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The use of multilateral comparison methods in a time series context is increasingly 
becoming an accepted approach for incorporating scanner data in a Consumer Price Index. 
The attractiveness stems from the ability to be able to control for chain drift bias. 
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available. This paper presents theoretical and simulation evidence on the extent of 
substitution biases in alternative multilateral methods. The multilateral index number 
formulae studied include the GEKS, CCDI, Geary-Khamis and Weighted Time Product 
Dummy Methods as well as some price similarity linking methods. The paper also 
assesses alternative methods for extending non-revisable series, with particular regard to 
the possibility of introducing chain drift bias. Overall, our results suggest the use of the 
CCDI index with a new method, the “mean splice”, for updating.  
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1. Introduction 
 
Several national statistical agencies are either using or considering the use of scanner data 
from retail outlets that collect data on weekly unit value prices and the corresponding 
quantities sold of specific products. This detailed data on prices and quantities can be 
used in order to construct consumer price indexes for various product groups.2 The 2004 
International Labour Office Consumer Price Index Manual recommended that chained 
superlative indexes be used in constructing national Consumer Price Indexes (CPIs) when 
detailed price and quantity data were available. The reason why chaining was 
recommended over the use of fixed base indexes was the fact that more exact product 
matches will generally be found if chained indexes are constructed instead of fixed base 
indexes due to the fact that often one or two percent of products disappear from the 
marketplace each month in many countries. However, as more experience with the use of 
chained indexes has become available, it has been noticed that chained indexes frequently 
drift downwards as compared to corresponding fixed base indexes. It is a serious problem 
and this study will look at possible solutions to the problem. 
 
Until recent times, CPIs were constructed by statistical agencies using bilateral index 
number theory; i.e., the prices and quantities for a group of commodities for the current 
period were compared to the same prices and quantities for a base period. Multilateral 
index number theory uses the prices and quantities for a group of commodities for 
multiple periods (say T periods) and simultaneously constructs a sequence of price 
indexes for all T periods. Ivancic, Diewert and Fox (2011) suggested that the use of 
multilateral indexes in the scanner data context can largely solve the chain drift problem.3 
However, in recent years, there has been a considerable amount of additional research on 
the use of multilateral methods when detailed price and quantity data are available and 
we will attempt to review and extend this research in this study. 
 
This chain drift problem will be explained in more detail in section 2. The GEKS 
multilateral method due to Gini (1931; 12), Eltetö and Köves (1964) and Szulc (1964) 
will be reviewed in section 3. The GEKS method uses the bilateral Fisher (1922) ideal 
index as a basic building block. Instead of using the Fisher index as the bilateral building 
block index, it is possible to use Gini’s basic methodology but use the Törnqvist index as 
the bilateral building block index. This idea was used by Caves, Christensen and Diewert 
(1982) using distance functions and adapted to the price index context by Inklaar and 
Diewert (2016). This multilateral approach to price index theory will be explained in 
section 4. We will call this multilateral approach to index number theory the CCDI 
approach. 
 
                                                 
2 See the Australian Bureau of Statistics (2016). 
3  Ivancic, Diewert and Fox (2009) (2011) used the GEKS and the Weighted Time Product Dummy 
multilateral methods which will be explained in sections 3 and 6. Khamis (1970; 83-85) (1972; 101) noted 
that the Geary-Khamis multilateral indexes could be applied in the time series context as well as in the 
international comparisons context. Balk (1981) also adapted Gini’s basic methodology to the time series 
context using the Sato (1976) Vartia (1976) bilateral index number formula as the bilateral building block 
formula. 
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A multilateral index number method will determine a sequence of price indexes or 
aggregate price levels for say T periods where T ≥ 3. When the data for period T+1 
becomes available, CPI methodology typically does not allow for a revision of price 
levels that have already been determined for periods 1 to T, so those initially determined 
price levels remain the same. If the multilateral method is used to form a new sequence of 
price levels for periods 2 to T+1, the following question arises: how exactly should the 
new price levels be linked to the initial sequence of price levels? Various methods for 
accomplishing this linking have been suggest in the recent literature and in section 5, we 
will study these alternative linking methods in the context of the CCDI multilateral 
indexes since this facilitates comparisons. It will emerge that it makes sense to link the 
results of the new window of price levels to the initial window of price levels by finding 
the period in the initial window that has the most similar structure of relative prices to 
the prices of period T+1. 
 
In sections 6-8, we continue to review multilateral methods that have been suggested in 
the recent literature to address the chain drift problem. Thus section 6 reviews and 
extends the Weighted Time Product Dummy (WTPD) method which is a generalization 
of Summer’s (1973) Country Product Dummy method for making price comparisons 
across countries. Section 7 looks at the problem of linking windows in the context of the 
WTPD method. Section 8 reviews the Geary (1958) Khamis (1970) (1972) (GK) 
multilateral method. 
 
Section 9 introduces Constant Elasticity of Substitution (CES) purchaser preferences as a 
basis for a target cost of living index.4 In recent years, statistical agencies have had 
difficulties in trying to determine which multilateral method should be used to aggregate 
price data when detailed price and quantity data are available for a stratum of their CPIs. 
The problem is that the “truth” is not known. Thus in the later sections of this study, we 
will assume that we know the “truth”; i.e., we will assume that purchasers have known 
CES preferences and thus we can construct the corresponding true cost of living indexes 
given an artificial data set. Then the various multilateral methods that have been 
suggested in the literature can be constructed using the artificial data set and compared 
with the corresponding true CES cost of living indexes. The assumption of CES 
preferences has been used in many economics and marketing studies.5 
 
We present our first artificial data set in section 10. We assume given price data on four 
commodities for twelve periods along with total expenditures on the commodities. We 
assume CES preferences but we allow the elasticity of substitution parameter σ to take on 
6 separate values: 0, 0.5, 1, 2, 4 and 10. For each of these values of σ, we construct 
quantity data based on the CES functional form. Thus as σ varies, the price data remain 
the same but the quantity data change in order to be consistent with the CES preferences. 
In section 10, we construct the six artificial data sets along with the true CES cost of 
living indexes and compare these true indexes with fixed base and chained Fisher and 
                                                 
4  Balk’s (1981) multilateral method, which adapted Gini’s basic methodology using the Sato-Vartia 
bilateral price index as the basic building block, is exact for CES preferences. 
5 For economics studies, see e.g. Balk (1981), Feenstra (1994) and Ivancic, Diewert and Fox (2010), and 
Baltas (2001) for an example from the marketing literature.   
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Törnqvist indexes as well as the single window GK, WTPD, GEKS and CCDI 
multilateral price levels. It turns out that the best approximations to the true indexes vary 
as the elasticity of substitution varies.  
 
