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Motivational Quote

. . . a central bank seeking to maximize its probability of achieving
its goals is driven, I believe, to a risk-management approach to
policy. By this I mean that policymakers need to consider not only
the most likely future path for the economy but also the
distribution of possible outcomes about that path.

Alan Greenspan (2003)
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The Problem

Object of interest:

Observed time series {y1, . . . , yT}
Interested in the future path YT,H ≡ (yT+1, . . . , yT+H)′,
where H is the maximum forecast horizon
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The Problem

Object of interest:

Observed time series {y1, . . . , yT}
Interested in the future path YT,H ≡ (yT+1, . . . , yT+H)′,
where H is the maximum forecast horizon

For starters:

Denote a forecast h periods ahead by ŷT(h)

Want a path-forecast ŶT(H) ≡ (ŷT(1), . . . , ŷT(H))′

In the end:

Also want a joint prediction region (JPR) that contains the entire
future path YT,H with prespecified probability 1 − α
For purposes of interpretation, such a JPR should be of the form
of simultaneous prediction intervals for yT+h, for h = 1, . . . ,H
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Restriction To Rectangular JPRs

In general:

YT,H is a H-dimensional vector

In principle, a JPR can be any region in RH that contains the
vector YT,H with probability 1 − α
For example, an elliptical JPR based on the classical Scheffé
method (details later)
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Restriction To Rectangular JPRs

In general:

YT,H is a H-dimensional vector

In principle, a JPR can be any region in RH that contains the
vector YT,H with probability 1 − α
For example, an elliptical JPR based on the classical Scheffé
method (details later)

In practice:

Want an implied ‘prediction interval’ for yT+h at each horizon h

So the JPR should represent simultaneous prediction intervals:
in other words, one wants a rectangular JPR

Note:

One can always start with a JPR of arbitrary shape and then
‘project’ it onto the axes of RH to obtain a rectangular JPR

But, clearly, such a procedure is sub-optimal

Instead, one should construct a ‘direct’ rectangular JPR
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Restriction To Rectangular JPRs

An illustration of elliptical (and projected) JPR versus rectangular JPR:
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The Non-Solution

How not to do it:

Compute a marginal prediction interval for yT+h at level 1 − α
for each h = 1, . . . ,H

Then ‘string together’ these H intervals



The Problem The Solution Two Previous Methods Monte Carlo Empirical Application Conclusions References

The Non-Solution

How not to do it:

Compute a marginal prediction interval for yT+h at level 1 − α
for each h = 1, . . . ,H

Then ‘string together’ these H intervals

Advantage:

(Relatively) easy to do:

How to compute reliable marginal prediction intervals has been
worked out finally

Disadvantage:

The joint coverage probability for the path YT,H is less than 1 − α
Furthermore, ceteris paribus this probability decreases in H
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The Non-Solution

How not to do it:

Compute a marginal prediction interval for yT+h at level 1 − α
for each h = 1, . . . ,H

Then ‘string together’ these H intervals

Advantage:

(Relatively) easy to do:

How to compute reliable marginal prediction intervals has been
worked out finally

Disadvantage:

The joint coverage probability for the path YT,H is less than 1 − α
Furthermore, ceteris paribus this probability decreases in H

Amazingly:

This method is still widely used

For example, in fan charts published by the Bank of England
and the Central Bank of Norway



The Problem The Solution Two Previous Methods Monte Carlo Empirical Application Conclusions References

The Non-Solution

An (unfortunate) example:
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Some Notation

In the real world:

Data {y1, . . . , yT, yT+1, . . . yT+H} generated by mechanism P
Vector of prediction errors:

ÛT(H) ≡ (ûT(1), . . . , ûT(H))′ ≡ ŶT(H) − YT,H

Prediction standard error for ûT(h) denoted by σ̂T(h)
Vector of standardized prediction errors:

ŜT(H) ≡ (ûT(1)/σ̂T(1), . . . , ûT(H)/σ̂T(H))′
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T
(H)/σ̂∗

T
(H))′



The Problem The Solution Two Previous Methods Monte Carlo Empirical Application Conclusions References

Some Notation

In the real world:

Data {y1, . . . , yT, yT+1, . . . yT+H} generated by mechanism P
Vector of prediction errors:

