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Bank Regulation and Stability:

An Examination of the Basel Market Risk Framework

Abstract

In attempting to promote bank stability, the Basel Committee on Banking Supervision (2006)

provides a framework that seeks to control the amount of tail risk that large banks take in their

trading books. However, banks around the world suffered sizeable trading losses during the recent

crisis. Due to the size and prevalence of losses, a formal examination of whether the Basel framework

allows banks to take substantive tail risk in their trading books without a capital requirement

penalty is of particular interest. In this paper, we provide such an examination and show that the

Basel framework indeed allows banks to do so. Hence, our paper supports the view that the Basel

framework did not promote bank stability.
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1. Introduction

In attempting to promote bank stability, the Basel Committee on Banking Supervision (2006)

provides a framework that seeks to control the amount of tail risk that large banks take in their

trading books.1 However, in contrast with the Basel framework’s intent, banks around the world

suffered sizeable trading losses during the recent crisis.2 The size and prevalence of these losses

suggest that the Basel framework is ineffective in controlling tail risk within trading books. Due to

the prominence of the losses, a formal examination of whether the Basel framework allows banks to

take substantive tail risk in their trading books without a capital requirement penalty is of particular

interest. In this paper, we provide such an examination and show that the Basel framework indeed

allows banks to do so. Hence, our paper supports the view that the Basel framework did not

promote bank stability.3

Importantly, the Basel framework requires large banks to use Value-at-Risk (VaR) to measure

tail risk in their trading books and to determine the corresponding minimum capital requirements.

This framework also requires such banks to use Stress Testing (ST) in supplementing VaR. Not

surprisingly, banks utilize VaR and ST to set risk exposure limits (see Basel Committee on Banking

Supervision (2005, p. 12) and Committee on the Global Financial System (2005, pp. 1, 15)).

It is worth emphasizing that VaR does not capture the size of losses beyond VaR. Hence,

portfolios with relatively small VaRs might have substantive tail risk. An important advantage of

Conditional Value-at-Risk (CVaR) over VaR is that it captures the size of losses beyond VaR. Due

1 While the Basel framework is often considered in the context of commercial banks, regulators have also endorsed its use

for investment banks. In 2004, the U.S. Securities and Exchange Commission (SEC) adopted this framework for the capital

requirements of certain broker-dealers whose holding companies voluntarily elect to be supervised by the SEC; see Financial

Crisis Inquiry Commission (2011, p. 152). Subsequently, Bear Stearns, Lehman Brothers, Merrill Lynch, Goldman Sachs, and

Morgan Stanley elected to be supervised by the SEC. However, recognizing that voluntary supervision did not work, the SEC

ended it in 2008; see Financial Crisis Inquiry Commission (2011, p. 154).
2 For example, in 2008, the trading losses of Bank of America, Royal Bank of Scotland, and UBS reached, respectively, USD

5.9 billion, GBP 8.5 billion, and CHF 25.8 billion. For a discussion of the causes of the crisis, see Kane (2009), Caprio,

Demirgüç-Kunt, and Kane (2010), Dewatripont, Rochet, and Tirole (2010, Ch. 2), and Levine (2010a).
3 Caprio, Demirgüç-Kunt, and Kane (2010), Dewatripont, Rochet, and Tirole (2010, Ch. 2-4), and Levine (2010b) provide

recommendations on how to restructure bank regulation in light of the crisis.
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to this advantage, our paper uses CVaR in measuring tail risk.4

We examine the effectiveness of three sets of constraints in controlling tail risk: (1) a VaR

constraint; (2) ST constraints; and (3) VaR and ST constraints. Within the context of the Basel

framework, our results are pertinent in two cases of interest.5 The first one occurs when both types

of constraints (i.e., VaR and ST) are used in seeking to control tail risk but just one type binds.

In this case, the results for one of the two sets involving only one type of constraint are applicable.

The second one occurs when both types of constraints are used in seeking to control tail risk and

bind. In this case, our results for the set of constraints involving both types are applicable.

The Basel Committee on Banking Supervision (2006, p. 157) notes that market risk exposures

subject to VaR-based minimum capital requirements include “the risks pertaining to interest rate

related instruments and equities in the trading book.” Accordingly, we examine the effectiveness

of each set of constraints by solving a plausible problem of wealth allocation among Treasury

bills, government bonds, corporate bonds, and the six size/book-to-market Fama-French equity

portfolios. In doing so, we utilize historical simulation to estimate VaR, CVaR, and losses in ST

events given its popularity among banks (see, e.g., Pérignon and Smith (2010)). Also, we consider

two ST events: (1) the crash in the U.S. stock market of 1987; and (2) the terrorist attacks in

the U.S. of September 2001. Our motivation for using these events is two-fold. First, they are

the two most frequently used historical ST events according to a survey of banks and securities

firms conducted by the Committee on the Global Financial System (2005, Table 12). Second, the

Committee on the Global Financial System (2005, p. 10) notes that participants in this survey focus

4 Also, VaR fails to possess the subadditivity property (i.e., two assets in combination can have a VaR greater than the sum

of their individual VaRs), whereas CVaR does possess it; see Artzner, Delbaen, Eber, and Heath (1999). However, Garcia,

Renault, and Tsafack (2007) argue that the cases when VaR is not subadditive are rare.
5 Our analysis is also pertinent in contexts beyond the Basel framework. For example, it is applicable in a risk management

context where just one type of constraint (i.e., VaR or ST) is used in seeking to control tail risk and binds. It is also applicable

to any organization (such as hedge funds) that manages the inherent tail risk present in a trading book with either VaR or

ST constraints. Liang and Park (2007, 2010) provide empirical support to the use of CVaR as a measure of tail risk for hedge

funds.
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on major historical events (the average number of reported historical ST events across participants

is 3.3). For robustness checks, we consider the 1997 Asian and 1998 Russian crises as additional

ST events and the ten size Fama-French equity portfolios.

First, we examine the effectiveness of a VaR constraint in controlling tail risk. We find that

when using a VaR bound that does not depend on the required expected return (‘fixed bound’),

there is no value for the bound such that the constraint precludes all portfolios with substantive

tail risk from being selected while allowing the selection of portfolios with a wide range of expected

returns. We find next that the use of an appropriately chosen bound that depends on the required

expected return (‘variable bound’) has advantages over the use of one that does not in that: (i) it

is more effective in precluding the selection of portfolios with substantive tail risk; and (ii) it allows

the selection of portfolios with a notably wider range of expected returns. However, the constraint

still allows the selection of portfolios with substantive tail risk.

Second, we examine the effectiveness of ST constraints in controlling tail risk. Like a VaR

constraint, we find that the ST constraints allow the selection of portfolios with substantive tail

risk regardless of whether fixed or variable bounds are used. Unlike a VaR constraint, however, the

benefits of using variable-bound ST constraints (relative to fixed-bound ST constraints) are small.

Moreover, the ST constraints are even less effective in controlling tail risk than the VaR constraint.

Third, we examine the joint effectiveness of VaR and ST constraints in controlling tail risk. As

in the case where only a VaR constraint is imposed, there are notable benefits to using variable

bounds (relative to using fixed bounds). However, while the joint use of VaR and ST constraints

is beneficial (relative to using just one type of constraint), they continue to allow the selection of

portfolios with substantive tail risk.