It turns out that the methodological approach taken in section 10 does not address the 
chain drift problem because it does not arise using the artificial data set. Chained 
superlative indexes performed well using the section 10 data set. Thus in section 11, we 
alter the data used in section 10 so that the altered data will reflect the chain drift problem. 
This problem is basically caused by heavily discounted prices. Purchasers stock up on a 
product when it goes on sale. In the period following the sale, consumers do not purchase 
the same amount of the product that they did in the pre-sale period. This behaviour is not 
consistent with the assumptions underlying the typical theory of the cost of living index 
which does not take into account the holding of stocks of consumer goods over multiple 
periods.6 The net effect of this stockpiling behaviour is to cause chained indexes to have 
a downward bias as compared to a corresponding fixed base index. The artificial data set 
introduced in section 10 has sales of products in four of the twelve periods. In section 11, 
we use the price data of section 10 but with the sales goods’ quantity data adjusted 
downwards in the periods following a sale.7 Thus the CES true cost of living index is no 
longer a valid cost of living index for these four post sale periods. However, for the 
remaining 8 periods, we can still look at how well the various multilateral indexes 
approximate the true cost of living index.  
 
In section 12, we used the adjusted artificial data set constructed in section 11 to study the 
window linking problem that was discussed in section 5 in theoretical terms.  
 
In section 13, we again use the artificial data set constructed in section 11 in order to 
introduce two additional multilateral methods that are based on linking observations that 
have the most similar structure of relative prices. One of these price similarity linking 
methods worked very well for the artificial data sets that corresponded to elasticities of 
substitution in the range of 1 to 4. This is a new method for linking observations and so 
there is no practical experience with its use but it seems promising. Section 14 concludes.    
 
2. The Chain Drift Problem 
 
More than a decade has passed since the Consumer Price Index Manual was published.8 
There have been some significant developments that should be taken into account in the 
forthcoming revision of the Manual. The main problem that the Manual did not address 
adequately is the chain drift problem.9 In order to explain the nature of this problem, it 

                                                 
6 In principle, this stockpiling activity could be modeled by treating the purchases as purchases of durable 
goods and constructing user costs. 
7 It will be seen that this adjustment to the data set does cause substantial downward drift in the chained 
superlative indexes. 
8 See the ILO/IMF/OECD/UNECE/Eurostat/The World Bank (2004). The Manual was written over the 
years 2000-2003. For brevity, in the future, we will refer to the CPI Manual as ILO (2004) or the Manual.  
9 Szulc (1983) (1987) demonstrated how big the chain drift problem could be with chained Laspeyres 
indexes but the authors of the Manual did not realize that chain drift could also be a problem with chained 
superlative indexes.  
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will be useful to provide some introductory historical material on the construction of a 
CPI. 
 
The first approach to the construction of a CPI that was suggested in the index number 
literature was the fixed basket approach. In this approach, a basket of commodities that is 
representative of the purchases of a group of households over a period of time is chosen. 
Suppose that the chosen group of households purchases N quantities in each of two 
periods and the representative basket is defined by the positive quantity vector q ≡ 
[q1,...,qN].  Given the price vectors for periods 0 and 1, p0 ≡ [p1

0,...,pN
0] and p1 ≡ 

[p1
1,...,pN

1]    respectively, we can calculate the cost of purchasing this same basket in the 
two periods, p0⋅q ≡ ∑n=1

N pn
0qn and p1⋅q ≡ ∑n=1

N pn
1qn. Then the ratio of these costs is a 

very reasonable indicator of pure price change over the two periods under consideration, 
provided that the basket vector q is “representative”. This leads to the Lowe (1823) price 
index, PLo, defined as follows: 
 
(1) PLo(p0,p1,q) ≡ p1⋅q/p0⋅q . 
 
As time passed, economists and price statisticians demanded a bit more precision with 
respect to the specification of the basket vector q. There are two natural choices for the 
reference basket: the period 0 commodity vector q0 that was actually purchase by the 
group of households or the corresponding period 1 commodity vector q1. These two 
choices lead to the Laspeyres (1871) price index PL defined by (2) and the Paasche 
(1874) price index PP defined by (3): 
 
(2) PL(p0,p1,q0,q1) ≡ p1⋅q0/p0⋅q0 = ∑n=1

N sn
0(pn

1/pn
0) ;  

 
(3) PP(p0,p1,q0,q1) ≡ p1⋅q1/p0⋅q1 = [∑n=1

N sn
1(pn

1/pn
0)−1]−1 

 
where the period t expenditure share on commodity n, sn

t, is defined as pn
tqn

t/pt⋅qt for n = 
1,…,N and t = 0,1. Thus the Laspeyres price index PL can be written as a base period 
expenditure share weighted average of the N price ratios (or price relatives), pn

1/pn
0.10 

The last equation in (3) shows that the Paasche price index PP can be written as a period 1 
(or current period) expenditure share weighted harmonic average of the N price ratios.11 
 
The problem with the Paasche and Laspeyres indexes is that they are equally plausible 
but in general, they will give different answers. This suggests that if a single estimate for 
the price change between the two periods is required, then an evenly weighted average of 
the two indexes should be chosen as the final estimate of price change between periods 0 
and 1. Fisher (1922) suggested taking the geometric mean of the two indexes which leads 
to the Fisher ideal index, PF, defined as 
 
(4) PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1) PP(p0,p1,q0,q1)]1/2 .12 
                                                 
10 This result is due to Walsh (1901; 428 and 539). 
11 This expenditure share and price ratio representation of the Paasche index is described by Walsh (1901; 
428) and derived explicitly by Fisher (1911; 365). 
12 For additional justifications for the Fisher price index, see the ILO (2004; Chapters 15-17). 
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Another approach to index number theory is the stochastic approach.13 One of the most 
useful stochastic approaches is due to Theil (1967; 136-137). He argued as follows. 
Suppose price relatives (or ratios) are drawn at random in such a way that each dollar of 
expenditure in the base period has an equal chance of being selected. Then the probability 
that we will draw the nth price relative is equal to sn

0 ≡ pn
0qn

0/p0⋅q0, the period 0 
expenditure share for commodity n. Then the overall mean (period 0 weighted) 
logarithmic price change is ∑n=1

N sn
0ln(pn

1/pn
0). Now repeat the above mental experiment 

and draw price relatives at random in such a way that each dollar of expenditure in period 
1 has an equal probability of being selected. This leads to the overall mean (period 1 
weighted) logarithmic price change of ∑n=1

N sn
1ln(pn

1/pn
0). Each of these measures of 

overall logarithmic price change seems equally valid so it is appropriate to take a 
symmetric average of the two measures in order to obtain a final single measure of 
overall logarithmic price change. Theil (1967; 137) argued that a nice symmetric index 
number formula can be obtained if we make the probability of selection for the nth price 
relative equal to the arithmetic average of the period 0 and 1 expenditure shares for 
commodity n. Using these probabilities of selection, Theil's final measure of overall 
logarithmic price change was 
 
(5) lnPT(p0,p1,q0,q1) ≡ ∑n=1

N (1/2)(sn
0+sn

1)ln(pn
1/pn

0). 
 