ÛT(H) ≡ (ûT(1), . . . , ûT(H))′ ≡ ŶT(H) − YT,H

Prediction standard error for ûT(h) denoted by σ̂T(h)
Vector of standardized prediction errors:

ŜT(H) ≡ (ûT(1)/σ̂T(1), . . . , ûT(H)/σ̂T(H))′

In the bootstrap world:

Data {y∗
1
, . . . , y∗

T
, y∗

T+1
, . . . y∗

T+H
} generated by mechanism P̂T

Vector of bootstrap prediction errors:

Û∗
T
(H) ≡ (û∗

T
(1), . . . , û∗

T
(H))′ ≡ Ŷ∗

T
(H) − Y∗

T,H
Prediction standard error for û∗

T
(h) denoted by σ̂∗

T
(h)

Vector of bootstrap standardized prediction errors:

Ŝ∗
T
(H) ≡ (û∗

T
(1)/σ̂∗

T
(1), . . . , û∗

T
(H)/σ̂∗

T
(H))′

Note:

The methodology is completely generic
All implementation details are up to the applied researcher
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High-Level Assumption

Relevant quantities:

ĴT denotes the probability law under P of ŜT(H)|yT, yT−1, . . .

Ĵ∗
T

denotes the probability law under P̂T of Ŝ∗
T
(H)|y∗

T
, y∗

T−1
, . . .

In the asymptotic framework, T tends to infinity and H remains fixed.

Assumption 2.1

ĴT converges in distribution to a non-random continuous limit law Ĵ.

Furthermore, Ĵ∗
T

consistently estimates this limit law: ρ(ĴT, Ĵ
∗
T
)→ 0

in probability, for any metric ρ metrizing weak convergence.
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Flexible Criterion To Construct JPRs

Possible concern:

When H is large, it may be deemed too strict that all elements of
the future path must be contained in the JPR (with prob. 1 − α)
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k-FWE ≡ P{At least k of the yT+h not contained in the JPR}
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For k > 1, one is willing to miss up to k − 1 elements in the JPR,
but is afforded a smaller region in return (see below)
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Flexible Criterion To Construct JPRs

Possible concern:

When H is large, it may be deemed too strict that all elements of
the future path must be contained in the JPR (with prob. 1 − α)

We thus adapt a concept from the multiple-testing literature to offer
a flexible solution:

Generalized family-wise error rate (k-FWE)

k-FWE ≡ P{At least k of the yT+h not contained in the JPR}

Implication:

For k = 1, one wants to catch the entire future path in the JPR
For k > 1, one is willing to miss up to k − 1 elements in the JPR,
but is afforded a smaller region in return (see below)

Goal:

The applied researcher chooses the value of k, given his needs
The JPR should then deliver k-FWE ≤ α, at least asymptotically
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How To Make It Happen

Some further notation:

Let X ≡ (x1, . . . , xH)′ be a vector with H elements

k-max(X) returns the kth-largest value of X

|X| denotes the vector (|x1|, . . . , |xH |)′
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Let X ≡ (x1, . . . , xH)′ be a vector with H elements

k-max(X) returns the kth-largest value of X

|X| denotes the vector (|x1|, . . . , |xH |)′

The ideal JPR, controlling the k-FWE in finite samples, is of the form:

[
.
]
× . . . ×

[
ŷT(h) ± dmax

|·|,1−α(k) · σ̂T(h)
]
× . . . ×

[
.
]

where dmax
|·|,1−α(k) is the 1−α quantile of random variable k-max

(
|ŜT(H)|

)
.
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How To Make It Happen

Some further notation:

Let X ≡ (x1, . . . , xH)′ be a vector with H elements

k-max(X) returns the kth-largest value of X

|X| denotes the vector (|x1|, . . . , |xH |)′

The ideal JPR, controlling the k-FWE in finite samples, is of the form:

[
.
]
× . . . ×

[
ŷT(h) ± dmax

|·|,1−α(k) · σ̂T(h)
]
× . . . ×

[
.
]

where dmax
|·|,1−α(k) is the 1−α quantile of random variable k-max

(
|ŜT(H)|

)
.

