Rising Skill Premium?

The Roles of Capital-Skill Complementarity and Sectoral Shifts in a Two-Sector Economy

Naoko Hara¹ Munechika Katayama² Ryo Kato¹

¹Bank of Japan

²Kyoto University

Common Challenges in Asia and Europe May 1, 2014

This paper...

- Documents three facts in the Japanese economy
 (1) Declining skill premium
 - (2) Expanding sectoral wage gap
 - (3) Increasing unskilled labor share in non-manufacturing
- · Considers a neoclassical two-sector model with
 - Two types of labor (skilled and unskilled)
 - Capital-skill complementarity

to explain the three facts

• Estimates the key structural parameters with Bayesian methods

• Performs comparative statics exercises

Stylized Facts

Fact 1 The skill premium has started to decline since the mid-1990s

Figure: Skill Premium

Skill premium \equiv Regular workers' wage / part-time workers' wage

イロト 不得 トイヨト イヨト

э

Stylized Facts

Fact 2 Sectoral wage gap \uparrow since the mid-90s

Figure: Sectoral Wages and Wage Gap

Stylized Facts

Fact 3 Unskilled share in non-manufacturing \uparrow

Figure: Unskilled Shares

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Skilled / Unskilled Labor

Regular workers

Those who are directly employed and work full time

Part-time workers

Those who work less than the regular workers per day or per week

Figure: Fraction of Unskilled Jobs in College-Graduate Employments (%)

Skill Premiums in Other Countries

• Typically, skill premiums have been increasing over time.

	Observed change in the skill premium (%)	Period	Definition of skill premium
Argentina	2.1	1990-1999	college/high school wage ratio
Austria	-9.9	1990-2005	college/high school wage ratio
Brazil	5.6	1996-2007	nonproduction/production workers wage ratio
Canada	-1.2	1990-2004	college/high school wage ratio
Chile	-5.0	1990-2000	college/high school wage ratio
China	40.2	1992-2006	college/high school wage ratio
Colombia	26.4	1990-2000	nonproduction/production workers wage ratio
Denmark	-2.3	1990-2005	college/high school wage ratio
Finland	1.4	1990-2005	college/high school wage ratio
France	-16.8	1990-2005	college/high school wage ratio
Germany	14.4	1990-2005	college/high school wage ratio
Greece	-2.4	1990-2005	college/high school wage ratio
India	11.9	1987-2004	college/high school wage ratio
Italy	29.8	1990-2005	college/high school wage ratio
Japan	-3.4	1990-2005	college/high school wage ratio
Korea	-6.6	1990-2005	college/high school wage ratio
Mexico	12.5	1990-2001	nonproduction/production workers wage ratio
Peru	23.9	1994-2000	nonproduction/production workers wage ratio
Portugal	12.3	1992-2005	college/high school wage ratio
Philippines	5.0	1988-2006	college/high school wage ratio
Spain	8.2	1990-2005	college/high school wage ratio
Sweden	9.0	1990-2002	college/high school wage ratio
Thailand	17.2	1990-2004	college/high school wage ratio
United Kingdom	2.0	1990-2005	college/high school wage ratio
United States	3.1	1990-2007	nonproduction/production workers wage ratio
Uruguay	11.1	1990-1999	college/high school wage ratio

TABLE 1-CHANGE IN THE SKILL PREMIUM DURING THE LAST TWO DECADES

Figure: Table 1 from Parro (2013, AEJ, Macro)

Skill Premiums in Other Countries

- Typically, skill premiums have been increasing over time.
- Parro (2013, AEJ Macro) looks at 26 countries.
 - Average skill premium growth rates = 7.25% (e.g., Germany: 14% 1990–2005, US: 3% 1990–2007)
 - However, there are countries experiencing declining skill premiums, such as Austria, Canada, Chile, Denmark, France, Greece, Japan, and Korea.