Theil’s price index PT(p0,p1,q0,q1) is obtained by exponentiating both sides of (5).14 This 
index number formula was also advocated by the economist Törnqvist. 
 
A problem with the Lowe, Laspeyres and Paasche indexes is that they are subject to 
substitution bias. Typically, when the price of a commodity decreases, consumers 
purchase more of it and conversely when a price increases, consumers purchase less of it. 
The economic approach to index number theory, initiated by Konüs (1924), is able to 
deal with this problem of substitution bias. Diewert (1976) introduced the concept of a 
superlative index number formula. A superlative index number formula has the property 
that it is exactly equal to a Konüs true cost of living index provided that the purchasing 
households have preferences that can be represented by certain functional forms, where 
these functional forms can approximate arbitrary preferences to the accuracy of a second 
order approximation. It turns out that both the Fisher and Törnqvist indexes are 
superlative. Thus these indexes were recommended in the Manual as target indexes15 and 
were preferred to the Laspeyres and Paasche indexes, which are not superlative and are 
subject to substitution bias.    
 

                                                 
13 Additional material on stochastic approaches to index number theory and references to the literature can 
be found in Selvanathan and Rao (1994), Diewert (1995) (2004) (2005), ILO (2004; 299-308), Clements, 
Izan and Selvanathan (2006) and Balk (2008; 32-36). 
14 This index first appeared explicitly as formula 123 in Fisher (1922; 473). PT is generally attributed to 
Törnqvist (1936) but this article did not have an explicit definition for PT; it was defined explicitly in 
Törnqvist and Törnqvist (1937); see Balk (2008; 26). 
15 In the Manual, these indexes were regarded as good ones not only from the viewpoint of the economic 
approach to index number theory but also from the viewpoint of  test approach (for the Fisher index) and 
from the viewpoint of the stochastic approach (for the Törnqvist index).  
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In order to explain the chain drift problem, it is first necessary to explain how chained 
indexes differ from fixed base indexes.   
 
Suppose that we have decided on a “best” price index formula that compares the prices of 
period 0 with those of period 1, say P(p0,p1,q0,q1). Suppose further that we have price and 
quantity data for 3 periods. The sequence of the price levels for the three periods under 
consideration, P0, P1 and P2, using fixed base (or direct) indexes can be constructed as 
follows: 
 
(6) P0 ≡ 1; P1 ≡ P(p0,p1,q0,q1); P2 ≡ P(p0,p2,q0,q2).  
 
Thus the prices in period 2, p2, are compared directly with the prices in period 0, p0.  
 
The sequence of the three price levels, P0, P1 and P2, using chained indexes can be 
constructed as follows: 
 
(7) P0 ≡ 1; P1 ≡ P(p0,p1,q0,q1); P2 ≡ P(p0,p1,q0,q1)P(p1,p2,q1,q2).   
      
Thus fixed base and chained price levels coincide for the first two periods but in 
subsequent periods t, the fixed base indexes compare the prices in period t directly to the 
prices in period 0 whereas the chained indexes simply update the price level in the 
previous period by multiplying by the period over period chain link index P(pt−1,pt,qt−1,qt).     
 
The two methods of index construction will coincide if the bilateral price index formula 
P(p0,p1,q0,q1) satisfies the following test: 
 
(8) Circularity Test: P(p0,p1,q0,q1) P(p1,p2,q1,q2) = P(p0,p2,q0,q2). 
 
If there is only one commodity in the aggregate, then the price index P(p0,p1,q0,q1) just 
becomes the single price ratio, p1

1/p1
0, and the circularity test becomes the equation 

[p1
1/p1

0][p1
2/p1

1] = [p1
2/p1

0], which is obviously satisfied. The equation in the circularity 
test illustrates the difference between chained index numbers and fixed base index 
numbers. The left hand side of (8) uses the chain principle to construct the overall 
inflation between periods 0 and 2 whereas the right hand side uses the fixed base 
principle to construct an estimate of the overall price change between periods 0 and 2.16            
 
It would be ideal if our preferred index number formulae, the Fisher and Törnqvist 
indexes (PF and PT), satisfied the circularity test but unfortunately, they do not satisfy 
(8).17 Hence, a statistical agency compiling a CPI has to choose between the two methods 
                                                 
16 Fisher (1911; 203) introduced this fixed base and chain terminology. The concept of chaining is due to 
Lehr (1885) and Marshall (1887; 373).  
17 Alterman, Diewert and Feenstra (1999; 61-65) showed that if  the logarithmic price ratios ln (pn

t/pn
t-1) 

trend linearly with time t and the expenditure shares si
t also trend linearly with time, then the Törnqvist 

index PT will satisfy the circularity test exactly. They extended this exactness result to cover the case when 
there are monthly proportional variations in prices and the expenditure shares have constant seasonal 
effects in addition to linear trends. However, when sales of products at irregular intervals occur, PT will no 
longer satisfy the circularity test. 
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of index construction. The following quotation from the Manual explains why chaining 
was preferred:  
 
“The question now arises: should the comparison month and the base month be adjacent months 
(thus leading to chained indices) or should the base month be fixed (leading to fixed base 
indices)? It seems reasonable to prefer chained indices over fixed base indices for two reasons: 
 
• The set of seasonal commodities which overlaps during two consecutive months is likely to 

be much larger than the set obtained by comparing the prices of any given month with a fixed 
base month (like January of a base year). Hence the comparisons made using chained indices 
will be more comprehensive and accurate than those made using a fixed base. 

• In many economies, on average 2 or 3 percent of price quotes disappear each month due to 
the introduction of new commodities and the disappearance of older ones. This rapid sample 
attrition means that fixed base indices rapidly become unrepresentative and hence it seems 
preferable to use chained indices which can more closely follow marketplace developments.” 
ILO (2004; 407). 

 
Thus the Manual recommended chained Fisher or Törnqvist indexes as target index 
concepts. As will be seen, this advice does not always work out too well.     
 
Another advantage of using chained indexes is that if prices and quantities are trending 
relatively smoothly, chaining will reduce the spread between the Paasche and Laspeyres 
indexes.18 These two indexes each provide an asymmetric perspective on the amount of 
price change that has occurred between the two periods under consideration and it could 
be expected that a single point estimate of the aggregate price change should lie between 
these two estimates. Thus the use of either a chained Paasche or Laspeyres index will 
usually lead to a smaller difference between the two and hence to estimates that are closer 
to the “truth”. Since annual data generally has smooth trends, the use of chained indexes 
is generally appropriate at this level of aggregation; see Hill (1993; 136-137).  
 