We take the view that an unqualified positive assessment of the Basel framework requires that
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the joint use of VaR and ST constraints is fully effective in controlling tail risk within simple settings

that are consistent with common practice among banks. Therefore, our results on the ineffectiveness

of the constraints in controlling tail risk within these settings raise doubts about the adequacy of

the Basel framework in preventing banks from taking substantive tail risk in their trading books.6

Our robustness checks indicate that these doubts remain even if we increase the complexity of our

setting by considering either a larger number of assets, or more ST events, or both. Recognizing

that bank trading activities have experienced tremendous growth before the recent crisis, our paper

supports the view that the Basel framework did not promote bank stability.7

There is an extensive literature on the impact of bank capital regulation on stability (see Barth,

Caprio, and Levine (2008) and Freixas and Rochet (2008, Ch. 9) for a review). For example,

a number of papers theoretically show that bank capital regulation might increase the risk-taking

activities of banks (see, e.g., Koehn and Santomero (1980), Kim and Santomero (1988), and Rochet

(1992)). In a related paper, Barth, Caprio, Levine (2004) do not find robust empirical evidence

that stringent capital requirements reduce these activities. Lucas (2001) and Kane (2006) explicitly

criticize the Basel framework by showing that it provides incentives for banks to underreport their

VaR-based estimates of capital requirements.8 Our work contributes to this literature by showing

that the joint use of VaR and ST in accordance to the Basel framework and common practice

among banks allows them to take substantive tail risk in their trading books.

The paper proceeds as follows. Section 2 describes the model. Section 3 examines the effective-

ness of VaR and ST constraints in controlling tail risk, and Section 4 concludes.

6 Since there are alternative approaches to implement VaR and ST, our results should not be interpreted as a general criticism

to the joint use of VaR and ST for controlling tail risk. Our main point is that there are important shortcomings in doing so if

VaR and ST are implemented in accordance to the Basel framework and common practice among banks.
7 For example, the assets in the trading books of U.S. commercial banks increased almost thirty-fold between 1988 and 2008,

while in comparison their overall total assets increased about three-fold; see Federal Reserve Statistical Release (2008).
8 The Financial Crisis Inquiry Commission (2011) recognizes that the use of the Basel framework might have lead to lower

capital requirements. For example, it notes an SEC estimate indicating that the use of VaR would reduce the average capital

charges of brokers-dealers by 40%; see Financial Crisis Inquiry Commission (2011, p. 152).
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2. The Model

Suppose that uncertainty is described by S states (s = 1, ..., S). Let ps > 0 be the probability

of state s. There are J risky assets (j = 1, ..., J) and a risk-free asset (j = J + 1). Asset returns

are given by a (J + 1)× S matrix R. The return of asset j in state s is Rjs.

Let 1 denote the (J + 1) × 1 vector [1 · · · 1]>. A portfolio is a (J + 1) × 1 vector w

= [w1 · · · wJ+1]
> with w>1 = 1. Here, wj represents the weight of asset j. Note that a

positive (negative) weight represents a long (short) position. However, the weight of each asset is

constrained to be between some lower bound l < 0 and some upper bound u > 1.

2.1. VaR

In defining VaR, we follow Rockafellar and Uryasev (2002, Proposition 8). Fix a confidence

level α ∈ (1/2, 1). Let eRw denote the random return of portfolio w . Let z1,w < z2,w < · · · < zNw ,w

denote the ordered values that ezw ≡ − eRw can take where Nw ≤ S is the number of these values.
Define nα as the unique index number with:

nαP
n=1

pn,w ≥ α >
nα−1P
n=1

pn,w , (1)

where pn,w ≡ P [ezw = zn,w ]. Note that while nα depends on w , we write ‘nα’ instead of ‘nα,w ’ for
notational simplicity. Portfolio w ’s VaR at the 100α% confidence level is given by:

Vα,w ≡ znα,w . (2)

Using Eqs. (1) and (2), we have:

P [ eRw ≥ −Vα,w ] = P [ezw ≤ znα,w ] ≥ α, (3)

P [ eRw > −Vα,w ] = P [ezw < znα,w ] < α. (4)

As Eqs. (3) and (4) show, this definition of VaR is based on the upper quantile.
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Pérignon and Smith (2010) find that 73% of the banks who report their VaR estimation method-

ologies use historical simulation (see also Committee on the Global Financial System (2005) and

Pritsker (2006)).9 Accordingly, we use historical simulation to estimate VaR for all portfolios.

2.2. CVaR

In defining CVaR, we follow Rockafellar and Uryasev (2002, Proposition 8). Portfolio w ’s CVaR

at the 100α% confidence level is given by:

Cα,w ≡ 1

1− α

∙µ
nαP
n=1

pn,w − α

¶
znα,w +

NwP
n=nα+1

pn,wzn,w

¸
. (5)

Eqs. (2) and (5) imply that: (a) Cα,w ≥ Vα,w ; and (b) Cα,w > Vα,w if P [ eRw < −Vα,w ] > 0. As in
the case of VaR, we use historical simulation to estimate CVaR for all portfolios.

2.3. Loss in an ST event

While in practice there are many tools to stress test a portfolio (see, e.g., Committee on the

Global Financial System (2005)), we use scenario analysis to set risk exposure limits. In doing so,

we focus on the case where the scenarios that are analyzed are based on historical events.10 Two

historical events are considered: the crash in the U.S. stock market of 1987 (hereafter, ‘crash of 87’)

and the terrorist attacks in the U.S. of September 2001 (hereafter, ‘9/11’). As noted earlier, our

motivation for using these events is two-fold. First, they are the two most frequently used historical

ST events according to a survey of banks and securities firms conducted by the Committee on the

Global Financial System (2005, Table 12). Second, the Committee on the Global Financial System

9 While the variance-covariance approach is also used in practice to estimate VaR and CVaR, there is a one-to-one corre-

spondence between VaR and CVaR when asset returns have a normal distribution; see Alexander and Baptista (2004). This

correspondence does not occur in our paper since we use historical simulation and asset returns are assumed to have a discrete

distribution with finitely many jumps.
10In practice, the scenarios that are analyzed can also be based on hypothetical events such as the U.S. economic outlook and

oil price scenarios; see Committee on the Global Financial System (2005, Table 3a). However, there is an important reason

for us to solely examine historical events. While there is a clear-cut way of capturing the manner in which historical events

are used in practice, there is no general way of doing so for hypothetical events. For example, while asset returns during an

historical event are precisely observed, we do not know exactly how users of hypothetical events relate them to asset returns

(for a discussion of the subjectivity of such events, see, e.g., Hull (2007, pp. 212—213)). Hence, we focus on historical events.
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(2005, p. 10) notes that participants in this survey focus on major historical events (since the

average number of reported historical ST events across participants is 3.3, we later consider the

1997 Asian and 1998 Russian crises as additional ST events).

We refer to the crash of 87 and 9/11 as ST events 1 and 2, respectively. LetRk be the (J+1)×1

vector of asset returns in ST event k. Portfolio w ’s loss in ST event k is given by

Tk,w = −w>Rk. (6)

Eqs. (2) and (6) imply that Tk,w can be smaller than, equal to, or larger than Vα,w . Similarly, Eqs.

(5) and (6) imply that Tk,w can be smaller than, equal to, or larger than Cα,w .