The feasible JPR, controlling the k-FWE asymptotically, is of the form:

[
.
]
× . . . ×

[
ŷT(h) ± dmax,∗

|·|,1−α(k) · σ̂T(h)
]
× . . . ×

[
.
]

(1)

where dmax,∗
|·|,1−α(k) is the 1−α quantile of random variable k-max

(
|Ŝ∗

T
(H)|
)
.
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Formal Result

Proposition 2.1

Under Assumption 2.1, the JPR (1) for YT,H satisfies

lim sup
T→∞

k-FWE ≤ α

where

k-FWE ≡ P{At least k of the yT+h not contained in the JPR} .
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Formal Result

Proposition 2.1

Under Assumption 2.1, the JPR (1) for YT,H satisfies

lim sup
T→∞

k-FWE ≤ α

where

k-FWE ≡ P{At least k of the yT+h not contained in the JPR} .

Alternative JPRs:

The JPR (1) is two-sided

Alternatively, lower and upper one-sided JPRs can be
constructed in a similar fashion; see the paper for details
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Bootstrap Details

Algorithm 2.1 (Computation of the JPR Multiplier)

1 Generate bootstrap data {y∗
1
, . . . , y∗

T
, y∗

T+1
, . . . , y∗

T+H
} from P̂T

2 Not making use of the stretch {y∗
T+1
, . . . , y∗

T+H
}, compute

forecasts ŷ∗
T
(h) and prediction standard errors σ̂∗

T
(h)

3 Compute bootstrap prediction errors û∗
T
(h) ≡ ŷ∗

T
(h) − y∗

T+h

4 Compute standardized bootstrap prediction errors

ŝ∗
T
(h) ≡ û∗

T
(h)/σ̂∗

T
(h) and let Ŝ∗

T
(H) ≡

(
ŝ∗

T
(1), . . . , ŝ∗

T
(H)
)′

5 Compute k-max∗|·| ≡ k-max
(∣∣∣Ŝ∗

T
(H)
∣∣∣
)

6 Repeat this process B times =⇒
{
k-max∗|·|,1, . . . , k-max∗|·|,B

}

7 dmax,∗
|·|,1−α(k) is the empirical 1 − α quantile of these B statistics
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Multivariate Time Series

More general scenario:

One observes a K-variate time series {Z1, . . . ,ZT}
The goal is to predict the next stretch of H observations for
a particular component of Zt, say the first one w.l.o.g.

Write Zt ≡ (yt, z2,t, . . . , zK,t)
′

The forecasts ŷT(h) and the prediction standard errors σ̂T(h)
are computed from {Z1, . . . ,ZT} rather than from {y1, . . . , yT} only

Ditto in the bootstrap world
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Multivariate Time Series

More general scenario:

One observes a K-variate time series {Z1, . . . ,ZT}
The goal is to predict the next stretch of H observations for
a particular component of Zt, say the first one w.l.o.g.

Write Zt ≡ (yt, z2,t, . . . , zK,t)
′

The forecasts ŷT(h) and the prediction standard errors σ̂T(h)
are computed from {Z1, . . . ,ZT} rather than from {y1, . . . , yT} only

Ditto in the bootstrap world

More general relevant quantities:

ĴT denotes the probability law under P of ŜT(H)|ZT,ZT−1, . . .

Ĵ∗
T

denotes the probability law under P̂T of Ŝ∗
T
(H)|Z∗

T
,Z∗

T−1
, . . .

Unchanged methodology:

Given the modifications above, the bootstrap methodology
to construct JPRs remains unchanged

Proposition 2.1 continues to hold
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(Modified) Scheffé JPR

Jordà and Marcellino (2010) propose an ’asymptotic’ JPR based on

Assumption 3.1

√
T
(
ŶT(H) − YT,H |ZT,ZT−1, . . .

)
d→ N(0,ΞH) and Ξ̂H

P→ ΞH .
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The proposed Scheffé JPR is obtained in three steps:
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{
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(classical Scheffé JPR)
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H 1H
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(by Bowden’s (1970) Lemma . . . )
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Jordà and Marcellino (2010) propose an ’asymptotic’ JPR based on

Assumption 3.1

√
T
(
ŶT(H) − YT,H |ZT,ZT−1, . . .

