security incidents as well as the system owner.
5.4.8 Vulnerability assessments
A vulnerability assessment can be conducted at any time if so required.

5.5 Records archival

5.5.1 Types of records archived
All data that are relevant for the certification process (see point 5.4.1) are archived.

5.5.2 Retention period for archive
The retention periods are defined in point 5.3.4.

5.5.3 Protection of archive
The archives are protected against unauthorised access, manipulation and destruction.

5.5.4 Archive backup procedures
Data backups are made every day after the following have been completed.
- Keys issued
- Certificates revoked
- CRLs drawn up
They are kept as originals and backups and stored securely in different fire sections of the building.

5.5.5 Requirements for time-stamping of records
No trustworthy timestamp sources are supported at present.

5.5.6 Archive collection system (internal or external)
The BBk-PKI operating unit is responsible for the archive collection system.

5.5.7 Procedures to obtain and verify archive information
There is no standardised procedure for obtaining and verifying archive information.

5.6 Key changeover
The CA changes the key at the latest when the validity of the user certificate to be issued would exceed the remaining term of the CA.
5.7 Compromise and disaster recovery

5.7.1 Incident and compromise handling procedures
The department responsible for IT security incidents defines the incident and compromise handling procedure.

5.7.2 Computing resources, software and/or data are corrupted
If it is established that the CA has faulty or manipulated computing resources, software and/or data that have an impact on the processes conducted by this entity, the system in question is stopped immediately.

The system is reset using software and data backups, and – after checks to ensure that operations are secure – it is put back in operation. The faulty or modified system is analysed. If there is a suspicion of wilful action, legal action may be taken.

If certificates are generated with incorrect information, the subscriber is informed immediately and the CA revokes the certificate.

5.7.3 Entity private key compromise procedures
If an entity's private key is compromised, the corresponding certificate has to be revoked immediately. At the same time, all certificates issued by this entity are to be revoked. All subscribers affected are notified immediately.

The entity in question is set up as a new CA with a new key pair. The certificate of the new CA is published and any subscriber certificates that were previously revoked are reissued.

5.7.4 Business continuity capabilities after a disaster
After a disaster, reinstating a CA’s operations is part of contingency planning and this can happen at short notice providing the BBk-PKI’s operations are secure.

5.8 CA or RA termination
If the CA for Email Security Counterparties operations is terminated, the following measures are taken.

- Notification of all subscribers as well as relying parties with a notice period of at least three months.
- Revocation of all user certificates as well as all certificates issued by the CA.
- Destruction of the CA’s private keys.
- Publication of the corresponding CA and root CA CRLs.
6 Technical security controls

6.1 Key pair generation and installation

6.1.1 Key pair generation
The CA key pairs are generated in a cryptographically secure module in line with the dual control principle. The IT system runs offline without a network connection.

Subscribers' key pairs are generated centrally in the BBk-PKI's secure area offline using IT systems without a network connection and in line with the dual control principle.

6.1.2 Private key delivery to subscriber
The private key is delivered via a secure channel for use by the subscriber. The subscriber receives the private key by secure electronic means. Once the subscriber has confirmed receipt, the BBk-PKI sends the transport PIN to him/her in a second step by secure electronic means against confirmation of receipt or by phone.

6.1.3 Public key delivery to certificate issuer
Not applicable. There are no provisions for a subscriber to generate his/her own key.

6.1.4 CA public key delivery to relying parties
When a key pair is delivered, a certificate chain is also provided. The CA's public keys can also be called up via the certificate service outlined in chapter 2.

6.1.5 Key sizes
Only those combinations of key algorithms and sizes are used that the Federal Network Agency for Electricity, Gas, Telecommunications, Post and Railway considers to be secure for a qualified electronic signature in accordance with the Signature Act.

The CA key of the CA/root CA has a minimum size of 4096 bits. For subscribers, keys have a minimum size of 2048 bits.