The calculation of a portfolio’s loss in an ST event differs from that of its VaR and CVaR in

two respects. First, while ST uses asset returns during a fixed (historical) event, VaR and CVaR

use asset returns in a set of states that depends on the confidence level and the portfolio. Second,

while the period of time used to determine the loss in an ST event depends on the event (one day

for the crash of 87, and several days for 9/11), the period of time used to compute VaR and CVaR

is fixed (e.g., several years of monthly data). Due to these two differences, portfolios with similar

losses in an ST event may have notably different VaRs and CVaRs.11

2.4. Using VaR and ST constraints to control tail risk

Given a confidence level α, we consider the following VaR constraint:

Vα,w ≤ V , (7)

where V is the VaR bound. The set of portfolios that meet a VaR constraint is typically smaller in

cases where either its confidence level is higher or its bound is smaller. In these cases, the constraint

11As we explain shortly, the distribution of monthly returns used in our paper to estimate VaR and CVaR incorporates the

effect of the crash of 87 and 9/11 in the returns of, respectively, October 1987 and September 2001. If this effect were not

incorporated in such a distribution, then the difference between the VaRs of the aforementioned portfolios (i.e., portfolios with

similar losses in an ST event) and the difference between their CVaRs could be even larger.
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can be thought of as being ‘tightened.’ As noted earlier, banks often use VaR constraints to set

risk exposure limits.

Similarly, we consider the following ST constraints:

T1,w ≤ T1, (8)

T2,w ≤ T2, (9)

where T1 and T2 denote the ST bounds associated with, respectively, ST events 1 and 2 (i.e., the

crash of 87 and 9/11, respectively). The set of portfolios that meet an ST constraint is typically

smaller in cases where its ST bound is smaller. In these cases, the constraint can be thought of as

being ‘tightened.’ As noted earlier, banks often use ST constraints to set risk exposure limits.

A number of papers suggest the use of a mean-CVaR model to control tail risk (see, e.g.,

Alexander and Baptista (2004) and Bertsimas, Lauprete, and Samarov (2004)). Hence, the question

of whether the use of VaR and ST constraints lead to the selection of portfolios with small efficiency

losses relative to the mean-CVaR frontier is of particular interest.12 A portfolio belongs to the

mean-CVaR frontier if there is no portfolio with the same expected return and a smaller CVaR.

We measure a portfolio’s efficiency loss by the difference between: (i) its CVaR and (ii) the CVaR of

the portfolio on the mean-CVaR frontier with the same expected return. When tail risk is measured

by CVaR, a portfolio’s efficiency loss represents the increase in tail risk arising from selecting it

instead of the portfolio with the same expected return that has minimum tail risk.

2.5. Methodology

Fig. 1 summarizes the methodology used to examine the effectiveness of three sets of constraints

in controlling tail risk: (1) a VaR constraint; (2) ST constraints; and (3) VaR and ST constraints.

12Previous work examines the impact of adding either VaR or ST constraints to the mean-variance model; see Alexander and

Baptista (2004, 2009). Importantly, our paper differs from previous work in two respects. First, we consider the joint use of

VaR and ST constraints, whereas previous work focuses on the use of just one type of constraint. Second, while we impose no

assumption on the portfolio selection model that is used in the presence of the constraints, previous work focuses on portfolio

selection within the mean-variance model.
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For each set of constraints, we proceed as follows. In Step 1, a confidence level α and constraint

bounds are chosen. Based on the requirements of the Basel framework (see Basel Committee on

Banking Supervision (2006, p. 195)), we let α = 99%.13 Also, we constrain the weight of each

asset to be between lower bound l = −50% and upper bound u = 150%.14 Hence, short selling is

allowed.15 Letting a portfolio’s leverage ratio be defined as the sum of its positive weights, these

bounds allow the selection of portfolios with a maximum leverage ratio of 400%.16 We should

emphasize that the possibility of short selling and the range of leverage ratios allowed by the asset

weight constraints are realistic in the context of the trading portfolios of large banks. Consider

U.S. depository institutions with total assets of $100 billion or more and positive trading assets

as of December 31, 2009, which amounts to seventeen institutions (see Federal Deposit Insurance

Corporation (2010)). First, the trading portfolios of sixteen out of these seventeen institutions

involve short selling. Second, of the fourteen institutions for which leverage ratios are well-defined,

twelve have leverage ratios less than 400%.17 Third, the average leverage ratio across these fourteen

institutions is 219%.

While the minimum required expected returnE is assumed to be the risk-free rate, the maximum

feasible expected return E is found in Step 2. Step 3 uses the values of E and E to calculate

δ ≡ (E − E)/100. The value of δ is then used in Step 4 to create a grid of 101 expected returns

{Ei}100i=0 that range from E0 = E to E100 = E in return increments of δ.

In Step 5, the maximum efficiency loss Mi is determined for each Ei. Fig. 2 illustrates how Mi

is determined. The curve represents the mean-CVaR frontier. Point pmin represents the portfolio

13Similar results, available upon request, are obtained when α = 95%.
14Similar results, available upon request, are obtained when l = −100% and u = 200%.
15The results when short selling is disallowed are available upon request. They differ from those when it is allowed in that

the VaR and ST constraints are less ineffective in controlling tail risk. Nevertheless, the constraints still allow the selection of

portfolios with substantive tail risk when either just one type of constraint or fixed bounds are used.
16As we explain shortly, we consider a wealth allocation problem among nine assets. Hence, since portfolio weights sum to one,

a leverage ratio of 400% is achieved by any portfolio with the following weights: (a) 150% in each of two assets; (b) 100% in

one asset; and (c) −50% in each of the remaining six assets.
17The difference between trading assets and trading liabilities is negative for three institutions. Hence, their leverage ratios are

not well-defined.
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that has an expected return of Ei and minimum CVaR, denoted by Cmin (i.e., the portfolio on

this frontier with an expected return of Ei). Point pmax represents the portfolio that has the same

expected return, satisfies the VaR and/or ST constraints, and has maximum CVaR, denoted by

Cmax . Since Mi = Cmax −Cmin, Mi measures the maximum increase in CVaR allowed by the VaR

and/or ST constraints given an expected return of Ei.

In Step 6, the average of {Mi}100i=0, referred to as the average efficiency loss, is determined. The

single largest maximum efficiency loss, referred to as the largest efficiency loss, is also determined.

Lastly, we compute average and largest relative efficiency losses where a portfolio’s relative efficiency

loss is defined as the ratio between: (1) its efficiency loss; and (2) the CVaR of the portfolio on the

mean-CVaR frontier with the same expected return.18 Subsequent analysis is based on the values

of {Mi}100i=0, average and largest efficiency losses, and average and largest relative efficiency losses

associated with the three sets of constraints.19

An examination of maximum efficiency losses captures the idea of being agnostic regarding the

portfolio selection model that is used in the presence of VaR and ST constraints. The motivation

for this idea is two-fold. First, we are interested in exploring the effectiveness of such constraints

in controlling CVaR without making any assumption on the portfolio selection model that is used

in the presence of the constraints. If a set of constraints precludes all portfolios with substantive

efficiency losses from being selected, then it is effective in controlling CVaR. Thus, any portfolio

that meets the constraints, no matter how selected (e.g., using a mean-variance model), will have

tail risk that is similar in magnitude to that of the portfolio with the same expected return that

18There are two difficulties in using this measure of relative efficiency loss. First, portfolios on the mean-CVaR frontier with

expected returns close to the risk-free return have negative CVaRs and thus their relative efficiency losses are negative. Second,

even when the CVaRs of certain portfolios on the mean-CVaR frontier are positive, they could be arbitrarily close to zero,

resulting in arbitrarily large relative efficiency losses. In order to circumvent these two difficulties, we compute the average

and largest relative efficiency losses by solely using levels of expected return for which the correspondent portfolios on the

mean-CVaR frontier have CVaRs greater than 1%. Note that such losses are larger if we include levels of expected return for

which the correspondent portfolios on the mean-CVaR frontier have smaller (but positive) CVaRs.
19As a robustness check, we also compute the losses when only the interquartile range of expected returns {Ei}75i=25 is considered.
The results, available upon request, are similar to those reported when using the entire range of expected returns.
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minimizes CVaR. However, if the set of constraints allows the selection of portfolios with substantive

efficiency losses, then it is not effectively controlling CVaR.