However, the story is different at subannual levels; i.e., if the index is to be produced at 
monthly or quarterly frequencies. Hill (1993; 388), drawing on the earlier research of 
Szulc (1983) (1987) and Hill (1988; 136-137), noted that it is not appropriate to use the 
chain system when prices oscillate or “bounce” to use Szulc’s (1983; 548) term. This 
phenomenon can occur in the context of regular seasonal fluctuations or in the context of 
sales. The extent of the price bouncing problem or the problem of chain drift can be 
measured if we make use of the following test due to Walsh (1901; 389), (1921; 540):19  
 
(9) Multiperiod Identity Test:  P(p0,p1,q0,q1)P(p1,p2,q1,q2)P(p2,p0,q2,q0)  = 1. 
 
Thus price change is calculated over consecutive periods but an artificial final period is 
introduced where the prices and quantities revert back to the prices and quantities in the 
very first period. The test asks that the product of all of these price changes should equal 

                                                 
18 See Diewert (1978; 895) and Hill (1988) (1993; 387-388). Chaining under these conditions will also 
reduce the spread between fixed base and chained indexes using PF or PT as the basic bilateral formula.  
19 This is Diewert’s (1993; 40) term for the test. Walsh did not limit himself to just three periods as in (9); 
he considered an indefinite number of periods.  
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unity. If prices have no definite trends but are simply bouncing up and down in a range, 
then the above test can be used to evaluate the amount of chain drift that occurs if chained 
indexes are used under these conditions. Chain drift occurs when an index does not return 
to unity when prices in the current period return to their levels in the base period; see the 
ILO (2004; 445). Fixed base indexes that satisfy Walsh’s test will not be subject to chain 
drift. 
 
The Manual did not take into account how severe the chain drift problem could be in 
practice.20 The problem is mostly caused by periodic sales of products. An example will 
illustrate the problem. Suppose that we are given the price and quantity data for 2 
commodities for 4 periods. The data are listed in Table 1 below.21 
 

Table 1: Price and Quantity Data for Two Products for Four Periods 
 

Period t p1
t p2

t   q1
t  q2

t 
   1 1.0 1.0     10 100 
   2 0.5 1.0 5000 100 
   3 1.0 1.0       1 100 
   4 1.0 1.0     10 100 

 
The first commodity is subject to periodic sales (in period 2), when the price drops to half 
of its normal level of 1. In period 1, we have a “normal” off sale demand for commodity 
1 which is equal to 10 units. In period 2, the sale takes place and demand explodes to 
5000 units.22 In period 3, the commodity is off sale and the price is back to 1 but most 
shoppers have stocked up in the previous period so demand falls to only 1 unit.23 Finally 
in period 4, the commodity is off sale but we are back to the “normal” demand of 10 units.  
Commodity 2 is dull: its price is 1 in all periods and the quantity sold is 100 units in each 
period. Note that the only thing that has happened going from period 3 to 4 is that the 
demand for commodity one has picked up from 1 unit to the “normal” level of 10 units. 
Also note that, conveniently, the period 4 data are exactly equal to the period 1 data so 
that for Walsh’s test to be satisfied, the product of the period to period chain links must 
equal one. 
 
Table 2 lists the fixed base Fisher, Laspeyres and Paasche price indexes, PF(FB), PL(FB) and 
PP(FB) and as expected, they behave perfectly in period 4, returning to the period 1 level of 
1. Then the chained Fisher, Törnqvist, Laspeyres and Paasche price indexes, PF(CH), PT(CH),  

                                                 
20 Szulc (1983) (1987) demonstrated how big the chain drift problem could be with chained Laspeyres 
indexes but the authors of the Manual did not realize that chain drift could also be a problem with chained 
superlative indexes.  
21 This example is taken from Diewert (2012). It is based on a similar example due to de Haan and van der 
Grient (2009; 39).  
22 This example is based on an actual example that used Dutch scanner data. When the price of a detergent 
product went on sale at approximately one half of the regular price, the volume sold shot up approximately 
one thousand fold; see de Haan (2008). This paper brought attention to the magnitude of volume 
fluctuations due to sales.  
23  Feenstra and Shapiro (2003) also looked at the chain drift problem that was caused by sales and 
restocking dynamics. Their suggested solution to the chain drift problem was to use fixed base indexes. 
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PL(FB) and PP(FB) are listed. Obviously, the chained Laspeyres and Paasche indexes have 
chain drift bias that is extraordinary but what is interesting is that the chained Fisher has a 
2% downward bias and the chained Törnqvist has a close to 3% downward bias.   
 
Table 2: Fixed Base and Chained Fisher, Törnqvist, Laspeyres and Paasche Indexes 
 

Period PF(FB) PL(FB) PP(FB) PF(CH) PT(CH) PL(CH) PP(CH) 
   1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
   2 0.698 0.955 0.510 0.698 0.694 0.955 0.510 
   3 1.000 1.000 1.000 0.979 0.972 1.872 0.512 
   4 1.000 1.000 1.000 0.979 0.972 1.872 0.512 

 
If the above data were monthly, and they repeated themselves three times over the year, 
the overall chain drift bias would build up to the 6 to 8% range, which is significant. 
 
The problem is this: when commodity one comes off sale and goes back to its regular 
price in period 3, the corresponding quantity does not return to the level it had in period 
1: the period 3 demand is only 1 unit whereas the “normal” period 1 demand for 
commodity 1 was 10 units. It is only in period 4 that demand for commodity one recovers 
to the period 1 level. However, since prices are the same in periods 3 and 4, all of the 
chain links show no change (even though quantities are changing) and this is what causes 
the difficulties. If demand for commodity one in period 3 had immediately recovered to 
its “normal” period 1 level of 10, then there would be no chain drift problem.24 
 
There are at least three possible solutions to the chain drift that is associated with the use 
of a superlative index in a situation where monthly scanner data is available to the 
statistical agency for components of the CPI:25 
 

• Stick to the usual annual basket Lowe index that uses annual expenditure weights 
from a past year; 

• Pick a base month and use fixed base superlative indexes relative to the chosen 
month; 

• Use a Rolling Window multilateral index number approach adapted to the time 
series context.  