Preview of the Results

- We find that there exists a large difference in the degree of capital-skill complementarity between manufacturing and non-manufacturing.
- The reduction of the elasticity between unskilled labor and capital (lower capital-skill complementarity) in non-manufacturing explains the stylized facts.
- Other possible scenarios can alter the skill premium. However, they cannot explain the sectoral wage gap.

The Model

<□ > < @ > < E > < E > E のQ @

Overview

- Two-sector neoclassical model
 - Manufacturing (j = 1) and Non-manufacturing (j = 2)
- Two types of labor
 - Skilled (S) and Unskilled (U)
- Production technology features capital-skill complementarity as in Krusell et al. (2000)

What We Want

• Define sectoral wage for j = 1, 2 as

$$w_j = (1 - \tau_j)w_s + \tau_j w_u, \qquad (1)$$
 where $\tau_j = \frac{U_j}{S_j + U_j}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Changes in the sectoral wage gap is then given by

$$dw_1 - dw_2 = \underbrace{(\tau_2 - \tau_1)}_{\text{typically}} \underbrace{(dw_s - dw_u)}_{< 0 \text{ in the data}} + \underbrace{(w_u - w_s)}_{< 0} \underbrace{(d\tau_1 - d\tau_2)}_{< 0 \text{ in the data}}.$$
 (2)

Firms

• Two sectors (manufacturing and non-manufacturing)

$$Y_{j,t} = A_{j,t} \Big[\mu_j (\psi_{u,t} U_{j,t})^{\sigma_j} \\ + (1 - \mu_j) \Big\{ \lambda_j (K_{j,t})^{\rho_j} + (1 - \lambda_j) (\psi_{s,t} S_{j,t})^{\rho_j} \Big\}^{\frac{\sigma_j}{\rho_j}} \Big]^{\frac{1}{\sigma_j}}$$
(3)

- σ controls the elasticity of substitution between K and U.
- ρ controls the elasticity of substitution between K and S.
- When $\sigma > \rho$, there exists capital-skill complementarity.
- ψ_s and ψ_u are skill-specific technological progress.

Household

Preferences

$$u(C_t, H_t) = \log(C_t) - \varphi \frac{\eta}{1+\eta} H_t^{\frac{\eta+1}{\eta}},$$

where η is the Frisch elasticity of aggregate labor supply.

• C_t consists of goods $C_{1,t}$ and services $C_{2,t}$

$$C_{t} = \left[\gamma\left(C_{1,t}\right)^{\frac{\kappa-1}{\kappa}} + (1-\gamma)\left(C_{2,t}\right)^{\frac{\kappa-1}{\kappa}}\right]^{\frac{\kappa}{\kappa-1}},$$
(5)

where $\gamma \in [0, 1]$ controls a share of a manufacturing good and κ is the elasticity of substitution between manufacturing goods and services.

(4)

Household

• Following Horvath (2000), the aggregate labor index is given by

$$H_t = \left[\left(S_t \right)^{\frac{\theta+1}{\theta}} + \left(U_t \right)^{\frac{\theta+1}{\theta}} \right]^{\frac{\theta}{\theta+1}}, \qquad (6)$$

where θ controls the elasticity of substitution between skilled and unskilled jobs.

- As $\theta \to \infty$, skilled and unskilled jobs become perfect substitutes.
- As $\theta \rightarrow$ 0, there is no way to change the composition of two types of jobs.
- When $0 < \theta < \infty$, the household prefers having diversity of labor.

Household

• Budget constraint

$$C_{1,t} + p_t C_{2,t} + I_{1,t} + I_{2,t} \le r_{1,t} K_{1,t} + r_{2,t} K_{2,t} + w_{s,t} S_t + w_{u,t} U_t, \quad (7)$$

• Capital accumulation (j = 1, 2)

$$K_{j,t+1} = I_{j,t} \left\{ 1 - \Phi\left(\frac{I_{j,t}}{I_{j,t-1}}\right) \right\} + (1-\delta)K_{j,t}.$$
(8)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Rest of the Model

• Sectoral wages

$$w_{j,t} = (1 - \tau_{j,t})w_{s,t} + \tau_{j,t}w_{u,t}, \qquad (9)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where $\tau_{j,t} = \frac{U_{j,t}}{S_{j,t}+U_{j,t}}$.