Second, while the use of VaR and ST constraints by large banks is apparent, we do not know the

exact models that they utilize for portfolio selection. Indeed, trading book managers might have

incentives to take on as much tail risk as possible (subject to existing risk constraints); see, e.g.,

Lucas (2001) and Hull (2007, p. 198). For example, generous deposit insurance and compensation

schemes might lead such managers to take excessive risks; see, e.g., Kane (1989) and Cai, Cherny,

and Milbourn (2010).20

2.6. Optimization inputs

In assessing the effectiveness of VaR and ST constraints in controlling tail risk, we consider

a simple yet plausible problem of wealth allocation among the following assets: (i) Treasury bills

(assumed to be risk-free), (ii) government bonds, (iii) corporate bonds, and (iv) six size/book-

to-market Fama-French equity portfolios.21 Monthly returns on Treasury bills and Fama-French

portfolios are obtained from Kenneth French’s website. Monthly returns on bonds are obtained

from Bloomberg by using the Merrill Lynch government and corporate bond master indices.

Our results use returns from the sample period 1982—2006, which precedes the recent crisis.

Nevertheless, similar results are obtained when using the period 1982—2009, which includes the

crisis (see Section 3.4). The first four rows of Table 1 present summary statistics expressed as

percentages on the monthly asset returns during the sample period.22 Four facts are worth noting.

First, average returns for stocks are larger than those for bonds with a single exception: the average

20Such schemes might induce excessive risk-taking since the distribution of profits and losses among managers and others is

possibly asymmetric. Whereas extreme trading profits are beneficial from the perspective of managers, extreme trading losses

are costly from the perspective of, for example, taxpayers and debt holders.
21Similar results, available upon request, are obtained if (1) Treasury bills, or (2) bonds, or (3) both Treasury bills and bonds

are removed from consideration.
22Note that we not consider estimation risk. For work that recognizes estimation risk in VaR and CVaR, see, for example, the

November 2000 issue of the Journal of Empirical Finance, the July 2002 issue of the Journal of Banking and Finance, and

Pritsker (2006).
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return on the small-size/low-book-to-market-ratio Fama-French portfolio is slightly smaller than

that on corporate bonds. Second, standard deviations for stocks are much larger than those for

bonds.23 Third, VaRs and CVaRs for stocks are much larger than those for bonds. Fourth, for any

given risky asset, CVaRs are larger than VaRs.

The last two rows show that government bonds have positive returns in the ST events, whereas

corporate bonds have negative returns.24 Also, all Fama-French portfolios have notably negative

returns in these events.

3. Results

This section presents our results.

3.1. VaR constraint

We begin by analyzing the effectiveness of a VaR constraint in controlling tail risk. Consider

the case when the bound does not depend on the required expected return, which we refer to as

a fixed bound. Table 2 shows the results, expressed in percentages (subsequent tables and figures

also use percentages). In the first two columns, V is assumed to be either 4% or 8%.25 The first

two rows report average and largest efficiency losses. Two results can be seen. First, losses are

sizeable for both values of V . Second, losses are smaller when the lower value of V is used. The

next two rows indicate that average and largest relative efficiency losses are also sizeable, and again

are smaller when the lower value of V is used.

The last row shows that using the lower value of the VaR bound (and thus a tighter constraint)

precludes the selection of more portfolios with large expected returns. Hence, there exists no

23Since we assume that Treasury bills are risk-free, the standard deviation of the return on Treasury bills is reported as zero.

In each state, Treasury bills are assumed to have a return equal to the average monthly return on Treasury bills during the

sample period.
24For simplicity, we assume that the return on the risk-free security in an ST event is equal to the product of: (i) the duration

of the event expressed as a fraction of a month times (ii) the average risk-free return.
25While these (and subsequent) fixed bound values are utilized for illustrative purposes, similar results have been obtained

when other reasonable values are used.
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value for the fixed bound such that a VaR constraint precludes the selection of all portfolios with

substantive efficiency losses while allowing the selection of portfolios with large expected returns.

Accordingly, we examine next the case of a bound that depends on the required expected return,

which we refer to as a variable bound. This bound is set in such a way that it is typically increasing

in the required expected return. Recognizing that a higher expected return is generally associated

with more risk, the use of a variable bound is also motivated by the practical plausibility of senior

management setting larger bounds for trading book managers who would like to select portfolios

with higher expected returns since failure to do so could result in the non-existence of a feasible

portfolio.

Let wα,E denote the portfolio on the mean-CVaR frontier at the 100α% confidence level with

an expected return of E. Consider setting the bound equal to the VaR of this portfolio:

V ∗α,E ≡ Vα,wα,E . (10)

A VaR constraint with bound V ∗α,E: (i) allows (but typically does not force) the selection of portfolio

wα,E, which has by construction an expected return of E and a zero efficiency loss; and (ii) precludes

(as much as possible) portfolios with an expected return of E that have the greatest efficiency losses,

thereby leading to the smallest maximum efficiency loss when using a VaR constraint. Generally,

when a VaR constraint with confidence level α and a bound V other than V ∗α,E is imposed, either

(i) or (ii) do not hold. First, the use of a bound V < V ∗α,E precludes the selection of portfolio wα,E.

Second, the use of a bound V > V ∗α,E generally results in a larger maximum efficiency loss. Hence,

the choice of variable bound V ∗α,E is appealing.

The last column of Table 2 presents the results when this bound is used.26 The first two rows

26In order to restrict our attention to a set of plausible levels of expected return, we let E = 2.16% when variable bounds are

used (when fixed bounds are used, E is still set to be equal to the maximum feasible expected return as it is less than 2.16%).

Note that a portfolio with a weight of (a) 150% in small cap value stocks, (b) −50% in Treasury bills, and (c) zero in the

remaining asset classes has an expected return of 2.16% [= 1.5× 1.58%− 0.5× 0.43%]. Nevertheless, the results when E is set

to be equal to the maximum feasible expected return (i.e., 3.24%) are qualitatively similar to when E = 2.16%. Quantitatively,
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report average and largest efficiency losses. Two results can be seen. First, losses are notably

smaller than those in the first two columns, indicating that a VaR constraint with a variable bound

is useful to control CVaR. The intuition for this result is as follows. While a constraint with a fixed

bound is tight for only the largest feasible levels of expected return, a constraint with a variable

bound is tight for all feasible levels. Hence, losses are smaller when the variable bound is used.

Second, losses can still be noticeable. This result can be understood by noting that VaR does not

capture the size of losses beyond VaR.

Similarly, the next two rows indicate that the average (largest) relative efficiency loss is much

smaller than when a fixed bound is used. As the last row shows, a VaR constraint with a variable

bound allows the selection of the portfolio with larger expected returns than when a fixed bound

is used.

The first column of Fig. 3 shows a box plot of maximum efficiency losses associated with variable

bounds.27 The three horizontal lines in the box represent the lower quartile, median, and upper

quartile of losses. The dashed vertical lines extending from each end of the box show the range

of losses. Hence, the horizontal line at the bottom (top) of the lower (upper) dashed vertical line

represents the lowest (highest) value of the loss. Note that losses vary noticeably across required

levels of expected return.