                                                 
24 De Haan (2015a; 14) noted the root cause of the chain drift problem: “The drift is mainly due to 
quantities spiking when storable goods are on sale.”   
25 There is a possible fourth method to avoid chain drift within a year when using a superlative index and 
that is to simply compute a sequence of 12 year over year monthly indexes so that say January prices in the 
previous year would be compared with January prices in the current year and so on. Handbury, Watanabe 
and Weinstein (2013) use this methodological approach for the construction of year over year monthly 
superlative Japanese consumer price indexes using the Nikkei point of sale data base. This data base has 
monthly price and expenditure data covering the years 1988 to 2010 and contains 4.82 billion price and 
quantity observations. This type of index number was recommended in the ILO (2004; chapter 22) as a 
valid year over year index that would avoid seasonality problems. However, central banks and other users 
require month to month CPIs in addition to year over year monthly CPIs and so the approach of Handbury, 
Watanabe and Weinstein does not solve the problems associated with the construction of superlative month 
to month indexes.     
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The problem with the first method is that the Lowe index is subject to a small amount of 
upper level substitution bias, usually in the range of 0.15 to 0.40 percentage points per 
year.26 The widespread use of the Lowe index is due to its practical nature and the fact 
that the amount of substitution bias is generally not all that large.27 The problem with the 
second method is that picking a base month and calculating superlative indexes relative to 
this base is an asymmetric procedure and gives too much weight to the chosen base. 
Moreover, some commodities may not be available in the chosen base month and some 
commodities disappear in the later months of the comparison and thus not all of the 
monthly price and quantity information is used in a fixed base method. Thus in the 
remainder of this paper, we will concentrate on the use of multilateral indexes as potential 
solutions to the chain drift problem.28 
 
3. GEKS Multilateral Indexes 
 
The GEKS method for making international index number comparisons between 
countries is due to Gini (1931; 12). It was derived in a different fashion by Eltetö and 
Köves (1964) and Szulc (1964) and thus the method is known as either the GEKS or EKS 
method for making multilateral comparisons. Of course, it can also be adapted to making 
comparisons between multiple time periods.  
 
The GEKS method in the time series context works as follows. Suppose we have price 
and quantity information for a component of the CPI on a monthly basis for a sequence of 
13 consecutive months. Now pick one month (say month k) in this augmented year as the 
base month and construct Fisher price indexes for all 13 months relative to this base 
month. Denote the resulting sequence of Fisher indexes as PF(1/k), PF(2/k), ..., PF(13/k).29 
The final set of GEKS indexes for the 13 months is simply geometric mean of all 13 of 
the specific month indexes; i.e., the final set of GEKS indexes for the months in the 
augmented year is any normalization of the following sequence of indexes:30  
 
(10) [∏k=1

13 PF(1/k)]1/13, [∏k=1
13 PF(2/k)]1/13, ... , [∏k=1

13 PF(13/k)]1/13 . 
 
The above GEKS indexes have a number of important properties:31 
                                                 
26 For recent retrospective studies on upper level substitution bias for national CPIs, see Armknecht and 
Silver (2013), Diewert, Huwiler and Kohli (2009) and Huang, Wimalaratne and Pollard (2017). For studies 
of lower level substitution bias for a Lowe index, see Diewert, Finkel and Artsev (2009) and Diewert 
(2013a).   
27 Recent Canadian research has indicated that the substitution bias can be reduced substantially by more 
frequent updating of the annual basket; see Huang, Wimalaratne and Pollard (2017).   
28 For a recent paper that takes a systematic look at the use of multilateral methods to aggregate scanner 
data, see the Australian Bureau of Statistics (2016).  
29 Using scanner data, it is not trivial to construct these Fisher indexes. The problem is that for each pair of 
months, it is necessary to determine the list of products that sold in both months so that the relevant Fisher 
index between those two months can be constructed.  
30 Balk (1981; 74) derived the GEKS parities using this type of argument rather than the usual least squares 
derivation of the GEKS parities; see Balk (1996) and Diewert (1999) for these alternative derivations. 
31 The basic idea of adapting a multilateral method to the time series context is due to Balk (1981) who set 
up a framework that is very similar to the one explained here (which follows Ivancic, Diewert and Fox 
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• They satisfy Walsh’s multiperiod identity test so that if any two months in the 

augmented year have exactly the same price and quantity vectors, then the above 
index values will coincide for those two months; i.e., the above indexes are free 
from chain drift. 

• The above indexes do not asymmetrically single out any single month to play the 
role of a base period; all possible base months contribute to the overall index 
values.32 

• The above indexes make use of all possible bilateral matches of the price data 
between any two months in the augmented year. That is, we are using what 
Ivancic, Diewert and Fox (2011; 26) called a “flexible basket” approach that 
incorporates new items as they become available. 

• Strongly seasonal commodities make a contribution to the overall index values.  
 
The last property explains why the augmented year should include at least 13 consecutive 
months, so that strongly seasonal commodities 33 can make a contribution to the overall 
index.  
 
The major problem with the GEKS indexes defined by (28) is that the indexes change as 
the data for a new month becomes available. A headline CPI cannot be revised from 
month to month due to the fact that many contracts are indexed to a country’s headline 
consumer price index. A solution to this problem was proposed by Ivancic, Diewert and 
Fox (2011). Their method added the price and quantity data for the most recent month to 
the augmented year and dropped the oldest month from the old augmented year in order 
to obtain a new augmented year. The GEKS indexes for the new augmented year are 
calculated in the usual way and the ratio of the index value for the last month in the new 
augmented year to the index value for the previous month in the new augmented year is 
used as an update factor for the value of the index for the last month in the previous 
augmented year. The resulting indexes are called Rolling Window GEKS indexes, or for a 
thirteen month window, Rolling Year GEKS indexes.  
 
Numerical experiments with Australian and Dutch scanner data from grocery chains 
showed that the Rolling Year GEKS indexes seem to work reasonably well; see Ivancic, 
Diewert and Fox (2011), de Haan and van der Grient (2011), Johansen and Nygaard 
(2011), van der Grient and de Haan (2011) and Krsinich (2011). In particular, adding and 
dropping a month of data and recomputing the GEKS indexes does not seem to change 

                                                                                                                                                  
(2011) more closely). Balk (1981) used an index number formula due to Vartia (1976) in place of 
maximum overlap bilateral Fisher indexes as his basic building blocks and he considered augmented years 
of varying length instead of a 13 month augmented year but the basic idea of adapting multilateral methods 
to the time series context is certainly due to him. 
32 Thus the above GEKS procedure seems to be an improvement over the suggestion of Feenstra and 
Shapiro (2003) who chose only a single base month. 
33 A strongly seasonal commodity is one that is not present in the marketplace for all months of the year. 
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past index values very much.34 Basically, the method seems to control chain drift quite 
well.35  
 
There are two additional issues with using Rolling Window GEKS in the scanner data 
context: 
 

• How long should the window length be? As indicated above, the window length 
should be at least 13 months (or 5 quarters if a quarterly CPI is compiled) in order 
to allow for the influence of strongly seasonal commodities but what are the 
advantages and drawbacks of increasing this “standard” window length? 