• Market clearing conditions

$$S_{t} = S_{1,t} + S_{2,t}$$
$$U_{t} = U_{1,t} + U_{2,t}$$
$$Y_{1,t} = C_{1,t} + I_{1,t} + I_{2,t}$$
$$Y_{2,t} = C_{2,t}$$

Estimation

Setup

• We augment our log-linearized model with sectoral investment-specific technology shocks and skill-specific wage markup shocks.

- Seven observables
 - Output growth (manufacturing and non-manufacturing)
 - Growth rate of total hours worked (skilled and unskilled)
 - Wage inflation (manufacturing and non-manufacturing)
 - Relative price inflation
- Sample: 1975:Q1 1995:Q4
- Imposed steady-state shares
 - $w_s/w_u = 2.5$
 - $S_1/U_1 = 11.31$
 - $S_2/U_2 = 7.89$

•
$$\frac{S_1}{S_1+S_2} = 0.3$$

Prior Distributions

Table: Prior Distributions

			Prior		
Para	ameter	Dist.	Mean	Std Dev	
κ	Elasticity of substitution b/w goods and services	G	1.143	0.4	
$\frac{1}{n}$	Inverse Frisch labor supply elasticity	Ν	2	0.75	
σ	Controlling elasticity of substitution $b/w K$ and U	В	0.2	0.2	
α	Capital-skill complementarity ($lpha\equiv\sigma- ho$)	G	0.5	0.5	
φ	Investment adjustment cost parameter	G	4	1	
ρ_{x}	Persistence of shocks	В	0.75	0.1	
σ_x	Std Dev of shocks	IG	0.025	∞	

Posterior Distribution

Table: Posterior Distributions

		Posterior Distribution		
Parameter		Mean	90% I	nterval
κ	Elasticity of substitution b/w goods and services	4.21	3.42	5.01
$\frac{1}{\eta}$	Inverse Frisch labor supply elasticity	1.97	1.41	2.53
σ_1	Controling elasticity of substitution $b/w K_1$ and U_1	0.57	0.49	0.64
σ_2	Controling elasticity of substitution $b/w K_2$ and U_2	0.00	0.00	0.00
α_1	Capital-skill complementarity in sector 1	4.72	2.86	6.50
α_2	Capital-skill complementarity in sector 2	0.53	0.40	0.65
φ	Investment adjustment cost parameter	3.77	2.22	5.29

Note: $\alpha_j \equiv \sigma_j - \rho_j$

Posterior distributions are from 300,000 Metropolis-Hastings draws (discarding the first 30,000 as burn-in).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comments on the Estimated Results

- The elasticities of substitution between K and U are quite different across sectors (2.3 vs. 1).
- Capital-skill complementarity differs across sectors.
- The elasticity of substitution between goods and services is greater than unity.
 - This suggests that the data may not support the story of Ngai and Pissarides (2007) for the sectoral reallocation of labor.

Comparative Statics

Setup

- Given the imposed values of w_s/w_u , S_1/U_1 , S_2/U_2 , and $\frac{S_1}{S_1+S_2}$, pin down the value of θ .
- Given the estimated parameter values, back out μ_1 , μ_2 , γ , and $\frac{\psi_u}{\psi_s}$ by using the steady-state relationship.
- Investigate how different values of σ 's and ρ 's affect the steady-state skill premium and sectoral wages.

Changes in the Skill Premium

Figure: Changes in the Skill Premium (Dashed vertical lines indicate posterior means.)

Changes in Sectoral Wages

Figure: Changes in Sectoral Wages (Dashed vertical lines indicate posterior means.)

Changes in Skilled and Unskilled Wages

Figure: Changes in Skilled and Unskilled Wages (Dashed vertical lines indicate posterior means.)