Next, we illustrate the tail risk of: (i) portfolios on the mean-CVaR frontier and (ii) portfolios

with maximum efficiency losses. For brevity, consider required expected returns of E33 and E67,

which are, respectively, 33% and 67% of the way between the risk-free rate (E) and the portfolio on

the mean-CVaR frontier with maximum expected return (E). The first row of Table 3 shows the

it is worth noting that the average relative efficiency loss is smaller. This result is driven by two facts: (1) portfolios on the

mean-CVaR frontier with larger expected returns have larger CVaRs; and (2) efficiency losses for levels of expected return close

to 3.24% are relatively small (since the set of feasible portfolios with these levels of expected return is also relatively small).
27In most of the box plots presented in the paper, there are no outliers. When there are outliers, our main results are not

affected by their exclusion. Here, an outlier is a value of the loss that is smaller (larger) than the lower (upper) quartile by an

amount that exceeds 1.5 times the interquartile range (i.e., the difference between the upper and lower quartiles).
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VaR, losses in ST events, CVaR, efficiency loss, and relative efficiency loss of the portfolio on the

mean-CVaR frontier with an expected return of E33.
28 The second row shows the VaR, losses in ST

events, and CVaR of the portfolio with such expected return that has the maximum efficiency loss

when a variable-bound VaR constraint is used. Note that the latter portfolio has an efficiency loss

of 2.38% [= 3.91%− 1.53%] and a relative efficiency loss of 155.18% [= 2.38%/1.53%] even though

it has the same VaR as the portfolio on the mean-CVaR frontier. A similarly substantive result

can be seen in the fifth and sixth rows where an expected return of E67 is used, with efficiency and

relative efficiency losses of 3.82% [= 8.89%− 5.07%] and 75.44% [= 3.82%/5.07%], respectively.

We examine the distance between any two given portfolios w1 and w2 by computing
|w1−w2|√

J+1
,

where |·| denotes the Euclidean norm.29 Using a variable bound, let Di denote the distance between

the portfolio with maximum efficiency loss in the case when a VaR constraint is imposed and the

portfolio on the mean-CVaR frontier when the required expected return is Ei.
30 The average of

{Di}100i=0 is referred to as average distance. With a VaR constraint, this distance is 44%.

3.2. ST constraints

We now analyze the effectiveness of ST constraints in controlling tail risk. The first two columns

of Table 4 examine the case of fixed bounds. The first two rows report average and largest efficiency

losses when T1 and T2 are assumed to be either 4% or 8% (for brevity, we assume that T1 = T2).

Three results can be seen. First, losses are sizeable for both values of T1 and T2. Second, losses are

smaller when the lower value for T1 and T2 is used. Third, losses are larger than those in Table 2

where VaR constraints were imposed. The next two rows indicate that average and largest relative

efficiency losses are also sizeable and larger than when a VaR constraint is imposed.

The last row shows that using the lower values of the ST bounds (and therefore tighter con-

28Note that a negative loss corresponds to a positive return; see Eq. (6).
29Note that

¯̄
w1 −w2 ¯̄ /√J + 1 = [ΣJj=1(w1j − w2j )2/(J + 1)]1/2.

30In subsequent cases, we continue to assume that variable bounds are used when determining Di.

15



straints) precludes the selection of more portfolios with large expected returns. Hence, there exists

no value for the fixed bounds such that the constraints preclude the selection of all portfolios with

substantive efficiency losses while allowing the selection of portfolios with large expected returns.

Accordingly, we examine the case of variable bounds next.

For a given expected return E and confidence level α, we set the ST bounds to be equal to the

ST event losses of the portfolio on the mean-CVaR frontier:

(T ∗1,α,E, T
∗
2,α,E) ≡ (T1,wα,E , T2,wα,E). (11)

Note that ST constraints with bounds T ∗1,α,E and T
∗
2,α,E: (i) allow (but typically do not force) the

selection of portfolio wα,E, which has by construction an expected return of E and a zero efficiency

loss; and (ii) preclude (as much as possible) the portfolios with an expected return of E that have

the greatest efficiency losses, thereby leading to the smallest maximum efficiency loss when using

ST constraints. Hence, the choice of variable bounds T ∗1,α,E and T
∗
2,α,E is appealing.

The last column of Table 4 presents the results when these bounds are used. The first two

rows report average and largest efficiency losses. Two results can be seen. First, average losses are

smaller than those in the first two columns, indicating that ST constraints with variable bounds

are useful to control CVaR. Second, the largest efficiency loss is larger than that in the first column

but smaller than that in the second column. The next two rows show similar results for the average

and largest relative efficiency losses. Importantly, the benefits of using variable-bound constraints

relative to fixed-bound constraints are small in comparison to those obtained with a VaR constraint

as shown in Table 2. As the last row shows, ST constraints with a variable bound allow the selection

of portfolios with larger expected returns than when a fixed bound is used.

The second column of Fig. 3 shows a box plot of maximum efficiency losses associated with

variable bounds. The losses differ from those when a VaR constraint is imposed in that the ST
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box plots are much larger (compare the first two columns of this figure). Specifically, the highest

value, upper quartile, median, and lower quartile are all larger.31 The intuition for why the ST

constraints are less effective than the VaR constraint is as follows. Because stocks have notable

losses in ST events, a portfolio with noticeable short positions in stocks might satisfy the ST

constraints. However, since the state used to compute a portfolio’s VaR depends on the portfolio’s

return distribution, the aforementioned portfolio might not satisfy the VaR constraint (if it was

imposed as in the previous section). Since the states used to compute a portfolio’s CVaR also

depend on the portfolio’s return distribution, such a portfolio might have a large CVaR. Because

there are portfolios that: (1) satisfy the ST constraints, (2) do not satisfy the VaR constraint, and

(3) have relatively large CVaRs, efficiency losses with ST constraints are larger than with the VaR

constraint. In results not presented in the tables (but available upon request), we indeed find that

portfolios with maximum efficiency losses when ST constraints are imposed generally involve more

significant short positions than when a VaR constraint is imposed.

In assessing the statistical significance of the difference between the distributions of losses with

variable-bound VaR and ST constraints, we utilize: (i) the two-sample Kolmogorov-Smirnov test

and (ii) the Wilcoxon rank sum test. Using (i), we test the null hypothesis that the cumulative

distribution function (cdf) of losses when a VaR constraint is imposed coincides with the cdf when

ST constraints are imposed against the alternative hypothesis that the two cdfs differ. Similarly,

using (ii), we test the null hypothesis that the median of the distribution of losses when a VaR

constraint is imposed equals the median when ST constraints are imposed against the alternative

hypothesis that the two medians differ. In results available upon request, we find that both null

31Note that our weight restrictions allow the selection of portfolios where the sum of the weights of the asset classes involving

stocks is negative (hereafter, ‘short equity portfolios’). These portfolios may actually have positive returns in the ST events

considered in our paper but may suffer large losses when the stock market has large returns. Hence, our results on the

ineffectiveness of ST constraints in controlling tail risk could be driven by short equity portfolios. However, upon further

analysis, we find that this does not occur. Indeed, we find that ST constraints are still ineffective when short sales are allowed

but short equity portfolios are disallowed. The fact that short equity portfolios do not drive our results when ST constraints

are imposed is also true when both VaR and ST constraints are imposed.
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hypotheses are rejected at the 1% level.32 Hence, there is statistical evidence that ST constraints

are less effective in controlling tail risk than a VaR constraint.