)
d→ N(0,ΞH) and Ξ̂H

P→ ΞH .

Furthermore, let P be the lower-triangular Cholesky decomposition
of Ξ̂H/T, satisfying PP′ = Ξ̂H/T.

The proposed Scheffé JPR is obtained in three steps:

(S1)
{
Ỹ : T(ŶT(H)− Ỹ)′Ξ̂−1

H
(ŶT(H)− Ỹ) ≤ χ2

H,1−α

}
(classical Scheffé JPR)

(S2) ŶT(H) ± P

[√
χ2

H,1−α
H 1H

]
(by Bowden’s (1970) Lemma . . . )

(S3) ŶT(H) ± P

[√
χ2

h,1−α
h

]H

h=1

(by some ‘stepwise’ method)
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Criticisms:

Assumption 3.1 is reasonable in the context of estimation but not
in the context of prediction
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Assumption 3.1 is reasonable in the context of estimation but not
in the context of prediction

The way from (S1) to (S3) is not exactly paved with theoretical
justification
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(Modified) Scheffé JPR

Criticisms:

Assumption 3.1 is reasonable in the context of estimation but not
in the context of prediction

The way from (S1) to (S3) is not exactly paved with theoretical
justification

The width of the proposed JPR (S3) at forecast horizon h may not
be (weakly) monotonically increasing in h:

this can happen, since the multipliers
√
χ2

h,1−α/h are strictly

decreasing in h (for commonly used values of α)
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(Modified) Scheffé JPR

Multipliers of the (modified) Scheffé JPR for H = 12 and α = 0.1:

2 4 6 8 10 12

0.0
0.5

1.0
1.5

2.0

Jorda and Marcellino (2010) Multipliers

Forecast Horizon h
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NP Heuristic JPR

Staszewska-Bystrova (2010) proposes the following alternative
bootstrap JPR:
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NP Heuristic JPR

Staszewska-Bystrova (2010) proposes the following alternative
bootstrap JPR:

Generate B bootstrap path-forecasts Ŷ∗,b
T

(H), for b = 1, . . . ,B

Discard αB of these bootstrap path-forecasts: those Ŷ∗,b
T

(H)

that are ‘furthest’ away from the original path-forecast ŶT(H)
(where distance is measured by the Euclidian distance, say)

The neighboring-paths (NP) JPR is defined as the envelope

of the remaining (1 − α)B bootstrap path-forecasts Ŷ∗,b
T

(H)
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NP Heuristic JPR

Criticisms:

The method is purely heuristic: no proof of asymptotic validity,
under some suitable high-level assumption, is given
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The method is purely heuristic: no proof of asymptotic validity,
under some suitable high-level assumption, is given

The method seems to restricted to (V)AR models, since it uses
the backward representation of a (V)AR model to generate the

bootstrap path-forecasts Ŷ∗
T
(H)
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NP Heuristic JPR

Criticisms:

The method is purely heuristic: no proof of asymptotic validity,
under some suitable high-level assumption, is given

The method seems to restricted to (V)AR models, since it uses
the backward representation of a (V)AR model to generate the

bootstrap path-forecasts Ŷ∗
T
(H)

The shape of the JPR can be jagged, which is unattractive
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Property of Balance

Under the additional assumption that

the marginal distribution of
ŷT(h) − yT+h

σ̂T(h)
is independent of h

asymptotically, it is easily seen that our bootstrap JPR (1) has the
property of being balanced, asymptotically:

P

{
yT+h ∈

[
ŷT(h) ± dmax,∗

|·|,1−α(k) · σ̂T(h)
]}

is independent of h
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is independent of h

All forecasts ŷT(h) are treated as equally important: the probability of
violating the k-FWE criterion is spread out evenly over all horizons h.



The Problem The Solution Two Previous Methods Monte Carlo Empirical Application Conclusions References

Property of Balance

Under the additional assumption that

the marginal distribution of
ŷT(h) − yT+h

σ̂T(h)
is independent of h

asymptotically, it is easily seen that our bootstrap JPR (1) has the
property of being balanced, asymptotically:

P

{
yT+h ∈

[
ŷT(h) ± dmax,∗

|·|,1−α(k) · σ̂T(h)
]}

is independent of h

All forecasts ŷT(h) are treated as equally important: the probability of
violating the k-FWE criterion is spread out evenly over all horizons h.