6.1.6 Public key parameters generation and quality checking
The following encryption algorithms are used.

- RSA with OID 1.2.840.113549.1.1.1
- SHA1 RSA 1.2.840.113549.1.1.5 or SHA256 RSA 1.2.840.113549.1.1.11

6.1.7 Key usage purposes
The CA's private key is used only to sign certificates and CRLs.
6.2 Private key protection and cryptographic module engineering controls

Private keys are stored in a cryptographically secure manner.

6.2.1 Cryptographic module standards and controls

Cryptographic protection measures are based on international standards. Furthermore, the IT system is operated offline without a network connection and is stored in a vault out of office hours.

6.2.2 Private key (n out of m) multi-person control

The CA’s private key is protected by the dual control principle.

6.2.3 Private key escrow

The CA’s private key is not stored with third parties.

6.2.4 Private key backup

A cryptographically secure backup of the CA’s private key is available. This backup is subject to the same protection measures as the production system. The dual control principle applies for access to this backup.

There is no backup for a subscriber’s private key.

6.2.5 Private key archival

After a CA has expired or been revoked, the CA’s private key is kept for ten years. This archive is subject to the same protection measures as the production system. The dual control principle applies for access to this archive.

6.2.6 Private key transfer into or from a cryptographic module

The CA’s private key is transferred only for backup or restoration purposes. This process is subject to the same protection measures as the production system. The dual control principle applies for access to this process.

6.2.7 Private key storage on cryptographic module

The CA’s key pair is stored in a cryptographically secure module.

6.2.8 Method of activating private key

The CA’s private key can only be activated by means of the dual control principle.

The subscriber’s private key is activated once receipt confirmation has been received or once the certificate is used for the first time.

6.2.9 Method of deactivating private key

A CA’s private key is automatically deactivated once the certification process has come to an end.
6.2.10 Method of destroying private key
Once the validity of the CA’s private key has expired or this key has been revoked, it is kept for ten years and then destroyed. Storage media are destroyed or securely deleted.

6.2.11 Cryptographic module rating
See point 6.2.1.

6.3 Other aspects of key pair management

6.3.1 Public key archival
All public keys generated by the BBk-PKI are archived in the CA's database.

6.3.2 Certificate operational periods and key pair usage periods
The certificates issued by the BBk-PKI have the following validity periods.
- Root CA certificates maximum of 12 years
- CA certificates maximum of 6 years
- User certificates maximum of 2 years

6.4 Activation data
The BBk-PKI protects access to the CA’s and user’s private key cryptographically and by means of the dual control principle.

6.4.1 Activation data generation and installation
Activation data are generated at the same time as the certificates. Non-trivial combinations of upper case, lower case, numbers and special characters are used for passwords and PINs. These must be at least ten characters long.

6.4.2 Activation data protection
Activation data are suitably protected from loss, theft, modification, unauthorised publication and unauthorised use.

6.4.3 Other aspects of activation data
Not applicable
6.5 Computer security controls

6.5.1 Specific computer security technical requirements
All of the BBk-PKI's IT systems must have an operating system with current security patches and a virus scanner. The BBk-PKI is operated offline. The operating system is on a read-only medium. Access control is deployed as a security measure.

6.5.2 Computer security rating
The security measures are in line with the latest technology. A threat analysis has been conducted and a security concept has been compiled.

6.6 Life cycle technical controls

6.6.1 System development controls
The system owner is involved in the system development of the BBk-PKI components. The software in use can withstand those threat scenarios that are commonly known.

6.6.2 Security management controls
The BBk-PKI operating staff have been informed of the application's high security requirements. There are measures in place to ensure that system developers have no access to live operations and data.
All changes to the BBk-PKI are subject to an acceptance test.

6.6.3 Life cycle security controls
Any IT systems or components that are replaced are taken out of operation in such a way that the functions thereof and data contained therein cannot be misused. In addition, any changes to IT systems or components are logged in paper records.