The third row of Table 3 shows the VaR, losses in ST events, CVaR, efficiency loss, and relative

efficiency loss of the portfolio with an expected return of E33 that has the maximum efficiency loss

when variable-bound ST constraints are used. Note that such a portfolio has an efficiency loss

of 21.06% [= 22.59% − 1.53%] and a relative efficiency loss of 1,372.18% [= 21.06%/1.53%] even

though its returns in ST events are equal to or higher than those of the portfolio on the mean-CVaR

frontier. Hence, these losses are notably larger than when a VaR constraint is used (i.e., 2.38% and

155.18%). Similar results can be seen in the seventh row where an expected return of E67 is used

in that the efficiency and relative efficiency losses with ST constraints are still substantial, being

equal to 9.86% [= 14.93%− 5.07%] and 194.48% [= 9.86%/5.07%], respectively.

We now examine the distance between: (1) portfolios with maximum efficiency losses when ST

constraints are used; and (2) portfolios on the mean-CVaR frontier. The average distance is 83%

and thus about two times larger than when a VaR constraint is imposed.

3.3. VaR and ST constraints

Next, we analyze the joint effectiveness of VaR and ST constraints in controlling tail risk. The

first four columns of Table 5 present the results with fixed bounds. The first two rows report

average and largest efficiency losses for various values of V , T1, and T2. Three main results can be

seen. First, losses are sizeable for all of these values. Second, losses are smaller than those in Table

2 where just VaR constraints were imposed. Third, losses are notably smaller than those in Table

4 where just ST constraints were imposed. The next two rows indicate that average and largest

relative efficiency losses are also sizeable but smaller than when either just VaR or ST constraints

32Here, we continue to assume that the confidence level used to compute VaR and CVaR is α = 99%. The results are statistically

significant at the 1% level when this value of α is used.
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are imposed.

The last row shows that using the lower values of the VaR and ST bounds precludes the selection

of portfolios with large expected returns. Hence, there exist no values for the fixed bounds such

that the constraints preclude the selection of all portfolios with substantive efficiency losses while

allowing the selection of portfolios with large expected returns. Next, we examine the case of

variable bounds given by Eqs. (10) and (11).

The last column of Table 5 presents the results when these bounds are used. The first two rows

report average and largest efficiency losses. Four results can be seen. First, losses are not close

to zero, indicating that the joint use VaR and ST constraints with variable bounds is ineffective

in controlling tail risk. Second, losses are notably smaller than those in the first four columns,

indicating that the use of variable bounds is beneficial relative to the use of fixed bounds. Third,

losses are smaller than those in the last column of Table 2 where only variable-bound VaR con-

straints are imposed. Fourth, losses are notably smaller than those in the last column of Table 4

where only variable-bound ST constraints are imposed.33 The next two rows show similar results

for the average and largest relative efficiency losses. As the last row shows, VaR and ST constraints

with variable bounds allow the selection of portfolios with larger expected returns than when fixed

bounds are used.

The third column of Fig. 3 shows a box plot of maximum efficiency losses associated with

variable bounds. Note that the upper quartile, median, and lower quartile with both VaR and

ST constraints are: (i) smaller than with only the VaR constraint (compare the first and third

columns); and (ii) much smaller than with only ST constraints (compare the second and third

columns). Hence, the joint use of the constraints is clearly an improvement over using just one

33By construction, for any given feasible level of expected return, the maximum efficiency loss when these VaR and ST constraints

are both used is smaller than or equal to that when solely using either constraint. Accordingly, we do not perform statistical

tests comparing losses when both constraints are imposed with those when just one type of constraint is imposed. The main

point of our paper is to show that while the loss when both types of constraints are imposed is typically smaller when just one

type of constraints is imposed, it is sizeable.
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of type of the constraints in that efficiency losses are notably reduced. However, losses are still

substantial.

The fourth row of Table 3 shows the VaR, losses in ST events, CVaR, efficiency loss, and relative

efficiency loss of the portfolio with an expected return of E33 that has the maximum efficiency loss

when variable-bound VaR and ST constraints are used. Note that such a portfolio has an efficiency

loss of 0.91% [= 2.44%−1.53%] and a relative efficiency loss of 58.78% [= 0.91%/1.53%] even though

it has the same VaR and losses in ST events as the portfolio on the mean-CVaR frontier. Hence,

these losses are notably smaller than when either only: (a) a VaR constraint is used (i.e., 2.38% and

155.18%); or (b) ST constraints are used (i.e., 21.06% and 1,372.18%). Similar results can be seen

in the last row where an expected return of E67 is used, but the efficiency and relative efficiency

losses with VaR and ST constraints are 2.13% [= 7.20% − 5.07%] and 42.09% [= 2.13%/5.07%],

respectively.

We now examine the distance between: (1) portfolios with maximum efficiency losses when

both VaR and ST constraints are used; and (2) portfolios on the mean-CVaR frontier. The average

distance is 40% and thus smaller than that when either just VaR (44%) or ST (83%) constraints

are imposed.

3.4. Additional robustness checks

Next, we further assess the robustness of the result that variable-bound VaR and ST constraints

are ineffective in controlling tail risk by examining five additional cases. The first three cases

consider a larger number of: (1) ST events; (2) assets; and (3) both ST events and assets. The

fourth case uses the period 1982—2009 (instead of 1982—2006). The fifth case uses daily data

(instead of monthly data). We focus on variable-bound constraints since they are more effective in

controlling tail risk than fixed-bound constraints.
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First, consider a larger number of ST events along with the original nine assets. Suppose that

four ST events are used: (a) crash of 87; (b) 9/11; (c) the 1997 Asian crisis; and (d) the 1998

Russian crisis.34 The second column of Fig. 4 provides a box plot of maximum efficiency losses

with four ST events. For easier comparison, the box plot of maximum efficiency losses with two

ST events from the third column of Fig. 3 now re-appears in the first column of Fig. 4. Note that

the two box plots are quite similar. Thus, when a larger number of ST events is used, VaR and ST

constraints are similarly ineffective in controlling tail risk.

Second, consider a larger number of assets along with the original two ST events. Instead of

the six size/book-to-market Fama-French equity portfolios, we now use the ten size Fama-French

equity portfolios. As before, suppose that Treasury bills, government bonds, and corporate bonds

are available. Hence, the number of assets increases from nine to thirteen. The third column of

Fig. 4 shows that the box plot of maximum efficiency losses with thirteen assets and two ST events

is much larger than that with nine assets and two ST events. Thus, when a larger number of assets

is available, VaR and ST constraints are even less effective in controlling tail risk.

Third, consider larger numbers of both ST events and assets. The fourth column of Fig. 4

shows a box plot of maximum efficiency losses with four ST events (crash of 87, 9/11, Asian crisis,

and Russian crisis) and thirteen assets (Treasury bills, government bonds, corporate bonds, and

the ten size Fama-French portfolios). Note that the box plot is larger (but the lower quartile is

slightly smaller) than that with two ST events and nine assets. Thus, when larger numbers of both

ST events and assets are used, VaR and ST constraints are still ineffective in controlling tail risk.