Another way to argue that balance is a desirable property is by
considering the following (extremely) unbalanced JPR:

PIT(1) × (−∞,∞) × . . . × (−∞,∞)

where PIT(1) is a marginal prediction interval for yT+1.
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Preliminaries

We consider the general AR(p) model

yt = ν + ρ1yt−1 + . . . + ρpyt−p + ǫt (2)

which can be alternatively expressed as

yt = ν + ρyt−1 + ψ1∆yt−1 + . . . + ψp−1∆yt−p+1 + ǫt (3)

to bring out the role of the largest autoregressive root ρ ≡ ρ1 + . . .+ ρp.
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Preliminaries

We consider the general AR(p) model

yt = ν + ρ1yt−1 + . . . + ρpyt−p + ǫt (2)

which can be alternatively expressed as

yt = ν + ρyt−1 + ψ1∆yt−1 + . . . + ψp−1∆yt−p+1 + ǫt (3)

to bring out the role of the largest autoregressive root ρ ≡ ρ1 + . . .+ ρp.

Estimation strategy:

Estimate formulation (3) by OLS, yielding ρ̂OLS

Transform to the bias-corrected estimator (e.g., see White, 1961)

ρ̂BC ≡ ρ̂OLS +
1 + 3 ρ̂OLS

T
(4)

Regress yt − ρ̂BCyt−1 on (1,∆yt−1, . . . ,∆yt−p−1) by OLS to get
corresponding estimators of (ν, ψ1, . . . , ψp−1)

Use the one-to-one relations between the formulations (2)–(3)
to get set of estimators (ν̂, ρ̂1, . . . , ρ̂p) and (centered) residuals {ǫ̂t}
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(p) model and the σ̂∗
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{θ̂0, θ̂1, θ̂2, . . .}, with θ̂0 = 1
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1
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T
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Conditional on {y1, . . . , yp}, using the ÂR(p) model

The ÂR
∗
(p) model and the σ̂∗

T
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Generation of the bootstrap data {y∗
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, . . . , y∗
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}:

Conditional on {yT−H+1, . . . , yT}, using the ÂR(p) model
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Preliminaries

Computation of the forecasts ŷT(h): in the usual way.

Computation of the prediction standard errors:

Convert the ÂR(p) model (ν̂, ρ̂1, . . . , ρ̂p) to an M̂A(∞) model

{θ̂0, θ̂1, θ̂2, . . .}, with θ̂0 = 1

Then σ̂T(h) ≡ σ̂ǫ
√
θ̂2

0
+ . . . + θ̂2

h−1

Generation of the bootstrap data {y∗
1
, . . . , y∗

T
}:

Conditional on {y1, . . . , yp}, using the ÂR(p) model

The ÂR
∗
(p) model and the σ̂∗

T
(h) are obtained as in the real world

Generation of the bootstrap data {y∗
T+1
, . . . , y∗

T+H
}:

Conditional on {yT−H+1, . . . , yT}, using the ÂR(p) model

Generation of the bootstrap path-forecast Ŷ∗
T
(H):

Conditional on {yT−H+1, . . . , yT}, using the ÂR
∗
(p) model

=⇒ Employ the bootstrap approach of Pascual et al. (2001).
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Monte Carlo Details

The model:

Use AR(2) model with various parameters and normal errors

The sample size is T ∈ {100, 400}
Estimate the lag order from the (bootstrap) data by the BIC

Competing methods:

Joint Marginals

Scheffé (S3)

NP Heuristic

k-FWE JPR (1) with k ∈ {1, 2, 3}

Nominal coverage level:

1 − α = 90%
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Monte Carlo Details

The model:

Use AR(2) model with various parameters and normal errors

The sample size is T ∈ {100, 400}
Estimate the lag order from the (bootstrap) data by the BIC

Competing methods:

Joint Marginals

Scheffé (S3)

NP Heuristic

k-FWE JPR (1) with k ∈ {1, 2, 3}

Nominal coverage level:

1 − α = 90%

Note:

A much wider set of simulation results, including non-normal
errors, are reported in the paper
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Monte Carlo Results I