• When a new window is computed, how should the index results from the new 
window be linked to the previous index values? Ivancic, Diewert and Fox (2011) 
(IDF) suggested that the movement of the indexes for the last two periods in the 
new window be linked to the last index value generated by the previous window. 
However Krsinich (2016) in a slightly different context suggested that the 
movement of the indexes generated by the new window over the entire new 
window period be linked to the previous window index value for the second 
period in the previous window. Krsinich called this a window splice as opposed to 
the IDF movement splice. De Haan (2015a; 27) suggested that perhaps the linking 
period should be in the middle of the old window which the Australian Bureau of 
Statistics (2016; 12) terms a half splice. 

 
We will return to these questions after we have studied our second multilateral method in 
the following section. 
 
4. CCDI Multilateral Indexes 
 
It is convenient to introduce some alternative notation at this point. We assume that the 
vector of positive36 period t (unit value) prices is pt ≡ [pt1,...,ptN] and the corresponding 
                                                 
34  Balk (1981; 77) also observed the same phenomenon as he computed his GEKS indexes using 
successively larger data sets. Diewert (2013) also found that Rolling Year GEKS estimates were quite close 
to their GEKS counterparts for his small data set on Israeli seasonal commodities. 
35 Ivancic, Diewert and Fox (2011; 33, footnote 19): “While a RWGEKS index, such as the RYGEKS, will 
not satisfy transitivity in practice and hence will be potentially subject to chain drift, comparisons within 
each window are transitive. Using this approach, chain drift is therefore unlikely to be a significant problem 
in any context likely to be faced by a statistical agency. Also, alternative approaches to linking the indexes 
could be investigated, such as using different overlapping periods for doing the linking, taking the 
geometric mean of overlapping comparisons in multiple windows, and so forth. The most obvious approach 
is pursued in this paper and works well in our empirical applications. An investigation into alternative 
approaches is left for future research.” We return to this issue explicitly in section 11. The Australian 
Bureau of Statistics (2016) plans to use RYGEKS or some other multilateral method for some components 
of its Consumer Price Index. Statistics Netherlands also computed RYGEKS indexes for some components 
of its CPI on an experimental basis with good results but they did not implement the method officially; see 
de Haan and van der Grient (2011) and de Haan (2015a) (2015b). Statistics New Zealand have 
implemented a version of RYGEKS, with adjustments for quality change, for consumer electronics scanner 
data; see Krsinich (2015).  
36 The restriction that all prices in each period are positive is a restrictive assumption. Implicitly, we  
assume that if say commodity n is not available in period t so that qtn = 0, then there is a positive 
reservation price pnt > 0 that will induce potential purchasers to demand a zero amount of the commodity. 
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nonnegative period t quantity vector is qt ≡ [qt1,...,qtN] with the inner product, pt⋅qt ≡ Σn=1
N 

ptnqtn > 0 for t = 1,...,T. Define the expenditure share for commodity n in period t as stn ≡ 
ptnqtn/pt⋅qt for n = 1,...,N and t = 1,...,T. We now denote the Törnqvist price index for 
period t relative to period τ as PT(t/τ). Using our new notation, the logarithm of PT(t/τ) is 
defined as follows: 
 
(11) lnPT(t/τ) ≡ ∑n=1

N (1/2)(stn + sτn)(lnptn − lnpτn) ;                                            t,τ = 1,...,T. 
 
The above bilateral index can be used to form a system of “star” indexes where we 
choose each country in term as the base, calculate a sequence of indexes for each base 
and then take the geometric mean of the resulting star sequences. Thus a preliminary 
price level for period t using this methodology is πt defined as follows: 
 
(12) πt ≡ [Πτ=1

T PT(t/τ)]1/T ;                                                                                     t = 1,...,T. 
 
The normalized sequence of price levels is defined as the sequence πt/π1 for t = 1,...,T.  
Obviously, this methodology is entirely similar to Gini’s methodology which led to the 
sequence of GEKS (unnormalized) price levels defined by (10) in the previous section: 
the only difference is that the Törnqvist bilateral price index formula, PT(t/τ), is used as 
the basic building block rather than the Fisher formula, PF(t/τ).37   
  
Substituting definitions (11) into (12) shows that the logarithm of πt is equal to the 
following expression: 
 
(13) lnπt = (1/T) Στ=1

T Σn=1
N (1/2)(stn + sτn)(lnptn − lnpτn) ;                                     t = 1,...,T. 

 
The expressions (13) that define the (unnormalized) price levels πt can be simplified. 
Define the sample average expenditure share for commodity n, s•n, and the sample 
average of the logarithms of the prices for commodity n, lnp•n, as follows: 
 
(14) s•n ≡ (1/T) Σt=1

T stn ; lnp•n ≡ (1/T)Σt=1
T lnptn ;                                                n =1,...,N.                                                      

  
Definitions (14) can be used in order to define a new system of (unnormalized) price 
levels ρt for the T periods; i.e., define the logarithm of ρt as follows: 
 
(15) lnρt ≡ ∑n=1

N (1/2)(stn + s•n)(lnptn − lnp•n) ;                                                       t = 1,...,T.   
 

                                                                                                                                                  
This methodological approach to new and disappearing goods follows Hicks (1940; 114). The practical 
problem facing price statisticians is: how exactly are these reservation prices to be determined?    
37 De Haan and van der Grient (2011; 41) call the indexes (12) that use (11) as the bilateral building block 
GEKS-Törnqvist indexes. Feenstra, Ma and Rao (2009; 171-172) also noted that Törnqvist bilateral price 
indexes could be used in place of Fisher price indexes in the Gini methodology. Fox and Syed (2016; 401) 
call the indexes defined by (12) CCD indexes. Caves, Christensen and Diewert (1982) used the GEKS 
methodology in the quantity context; i.e., they used bilateral Törnqvist quantity indexes as their basic 
building block rather than bilateral Törnqvist price indexes.      
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The sequence of normalized or final price levels for the T observations in the sample is 
ρt/ρ1 for t = 1,...,T. Note the similarity in structure of (11) and (15): the regular Törnqvist 
index PT(t/τ)  compares the level of prices in period t with the corresponding level in 
period τ whereas ρt can be thought of comparing the level of prices in period t with the 
corresponding level of prices in an “average” observation which has expenditure shares 
equal to the sample average expenditure shares s•n and sample average prices p•n = [Πn=1

T 
ptn]1/T.  
 
The price levels πt defined by (13) are closely related to the price levels ρt defined by 
(15); i.e., substituting definitions (14) into (15) and using definitions (13) leads to the 
following relationship between the logarithms of πt and ρt: 
 
(16) lnπt = lnρt + α ;                                                                                                t = 1,...,T 
 
where the constant α is defined as follows: 
 
(17) α ≡ Σn=1

N (1/2) s•m lnp•m − (1/2T) Σt=1
T Σn=1

N stn lnptn. 
 