6.7 Network security controls
The BBk-PKI is operated offline. Not applicable.

6.8 Time-stamping
Time-stamping is currently not available. Not applicable.
7 Certificate, CRL and OCSP profiles

7.1 Certificate profile

7.1.1 Version number(s)
The BBk-PKI issues certificates in line with the X509v3 standard.

7.1.2 Certificate extensions
CA certificates have the following extensions.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Usage</td>
<td>cert sign, crl sign – critical</td>
</tr>
<tr>
<td>Basic Constraints</td>
<td>CA=true, no constraints on length of path</td>
</tr>
<tr>
<td>Subject Alt Name</td>
<td>Email address – not critical</td>
</tr>
<tr>
<td>Authority Key Identifier</td>
<td>160-bit SHA-1 hash of issuer’s key</td>
</tr>
<tr>
<td>Subject Key Identifier</td>
<td>160-bit SHA-1 hash of issuer’s key</td>
</tr>
</tbody>
</table>

User certificates have the following non-critical extensions.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Usage</td>
<td>key encipherment, digital signature</td>
</tr>
<tr>
<td>Extended Key Usage</td>
<td>Email protection</td>
</tr>
<tr>
<td>Basic Constraints</td>
<td>CA=false, no constraints on length of path</td>
</tr>
<tr>
<td>Subject Alt Name</td>
<td>Email address</td>
</tr>
<tr>
<td>Issuer Alt Name</td>
<td>Email address</td>
</tr>
<tr>
<td>CRL Distribution Points</td>
<td><a href="http://www.bundesbank.de/Redaktion/DE/Downloads/">http://www.bundesbank.de/Redaktion/DE/Downloads/</a></td>
</tr>
<tr>
<td></td>
<td>Service/Services_Banken_Unternehmen/PKI/CA_for_Email-Security_Counterparties_&lt;year of issue&gt;-crl.crl?__blob=publicationFile</td>
</tr>
<tr>
<td>Authority Key Identifier</td>
<td>160-bit SHA-1 hash of issuer’s key</td>
</tr>
<tr>
<td>Subject Key Identifier</td>
<td>160-bit SHA-1 hash of issuer’s key</td>
</tr>
</tbody>
</table>

Serial numbers are not issued more than once by the issuing CA and are thus unique.

7.1.3 Algorithm object identifiers
The RSA (OID 1.2.840.113549.1.1.1) algorithm is used in the certificates issued by the BBk-PKI.
7.1.4 Name forms
The CA certificates issued by the root CA contain the entire distinguished name (DN) in the subject name and issuer name fields.
The names of the CA certificates issued are based on the x.509 standard and are in line with the following structure.

<table>
<thead>
<tr>
<th>EMAIL</th>
<th><a href="mailto:pki@bundesbank.de">pki@bundesbank.de</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>CA for Email-Security Counterparties &lt;year of issue&gt;</td>
</tr>
<tr>
<td>OU</td>
<td>SMIME-Certificates</td>
</tr>
<tr>
<td>O</td>
<td>Bundesbank</td>
</tr>
<tr>
<td>C</td>
<td>de</td>
</tr>
</tbody>
</table>

The names of the user certificates issued are based on the x.509 standard and are in line with the following structures.

<table>
<thead>
<tr>
<th>DN</th>
<th>Counterparty</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMAIL</td>
<td>&lt;Firstname.Surname&gt; or &lt;Email address&gt; @&lt;domain&gt;</td>
</tr>
<tr>
<td>CN</td>
<td>&lt;Firstname Surname&gt; or &lt;Email address&gt;</td>
</tr>
<tr>
<td>OU</td>
<td>&lt;YYYYMMDD&gt;</td>
</tr>
<tr>
<td>OU</td>
<td>CA for Email-Security Counterparties &lt;year of issue&gt;</td>
</tr>
<tr>
<td>O</td>
<td>&lt;company&gt;</td>
</tr>
<tr>
<td>C</td>
<td>de</td>
</tr>
</tbody>
</table>

7.1.5 Name constraints
See chapter 3.1.

7.1.6 Certificate policy object identifier
The certificate policy OID of the CP Email Security Certificates - Counterparties - is: 1.3.6.1.4.1.2025.590.1.14.