T = 100 T = 400

(ρ1, ρ2) = (1.75,−0.85) H=6 H=12 H=24 H=6 H=12 H=24
Joint Marginals 72.1 61.8 49.2 76.2 64.5 48.0
Scheffé 87.9 86.0 64.4 89.2 88.8 66.1
NP Heuristic 89.2 91.5 93.1 89.8 90.7 90.5
1-FWE JPR 90.4 90.5 89.6 89.8 89.7 89.7
2-FWE JPR 90.4 89.8 89.7 89.9 89.8 89.7
3-FWE JPR 90.0 90.3 89.0 90.0 89.7 89.6

(ρ1, ρ2) = (1.25,−0.75) H=6 H=12 H=24 H=6 H=12 H=24
Joint Marginals 63.6 46.1 27.0 65.3 47.1 25.5
Scheffé 63.7 23.2 07.5 66.5 21.6 04.2
NP Heuristic 87.9 86.7 85.8 88.8 87.8 86.0
1-FWE JPR 90.0 89.4 89.3 89.9 89.8 89.9
2-FWE JPR 90.2 89.5 89.5 89.9 89.9 89.8
3-FWE JPR 89.8 89.5 89.3 89.9 89.8 89.7
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Monte Carlo Results II

T = 100 T = 400

(ρ1, ρ2) = (−0.65, 0.15) H=6 H=12 H=24 H=6 H=12 H=24
Joint Marginals 65.1 48.9 30.4 64.5 47.2 26.2
Scheffé 02.6 00.2 00.0 02.9 00.1 00.0
NP Heuristic 88.8 87.9 86.8 89.1 88.0 86.1
1-FWE JPR 90.4 90.1 89.7 90.0 90.0 89.7
2-FWE JPR 90.5 89.9 89.8 90.1 90.0 90.0
3-FWE JPR (k=3) 89.7 89.7 89.6 90.0 89.8 89.8

(ρ1, ρ2) = (−0.7,−0.2) H=6 H=12 H=24 H=6 H=12 H=24
Joint Marginals 59.9 39.5 18.2 59.6 37.3 14.9
Scheffé 03.0 00.1 00.0 01.9 00.1 00.0
NP Heuristic 87.8 86.9 85.3 88.7 87.7 85.5
1-FWE JPR 89.4 89.3 88.7 89.9 89.8 89.8
2-FWE JPR 89.2 89.4 89.8 90.0 90.0 90.0
3-FWE JPR 89.4 89.7 89.8 90.0 90.1 89.9
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Monte Carlo Results: Summary

Joint Marginals:

As expected, the performance decreases in H and is poor

Stringing together marginal prediction intervals does not
yield a proper JPR
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Monte Carlo Results: Summary

Joint Marginals:

As expected, the performance decreases in H and is poor

Stringing together marginal prediction intervals does not
yield a proper JPR

Scheffé:

The performance ranges from acceptable to horrible

It decreases strongly in ρ ≡ ρ1 + ρ2 and in H

NP Heuristic:

The performance ranges from good to acceptable

It decreases slightly in H

k-FWE JPR:

The performance ranges from very good to good

It is remarkably stable over both H and the value of k
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Data Set & Methodology

Data set:

Quarterly data on US real GDP from Q1/1947 until Q3/2011
The data are seasonally adjusted and expressed in billions
of chained 2005 dollars
We focus on the first differences of the log-series (in percent),
which correspond to log quarter-to-quarter growth
There are a total of 258 observations
We choose H = 12, which corresponds to a period of three years
The nominal coverage is 1 − α = 90%
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Data Set & Methodology

Data set:

Quarterly data on US real GDP from Q1/1947 until Q3/2011
The data are seasonally adjusted and expressed in billions
of chained 2005 dollars
We focus on the first differences of the log-series (in percent),
which correspond to log quarter-to-quarter growth
There are a total of 258 observations
We choose H = 12, which corresponds to a period of three years
The nominal coverage is 1 − α = 90%

Methodology:

We use the same AR(p) methodology used in the Monte Carlo
study (with the lag order p estimated by the BIC)
More complex approaches could be used alternatively:

A nonlinear (SE)TAR model as in Potter (1995)
A VAR model, using extra variables, as in Stock and Watson (2001)
Others . . .