Equations (16) mean that the normalized price levels using the πt and ρt coincide; i.e., we 
have: 
 
(18) πt/π1 = ρt/ρ1 ;                                                                                                   t = 1,...,T. 
 
Comparing (13) to (15), it can be seen that making multilateral comparisons of prices 
across the T periods using the price levels ρt defined by (15) is analytically simpler than 
using the price levels πt defined by (13). Caves, Christensen and Diewert (1982; 78) 
introduced the artificial country comparison idea into multilateral index number theory 
except that they introduced the idea in the context of making quantity comparisons across 
production units using distance functions. Inklaar and Diewert (2016; 429) extended the 
CCD methodology to making price comparisons across production units and derived 
equations (16). Thus we will call the multilateral price comparison method that uses the 
price levels ρt defined by (15) the CCDI method.  
 
Using definitions (15) to define the (unnormalized) price levels ρt, it can be seen that the 
CCDI normalized price level in period t relative to period r, (ρt/ρ1)/(ρr/ρ1), is independent 
of the choice of the normalizing period; i.e., (ρt/ρ1)/(ρr/ρ1) = (ρt/ρs)/(ρr/ρs) for any period 
s. 38 As was pointed out by de Haan and van der Grient (2011; 40), this is a major 
advantage of a multilateral method. CCD referred to the earlier work of Fisher (1922) and 
noted that there is a tradeoff between transitivity (or circularity) and characteristicity: 

                                                 
38 The price levels ρt defined by (15) also satisfy the following version of Walsh’s multiperiod identity test 
(9): for periods r, s and t, we have (ρr/ρs)(ρt/ρr)(ρs/ρt) = 1. The price levels ρt also satisfy the time reversal 
test and the circularity test. A less obvious test that the price level ρt also satisfies is the following price 
proportionality test: ρt(λpt) = λρt(pt) for arbitrary scalar λ > 0 where ρt(pt) is the function 
ρt(p1,...,pT,q1,...,qT) defined by (15) regarded as a function of the period t price vector, pt. Note that the 
period t share vector st and the sample average share vector s• ≡ [s•1,..., s•N] also depends on pt.           
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“In essence Fisher’s discomfort with the circularity test was due to the fact that it conflicted with 
using value shares weights that are specific to the two entities being compared. Dreschler (I973) 
has used the term ‘characteristicity’ to indicate the degree to which weights are specific to the 
comparison at hand. The Fisher Ideal index utilises weights that are perfectly characteristic. 
Dreschler (1973; 17) succinctly summarised Fisher’s dilemma: ‘...characteristicity and circularity 
are always ... in conflict with each other.’ The implication is that some degree of characteristicity 
must be sacrificed to obtain circularity.” Douglas Caves, Laurits Christensen and W. Erwin 
Diewert (1982; 74). 
 
The logarithm of the direct bilateral comparison of price level of period t relative to 
period τ using the Törnqvist formula (11) is 
 
(19) lnPT(t/τ) = ∑n=1

N (1/2)(stn + sτn)(lnptn − lnpτn) 
 
This bilateral direct index depends only on the prices and expenditure shares pertaining to 
periods τ and t. The corresponding multilateral comparison of the price level in period t 
to period τ is:39 
 
(20) ln(ρt/ρτ) = ∑n=1

N (1/2)(stn + s•n)(lnptn − lnp•n) − ∑n=1
N (1/2)(sτn + s•n)(lnpτn − lnp•n) 

                      = ∑n=1
N (1/2)(stn + s•n)(lnptn − lnp•n) + ∑n=1

N (1/2)(sτn + s•n)(lnp•n − lnpτn). 
 
Using (19), the prices of period t are compared directly to the prices in the base period τ 
whereas in (20), the prices in period t are compared to the prices in the artificial 
“average” period and then the prices in the “average” period are compared to the prices in 
the base period τ. Thus if there are smooth trends in prices and expenditure shares, 
chaining the bilateral indexes defined by (19) would probably be preferable (since 
chaining tends to reduce the spread between superlative indexes with smooth trends in the 
underlying price and quantity data)40 whereas using the multilateral indexes defined by 
(20) essentially compares the prices in any two periods through the fixed base 
observation that has the sample average log prices and sample average expenditure shares. 
Of course, with monthly or weekly data, trends in prices and quantities are often far from 
smooth and under these nonsmooth conditions, the chain drift problem can become 
severe (as we shall see later) and the use of multilateral indexes is recommended.         
 
The difference between the direct index (19) and the corresponding multilateral index 
(20) simplifies to the following expression:41 
 
(21) lnPT(t/τ) − ln(ρt/ρτ)  

                                                 
39 Formula (20) can be used to establish the following bilateral identity test: if pt = pτ and qt = qτ (which 
implies st = sτ), then ρt = ρτ.   
40 See Diewert (1978) on this point. 
41 Formula (21) shows that if pt = pτ and qt = qτ (which implies st = sτ), then PT(t/τ) = ρt/ρτ = 1. Formula 
(21) also shows that if expenditure shares are constant over time so that stn = s•t for all t and n, then PT(t/τ) = 
ρt/ρτ.  
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                          = ∑n=1
N (1/2)(sτn − s•n)(lnptn − lnp•n) − ∑n=1

N (1/2)(stn − s•n)(lnpτn − lnp•n). 
 
The above formula can be used to show that if T = 2, then lnPT(2/1) = ln(ρ2/ρ1) so that the 
direct Törnqvist bilateral index PT(2/1) equals the multilateral CCDI index ρ2/ρ1 if there 
are only two periods in the multilateral comparison.  
 
5. Rolling Window Multilateral Methods and the Linking Problem 
 
Suppose that the CCDI multilateral method explained in the previous section is used to 
construct a sequence of price levels, π1, π2, ..., πT for T consecutive periods where T ≥ 3. 
The period t price level is defined as  
 
(22) πt ≡ ρt/ρ1 ;                                                                                                     t = 1,...,T 
 
where the logarithm of ρt is defined by (15) and where s•n ≡ (1/T) Σt=1

T stn and lnp•n ≡ 
(1/T)Σt=1

T lnptn for n =1,...,N. Data on period T+1 expenditure shares sT+1,n and prices 
pT+1,n become available at the end of period T+1 for n = 1,...,N. A new set of multilateral 
indexes can now be constructed for the window of observations that include the data for 
periods 2,3,...,T,T+1. Define the average expenditure share for commodity n, s•n* and the 
average log price p•n* for commodity n as follows: 
 
(23) s•n* ≡ (1/T) Σt=2

T+1 stn ; lnp•n* ≡ (1/T)Σt=2
T+1 lnptn ;                                          n =1,...,N.  