Changes in Unskilled Shares

Figure: Changes in Unskilled Shares (Dashed vertical lines indicate posterior means.)

Summary of Comparative Statics

- Lower capital-skill complementarity can explain the declining skill premium.
- \downarrow in σ_2 mainly accounts for the three observations:
 - (i) Lower skill premium
 - (ii) Wider sectoral wage gap between manufacturing and non-manufacturing
 - (iii) Higher unskilled share in non-manufacturing
- Varying other parameter values do not replicate changes in sectoral wages.
- When we let $\sigma_2 = -0.098$, we have

$$\frac{w_s}{w_u} = 2.3$$
 and $\frac{w_1}{w_2} = 1.069$ (vs. 1.084 in 2012).

Conclusion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Conclusion

- Documents (i) the declining skill premium, (ii) wider sectoral wage gap, and (iii) increasing unskilled share in non-manufacturing.
- Presents a simple two-sector neoclassical model with two types of labor and capital-skill complementarity.
- The estimated parameter values suggest that there is significant difference in sectoral characteristics with respect to capital-skill complementarity.
- The lower elasticity of substitution between unskilled and capital in non-manufacturing accounts for the observed changes in the labor market in Japan.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Definition of Regular Workers

Regular workers Those who satisfy one of the following conditions:

- (1) Persons hired for an indefinite period or for longer than one month
- (2) Persons hired by the day or for less than one month and who were hired for 18 days or more in each month of the two preceding months

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Details of Data

- No sectoral output data is available at quarterly frequency.
- Assume that manufacturing produces goods that are used for
 - Durable goods consumption
 - Business fixed investment
 - Residential investment
- Similarly, we assume that output from non-manufacturing is consumed as

- Non-durable consumption
- Services

Posterior Distribution

Table: Posterior Distributions

		Posterior Distribution		ibution
Parameter		Mean	90% Interval	
ρ_{a_1}	Persistence of TFP in sector 1	0.70	0.57	0.83
ρ_{a_2}	Persistence of TFP in sector 2	0.94	0.91	0.98
ρ_{ψ_s}	Persistence of skilled-specific shock	0.70	0.56	0.82
$ ho_{\psi_{''}}$	Persistence of unskilled-specific shock	0.79	0.68	0.90
ρ_{ξ_1}	Persistence of investment-specific shock in sector 1	0.69	0.44	0.92
ρ_{ξ_2}	Persistence of investment-specific shock in sector 2	0.82	0.67	0.97
ρ_{μ_s}	Persistence of wage markup shock for skilled	0.96	0.93	0.98
ρ_{μ_u}	Persistence of wage markup shock for unskilled	0.81	0.72	0.89

Posterior Distribution

Table: Posterior Distributions

		Posterior Distribution		
Parameter		Mean	90% Interval	
σ_{a_1}	Std Dev of TFP shock in sector 1	0.02	0.02	0.03
σ_{a_2}	Std Dev of TFP shock in sector 2	0.01	0.01	0.01
σ_{ψ_s}	Std Dev of skilled-specific shock	0.03	0.03	0.04
σ_{ψ_u}	Std Dev of unskilled-specific shock	0.23	0.17	0.29
σ_{ξ_1}	Std Dev of investment-specific shock in sector 1	0.05	0.01	0.12
σ_{ξ_2}	Std Dev of investment-specific shock in sector 2	0.09	0.02	0.16
σ_{μ_s}	Std Dev of wage markup shock for skilled	0.03	0.02	0.03
σ_{μ_u}	Std Dev of wage markup shock for unskilled	0.06	0.05	0.07

Changes in γ

Figure: Changes in γ (Dashed vertical lines indicate posterior means.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Changes in κ

Figure: Changes in κ (Dashed vertical lines indicate posterior means.)

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Changes in θ

Figure: Changes in θ (Dashed vertical lines indicate posterior means.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Changes in b

Figure: Changes in b (Dashed vertical lines indicate posterior means.)

E 900

æ

< □ > < □ > < □