Fourth, consider the use of the period 1982—2009 along with the original nine assets and two ST

events. The last column of Fig. 4 shows that the box plot of maximum efficiency losses with this

34In determining the time periods for the ST events involving the Asian and Russian crises, we follow RiskMetrics (a leading

provider of risk management products); see <www.riskgrades.com/retail/events/events.cgi>. However, our starting date for

the Russian crisis event is one day earlier than that used by RiskMetrics so that the event includes the day when the Russian

government decided to default on its debt.
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period is larger than that with the period 1982—2006. Thus, when the period 1982—2009 is used,

VaR and ST constraints are even less effective in controlling tail risk.

Fifth, consider the use of a one-day investment period along with the original nine assets and

two ST events. We use the period January 13, 2003—December 29, 2006 so that we have 1000 daily

observations; the second column of Fig. 5 shows the corresponding box plot of maximum efficiency

losses.35 These losses are scaled to a period of one month by multiplying daily efficiency losses by

(250/12)0.5 so that the results can be compared with those when using monthly data.36 For easier

comparison, the box plot of maximum efficiency losses with monthly data from the third column of

Fig. 3 re-appears in the first column of Fig. 5. While the box plots with daily data are smaller than

those with monthly data, efficiency losses are still substantial. For example, the median monthly

loss exceeds 1%, whereas the largest loss exceeds 2% (see the second column of Fig. 5). Thus, when

daily data are used, VaR and ST constraints are still ineffective in controlling tail risk.

4. Conclusion

In attempting to promote bank stability, the Basel Committee on Banking Supervision (2006)

provides a framework that seeks to control the amount of tail risk that large banks take in their

trading books. However, the size and prevalence of bank trading losses during the recent crisis

raises the question of whether this framework indeed promotes bank stability. In this paper, we

shed light on this question by showing that the Basel framework allows banks to take substantive

tail risk in their trading books without a capital requirement penalty. Hence, our paper supports

the view that the Basel framework did not promote bank stability.

Broadly speaking, our results are in line with Lucas (2001) and Kane (2006). However, we

35A caveat is in order here in that the daily data extends back to 2003 while the monthly data extends back to 1982. Hence,

the two sample periods differ.
36Our scaling convention is consistent with the fact that the Basel framework allows the use of an estimate of VaR for a period

of ten trading days by taking an estimate of VaR for a period of one trading day and multiplying it by the square root of ten;

see Basel Committee on Banking Supervision (2006, p. 195). This convention is often used in practice; see Hull (2007, p. 203).
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should emphasize that our arguments differ from theirs. They show that banks have incentives to

underreport their VaR-based estimates of capital requirements. Our paper shows that banks can

take substantive tail risk in their trading books without a capital requirement penalty even if their

VaR-based estimates of capital requirements are not underreported.

Perhaps recognizing that the Basel framework did not prevent banks from taking substantive

tail risk in their trading books, the Basel Committee on Banking Supervision (2010) proposes a new

regulatory framework for trading books.37 An examination of the effectiveness of the new Basel

framework in promoting bank stability is left for further research.

37In the new Basel framework, a trading book’s minimum capital requirement depends on both its VaR and stressed VaR while

still requiring banks to use ST. The estimation of stressed VaR is based on the use of a sample period where significant losses

occurred (e.g., the recent crisis).
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Table 1: Summary statistics on asset returns

This table presents summary statistics on the monthly returns of nine assets during the period
1982–2006: (i) Treasury bills, (ii) government bonds as measured by the Merrill Lynch government
bond master index, (iii) corporate bonds as measured by the Merrill Lynch corporate bond master
index, and (iv) the six size/book-to-market Fama-French portfolios. Returns on Treasury bills
and Fama-French portfolios are obtained from Kenneth French’s website. Returns on bonds are
obtained from Bloomberg. Since Treasury bills are assumed to be risk-free, the standard deviation
of the return on Treasury bills is reported as zero. A confidence level of 99% is used to compute
VaR and CVaR. Also presented are the asset returns in two ST events: (i) the crash in the U.S.
stock market of 1987 (October 19, 1987) and (ii) the terrorist attacks in the U.S. in September
2001 (September 11–21, 2001). For simplicity, we assume that the return on the risk-free security
in an ST event is equal to the product of: (i) the duration of the event expressed as a fraction of
a month times (ii) the average risk-free return. All numbers are reported in percentage points per
month except for losses in ST events, which refer to the periods of time capturing the events as
defined earlier.

Fama-French portfolios
Treas. Govt. Corp. Small Big
bills bonds bonds Low Inter. High Low Inter. High

Mean 0.43 0.73 0.83 0.82 1.44 1.58 1.10 1.22 1.27
Std. dev. 0.00 1.47 1.65 6.82 4.81 4.65 4.74 4.19 4.12

VaR −0.43 2.44 3.11 16.23 12.93 14.38 10.91 9.37 10.21
CVaR −0.43 3.34 3.75 24.48 20.20 19.91 16.36 16.11 14.50

Returns in ST events
Crash of 87 0.04 0.34 −0.55 −13.03 −11.12 −10.97 −17.94 −18.60 −17.92

9/11 0.16 0.69 −0.60 −15.06 −13.14 −15.34 −11.72 −11.36 −11.72
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Table 2: Efficiency losses and maximum feasible expected returns when a VaR

constraint is imposed

The first and second rows of each panel report, respectively, average and largest efficiency losses
with a VaR constraint. The third and fourth rows report, respectively, average and largest relative
efficiency losses with this constraint. The last row reports the maximum feasible expected return
with the constraint. The first two columns use a fixed bound V of either 4% or 8%. The third
column uses variable bound V ∗

α,E as defined by Eq. (8), which depends on required expected return
E. A confidence level of 99% is used to compute VaR and efficiency losses. Losses and expected
returns are reported in percentage points per month. Relative losses are measured in percentage
points.

V

4% 8% V ∗
α,E

Efficiency loss:
Average 8.25 14.94 3.86
Largest 11.11 20.97 9.56

Relative efficiency loss:
Average 366.99 501.75 105.93
Largest 934.56 1,844.67 174.24

Maximum feasible expected return 1.59 2.07 2.16
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Table 3: VaRs, losses in ST events, CVaRs, efficiency losses, and relative efficiency

losses of portfolios on the mean-CVaR frontier and of portfolios with maximum

efficiency losses when various constraints are imposed

Consider the two levels of expected return, E33 and E67, that are, respectively, 33% and 67%
of the way between the risk-free rate (E) and the expected return of the portfolio on the mean-
CVaR frontier with maximum expected return (E). The table presents the VaR, losses in ST
events, CVaR, efficiency loss, and relative efficiency loss of the portfolio on the mean-CVaR frontier
with an expected return of E33 (E67). It also presents the VaRs, losses in ST events, CVaRs,
efficiency losses, and relative efficiency losses of portfolios with this level of expected return that
have maximum efficiency losses when variable-bound VaR and/or ST constraints are used. A
confidence level of 99% is used to compute VaR and CVaR. VaRs, CVaRs, and efficiency losses are
reported in percentage points per month. Losses in ST events are reported in percentage points
but refer to the periods of time capturing the events as defined in Table 1. Relative efficiency losses
are reported in percentage points.