However, our goal is to keep it (acceptably) simple and focus
on the relative performances of the various JPRs
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Data Set

Quarterly US real GDP: original series and ∇ log-series:

US Real GDP

Time
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Illustration Exercise

To illustrate the salient features of the various JPRs:

Use the last T = 120 observations to forecast the future path
from Q4/2011 until Q3/2014

Then compute corresponding JPRs
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Illustration Exercise

To illustrate the salient features of the various JPRs:

Use the last T = 120 observations to forecast the future path
from Q4/2011 until Q3/2014

Then compute corresponding JPRs

Fitting the model:

The lag order chosen by the BIC is p̂ = 1

The model fitted by OLS is

ŷt+1 = 0.318 + 0.542 · yt

The bias correction (4) yields the final fitted model

ŷt+1 = 0.304 + 0.564 · yt
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Illustration Exercise

First set of comparisons:

2 4 6 8 10 12

−1
0

1
2

US Log Real GDP Growth: Path−Forecast and JPRs

Forecast Horizon h

Path−Forecast
Scheffe
NP Heuristic
1−FWE JPR
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Scheffé has a smaller volume than the other two JPRs

The width of Scheffé at horizon h monotonically decreases
from h = 7 to h = 12, if only slightly
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Illustration Exercise

Major findings:

Scheffé has a smaller volume than the other two JPRs

The width of Scheffé at horizon h monotonically decreases
from h = 7 to h = 12, if only slightly

NP Heuristic and 1-FWE JPR have a comparable volume,
but the shape of NP Heuristic is unattractively jagged
(which cannot be blamed on a small number of bootstrap
repetitions, since we used B = 10, 000)
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Illustration Exercise

Second set of comparisons:

2 4 6 8 10 12

−1
0

1
2

US Log Real GDP Growth: Path−Forecast and JPRs

Forecast Horizon h

Path−Forecast
3−FWE JPR
2−FWE JPR
1−FWE JPR
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Illustration Exercise

Major finding:

The volume of k-FWE JPR decreases in the value of k

If the applied researcher is willing to miss up to one (or two)
elements of the future path in the JPR (with probability 90%),
he obtains a smaller and more informative region in return
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Backtest Exercise

To get a feel for the out-of-sample performance of the various JPRs:

Using the stretch {yt, . . . , yt+119} only, compute the JPR for the next
H = 12 periods

Compare the computed JPR against the path (yt+120, . . . , yt+131)′

to evaluate the ‘success’ in terms of the k-FWE criterion

Do this for t = 1, . . . , 258 − 120 − 12 = 126

Then report the empirical coverage probability as the fraction
of the ‘successes’ out of these 126 ‘trials’
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Backtest Exercise

To get a feel for the out-of-sample performance of the various JPRs:

Using the stretch {yt, . . . , yt+119} only, compute the JPR for the next
H = 12 periods

Compare the computed JPR against the path (yt+120, . . . , yt+131)′

to evaluate the ‘success’ in terms of the k-FWE criterion

Do this for t = 1, . . . , 258 − 120 − 12 = 126

Then report the empirical coverage probability as the fraction
of the ‘successes’ out of these 126 ‘trials’

Using this rolling-window approach, we get a fair, if not overly
accurate, assessment of the out-of-sample performance.
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Backtest Exercise

Empirical out-of-sample coverages for US log real GDP growth:

Method Coverage
Joint Marginals 64.6
Scheffé 73.2
NP Heuristic 89.7
1-FWE JPR 89.9
2-FWE JPR 85.1
3-FWE JPR 87.3
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Conclusions

Constructing joint prediction regions (JPRs) for a future path, along
with a path-forecast, has not received the deserved attention so far.

We offer generic bootstrap JPRs that allow the applied researcher
to determine the implementation details as he sees them most fit,
given the application at hand.

Compared to two previous proposals, our bootstrap JPRs are shown
to be asymptotically consistent, under a mild high-level assumption,
and they also enjoy better finite-sample performance.

In addition, we go beyond previous proposals by offering the more
flexible k-FWE criterion: if the applied researcher is willing to miss a
small number of elements of the future path, he is afforded a smaller,
more informative region in return.
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