7.1.7 Usage of policy constraints extension
Not applicable

7.1.8 Policy qualifiers syntax and semantics
Not applicable

7.1.9 Processing semantics for the critical certificate policies extension
Not applicable
7.2 CRL profile

7.2.1 Version number(s)
The BBk-PKI issues CRLs in line with the x.509 norm, version 1.

7.2.2 CRL and CRL entry extensions
A CRL distribution point (CRLDP) is contained in the user certificates.

7.3 OCSP profile
Not applicable. The BBk-PKI currently does not support OSCP.
8 Compliance audit and other assessments

See CP Email Security Certificates - Counterparties -.
9 Other business and legal matters

See CP Email Security Certificates - Counterparties -.
## Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBk</td>
<td>Deutsche Bundesbank</td>
</tr>
<tr>
<td>BBk-PKI</td>
<td>Deutsche Bundesbank’s PKI</td>
</tr>
<tr>
<td>BSI</td>
<td>Federal Office for Information Security (Bundesamt für Sicherheit in der Informationstechnologie)</td>
</tr>
<tr>
<td>C</td>
<td>Country (part of the distinguished name)</td>
</tr>
<tr>
<td>CA</td>
<td>Certification Authority</td>
</tr>
<tr>
<td>Certificate</td>
<td>Secure assignment of public keys to a subscriber</td>
</tr>
<tr>
<td>CN</td>
<td>Common name (part of the distinguished name)</td>
</tr>
<tr>
<td>CP</td>
<td>Certificate Policy of a PKI</td>
</tr>
<tr>
<td>CPS</td>
<td>Certification Practice Statement</td>
</tr>
<tr>
<td>CRL</td>
<td>Certificate Revocation List; signed list belonging to a CA that contains revoked certificates</td>
</tr>
<tr>
<td>CRLDP</td>
<td>CRL distribution point</td>
</tr>
<tr>
<td>DN</td>
<td>Distinguished name</td>
</tr>
<tr>
<td>DName</td>
<td>Distinguished name</td>
</tr>
<tr>
<td>EBCA</td>
<td>European Bridge CA, link between individual organisations’ public key infrastructures</td>
</tr>
<tr>
<td>EMAIL</td>
<td>Email address (part of the distinguished name)</td>
</tr>
<tr>
<td>FMSA</td>
<td>Financial Market Stabilisation Agency</td>
</tr>
<tr>
<td>Hardwaretoken</td>
<td>Hardware to store private keys</td>
</tr>
<tr>
<td>HSM</td>
<td>Hardware Security Module</td>
</tr>
<tr>
<td>LDAP</td>
<td>Light Directory Access Protocol, repository service</td>
</tr>
<tr>
<td>O</td>
<td>Organisation (part of the distinguished name)</td>
</tr>
<tr>
<td>OCSP</td>
<td>Online Certificate Status Protocol</td>
</tr>
<tr>
<td>OID</td>
<td>Object identifier</td>
</tr>
<tr>
<td>OU</td>
<td>Organisational unit (part of the distinguished name)</td>
</tr>
<tr>
<td>PIN</td>
<td>Personal Identification Number</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>PSE</td>
<td>Personal Secure Environment</td>
</tr>
<tr>
<td>RA</td>
<td>Registration Authority</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comment, documents for global standardisation</td>
</tr>
<tr>
<td>RFC3647</td>
<td>This RFC describes documents that outline PKI operations</td>
</tr>
<tr>
<td>Root CA</td>
<td>Highest CA of a PKI</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir, Adleman</td>
</tr>
<tr>
<td>SHA-1</td>
<td>Secure Hash Algorithm No 1</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SigG</td>
<td>Signature Act – Electronic signature law (Gesetz über Rahmenbedingungen für elektronische Signaturen)</td>
</tr>
<tr>
<td>S/MIME</td>
<td>Secure Multipurpose Internet Mail Extensions, standard for secure email</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer, protocol to ensure secure communication between a client and a server</td>
</tr>
<tr>
<td>SÜG</td>
<td>Security Clearance Act (Sicherheitsüberprüfungsgesetz)</td>
</tr>
<tr>
<td>x.500</td>
<td>Protocols and services for ISO compliant repositories</td>
</tr>
<tr>
<td>x.509v1</td>
<td>Certification standard</td>
</tr>
</tbody>
</table>
11 Information regarding the document

See point 1.2.