Losses in ST events Relative
VaR Crash of 87 9/11 CVaR Efficiency loss efficiency loss

E33:
Mean-CVaR frontier 1.38 −0.26 0.84 1.53 0.00 0.00
VaR 1.38 2.94 3.46 3.91 2.38 155.18
ST 16.59 −0.26 −6.85 22.59 21.06 1,372.18
VaR + ST 1.38 −0.26 0.84 2.44 0.91 58.78

E67:
Mean-CVaR frontier 4.38 3.90 4.83 5.07 0.00 0.00
VaR 4.38 5.59 7.59 8.89 3.82 75.44
ST 10.68 3.90 3.07 14.93 9.86 194.48
VaR + ST 4.38 −1.43 4.83 7.20 2.13 42.09
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Table 4: Efficiency losses and maximum feasible expected returns when ST

constraints are imposed

The first and second rows report, respectively, average and largest efficiency losses with ST con-
straints that use the crash of 87 and 9/11 as the ST events. The third and fourth rows report,
respectively, average and largest relative efficiency losses with these constraints. The last row re-
ports the maximum feasible expected return with the constraints. The first two columns use fixed
bounds T1 and T2, where T1 = T2 = 4% or 8%. The third column uses variable bounds T ∗

1,α,E and
T ∗

2,α,E as defined by Eq. (11), which depend on required expected return E. A confidence level of
99% is used to compute efficiency losses. Losses and expected returns are reported in percentage
points per month. Relative losses are measured in percentage points.

T1 = T2

4% 8% T ∗
1,α,E, T ∗

2,α,E

Efficiency loss:
Average 16.52 17.80 15.54
Largest 24.18 28.19 26.97

Relative efficiency loss:
Average 636.80 626.66 505.27
Largest 1,810.70 2,329.70 2,280.65

Maximum feasible expected return 1.84 2.04 2.16
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Table 5: Efficiency losses and maximum feasible expected returns when VaR and ST

constraints are imposed

The first and second rows report, respectively, average and largest efficiency losses with a VaR
constraint and ST constraints that use the crash of 87 and 9/11 as the ST events. The third and
fourth rows report, respectively, average and largest relative efficiency losses with these constraints.
The last row reports the maximum feasible expected return with the constraints. The first four
columns use a fixed bound V of either 4% or 8%, and fixed bounds T1 and T2 where T1 = T2 = 4%
or 8%. The last column uses variable bounds V ∗

α,E, T ∗
1,α,E, and T ∗

2,α,E as defined by Eqs. (8) and
(11), which depend on required expected return E. A confidence level of 99% is used to compute
VaR and efficiency losses. Losses and expected returns are reported in percentage points per month.
Relative losses are measured in percentage points.

V

4% 8% V ∗
α,E

T1 = T2

4% 8% 4% 8% T ∗
1,α,E, T ∗

2,α,E

Efficiency loss:
Average 6.59 7.91 12.34 12.22 1.96
Largest 10.35 10.89 17.54 17.54 4.03

Relative efficiency loss:
Average 288.29 349.27 484.05 437.12 56.56
Largest 831.20 976.37 1,552.29 1,511.05 138.53

Maximum feasible expected return 1.59 1.59 1.78 1.95 2.16
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Figure 1: Methodology*

Step 1: Choose confidence level and constraint 
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Step 5: Solve for maximum efficiency loss
Mi for each level of expected return Ei

* There are three sets of constraints: (1) a VaR constraint; (2) ST constraints; and (3) VaR and
ST constraints. Historical simulation is used to compute VaR, CVaR, and losses in ST events
for all portfolios.
** The bounds for the VaR and ST constraints are either: (a) fixed (do not depend on required
expected return Ei); or (b) variable (depend on Ei). The variable bound for the VaR constraint is
given by Eq. (10), whereas the variable bounds for the ST constraints are given by Eq. (11).

Step 6: Find average and largest efficiency losses, 
and average and largest relative efficiency losses
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Figure 2: Determining maximum efficiency losses

The curve represents portfolios on the mean-CVaR frontier for various levels of expected return.
The minimum required expected return E0 = E is assumed to be the risk-free rate. The maximum
required expected return E100 = depends on whether short selling is disallowed or allowed.
Point pmin represents the portfolio that has an expected return of Ei and minimum CVaR, Cmin.
Point pmax represents the portfolio that has the same expected return, meets the VaR and stress
testing constraints, and has maximum CVaR, Cmax. Note that maximum efficiency loss Mi is
given by Cmax – Cmin.

E

E

Ei

E

E100 =

portfolio with 
minimum CVaR

portfolio with 
maximum CVaR

mean-CVaR frontier

p

CVaR

E0 = E

Ei
pmin

Cmin Cmax

pmax

0
0

maximum efficiency loss: 
Mi = Cmax – Cmin
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Figure 3: Box plots of maximum efficiency losses

This figure shows box plots of maximum efficiency losses in the range of feasible expected returns
with variable-bound constraints. In the first column, we solely impose a VaR constraint with bound
V ∗

α,E, which depends on the required expected return E as Eq. (8) shows. In the second column, we
solely impose ST constraints that use the crash of 87 and 9/11 as the ST events and bounds T ∗

1,α,E

and T ∗
2,α,E, which depend on required expected return E as Eq. (11) shows. In the third column,

we jointly impose both VaR and ST constraints. The three horizontal lines in the box represent
the lower quartile, median, and upper quartile of losses. The dashed vertical lines extending from
each end of the box show the range of losses. Hence, the horizontal line at the bottom (top) of the
lower (upper) dashed vertical line represents the lowest (highest) value for the loss. A confidence
level of 99% is used to compute VaR and efficiency losses. Losses are reported in percentage points
per month.
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Figure 4: Box plots of maximum efficiency losses with VaR and ST constraints when

different ST events, assets, and periods are used

This figure shows box plots of maximum efficiency losses in the range of feasible expected returns
when both VaR and ST constraints are imposed. As in Fig. 3, the VaR and ST constraints use
variable bounds. While the first four columns use the period 1982–2006, the last column uses
the period 1982–2009. The first, second, and fifth columns consider nine assets: Treasury bills,
government bonds, corporate bonds, and the six size/book-to-market Fama-French portfolios. The
third and fourth columns consider thirteen assets: Treasury bills, government bonds, corporate
bonds, and the ten size Fama-French portfolios. The first, third, and fifth columns use two ST
events: crash of 87 and 9/11. The second and fourth columns use four ST events: crash of 87,
9/11, Asian crisis, and Russian crisis. The three horizontal lines in the box represent the lower
quartile, median, and upper quartile of losses. The dashed vertical lines extending from each end
of the box show the range of losses. Hence, the horizontal line at the bottom (top) of the lower
(upper) dashed vertical line represents the lowest (highest) loss. A confidence level of 99% is used
to compute VaR and efficiency losses. Losses are reported in percentage points per month.
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Figure 5: Box plots of maximum efficiency losses when daily data are used

This figure shows box plots of maximum efficiency losses in the range of feasible expected returns
when both VaR and ST constraints are imposed. As in Fig. 3, the VaR and ST constraints use
variable bounds. There are nine assets (Treasury bills, government bonds, corporate bonds, and the
ten size Fama-French portfolios) and two ST events (crash of 87 and 9/11). In the first column, the
investment horizon is one month and monthly data are used in estimating monthly VaR, CVaR, and
efficiency losses as before. In the second column, the investment horizon is one day and daily data
are used in estimating daily VaR, CVaR, and efficiency losses. These efficiency losses are scaled to
a period of one month by multiplying them by (250/12)0.5 so that the results with monthly and
daily data can be compared. The three horizontal lines in the box represent the lower quartile,
median, and upper quartile of losses. The dashed vertical lines extending from each end of the box
show the range of losses. Hence, the horizontal line at the bottom (top) of the lower (upper) dashed
vertical line represents the lowest (highest) loss. A confidence level of 99% is used to compute VaR
and efficiency losses.
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