 
Definitions (23) can be used in order to define a new system of (unnormalized) CCDI 
price levels ρt* for the T periods in the new window; i.e., define the logarithm of ρt* as 
follows: 
 
(24) lnρt* ≡ ∑n=1

N (1/2)(stn + s•n*)(lnptn − lnp•n*) ;                                           t = 2,...,T,T+1.   
 
The new price levels need to be linked to the price levels generated by the original 
window of observations; i.e., we need to define a new price level for period T+1 that 
extends the initial T price levels πt defined by (22) for t = 1,...,T. Suppose we link the 
new window price levels to the initial price levels at observation t where t could be any 
observation between periods 2 and T. Let πT+1(t) ≡ [ρT+1*/ρt*][ρt/ρ1] denote the resulting 
linked price level for period T+1 that depends on choosing period t as link period. Thus 
the logarithm of this period T+1 price level is defined as follows:  
 
(25) lnπT+1(t) ≡ lnρt − lnρ1 + lnρT+1* − lnρt* ;                                                      t = 2,3,...,T 
 
where the lnρt are defined by (14) and (15) and the lnρt* are defined by (23) and (24). 
Thus there are T−1 possible choices of period t which can be used in (25) to link the price 
level for period T+1 to the sequence of price levels π1,...,πT that were generated by the 
results of the initial window of observations; i.e., see definitions (22). Using the GEKS 
multilateral method rather than the CCDI method, Ivancic, Diewert and Fox (2009) 
(2011) suggested using period T as the linking observation. In the context of a somewhat 
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different multilateral model, Krsinich (2016; 383) called this the movement splice method 
for linking the two windows. Krsinich (2013) (2016; 383) also suggested that a better 
choice of the linking observation in the context of her multilateral model was t = 2 and 
she called this the window splice method. De Haan (2015a; 26) suggested that the link 
period t should be chosen to be in the middle of the first window time span; i.e., choose t 
= T/2 if T is an even integer or t = (T+1)/2 if T is an odd integer. The Australian Bureau 
of Statistics (2016; 12) called this the half splice method for linking the results of the two 
windows. However, without putting more structure on the underlying price and quantity 
data, it would seem that each choice of a linking period t running from t = 2 to t = T is an 
equally valid choice of a period to link the two sets of price levels. Thus it would seem 
that we have T−1 equally valid estimators for the period T+1 price level, πT+1(t) defined 
by (25) for t = 2,3,...,T+1, and so perhaps the “best” estimator for πT+1 is the mean splice,  
defined as the geometric mean of the πT+1(t):42 
 
(26) πT+1(Mean) ≡ [Πt=2

T πT+1(t)]1/(T−1).           
 
In the context of very variable price data with little or no trends, choosing the mean 
estimator for πT+1 is probably a satisfactory strategy. However, we will suggest an 
alternative strategy below which may be superior. 
 
Suppose the price and quantity data for period T+1 are identical to the price and quantity 
data for some period t such that 2 ≤ t ≤ T; i.e., we have t such that: 
 
(27) sT+1,n = stn ; pT+1,n = ptn ; n = 1,...,N. 
 
Suppose further that we link the two windows at this observation t. The identity test for 
multilateral indexes requires that πT+1(t) = πt where πT+1(t) is defined by (25) and πt is 
defined by (22). Using these definitions, we calculate lnπT+1(t) minus lnπt as follows: 
 
(28) lnπT+1(t) − lnπt = lnρt − lnρ1 + lnρT+1* − lnρt* − [lnρt − lnρ1] 
        = lnρT+1* − lnρt* 
        = ∑n=1

N (1/2)(sT+1,n + s•n*)(lnpT+1,n − lnp•n*) − ∑n=1
N (1/2)(stn + s•n*)(lnptn − lnp•n*)  

                                                                         adapting formula (20) for the new window 
        = 0                                                            using assumptions (27). 
 
Thus if the price and quantity data for period T+1 are exactly equal to the price and 
quantity data for period t, then linking the windows at observation t will preserve the 
identity test over the two windows; i.e., under these conditions it makes sense to link the 
two windows at period t. This logic carries over to situations where the price and quantity 
data of period t are closest (in some metric) to the price and quantity data of period T+1: 
it makes sense to link the windows at the observation which has the most “similar” price 
and quantity data. If the data are reasonably smooth, then it is likely that the most similar 

                                                 
42 This method for linking the two windows was suggested by Ivancic, Diewert and Fox (2011; 33). 
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price and quantity data will occur at observation T and thus under these conditions, 
movement splicing is justified.43 
 
The exact result (28) can be extended to the case where the price data of period T+1 is 
proportional to the price data of period t. Suppose the price and quantity data for period 
T+1 are related to the data of period t (where  2 ≤ t ≤ T) in the following way : 
 
(29) sT+1,n = stn ; pT+1,n = λptn ; n = 1,...,N 
 
where λ is a positive scalar. Suppose further that we link the two windows at this 
observation t. A proportionality test for multilateral indexes requires that πT+1(t) = λπt 
where πT+1(t) is defined by (25) and πt is defined by (22). It can be shown that this 
property also holds when the CCDI multilateral method is used for each consecutive 
window and the linking of the two windows is done at period t, where the data for periods 
t and T+1 satisfy (29). 
 
The above results suggest that linking of the two windows in a rolling window 
multilateral method be done at a period where the prices of period t are proportional (or 
close to being proportional) to the prices of period T+1. In order to implement this fifth 
method of linking the rolling windows, it is necessary to have measures of price 
proportionality between the two periods. Diewert (2009) suggested the following two 
measures of relative price dissimilarity between the prices of periods t and T+1:44    
 
(30) ∆LQ(pt,pT+1,qt,qT+1) ≡ ∑n=1

N (1/2)(sT+1,n+stn)[ln(pT+1,n/P(pt,pT+1,qt,qT+1)ptn)]2 ; 
(31) ∆AL(pt,pT+1,qt,qT+1)  
     ≡ ∑n=1

N (1/2) sT+1,n+stn){(pT+1,n/P(pt,pT+1,qt,qT+1)ptn) + (P(pt,pT+1,qt,qT+1)ptn/pT+1,n) − 2} 
 
where P(pt,pT+1,qt,qT+1) is a bilateral superlative index number formula. 45  ∆LQ is the 
weighted log quadratic index of relative price dissimilarity and ∆AL is the weighted 
asymptotically linear index of relative price dissimilarity. Both of these measures of 
relative price dissimilarity will equal their lower bound of 0 if prices in periods t and T+1 
are proportional; i.e., if pT+1 = λpt for some λ > 0. The bigger are the measures ∆LQ and 
∆AL, the less proportional are the prices in the two periods. Later in our paper, we will 
explain exactly how these measures of relative price dissimilarity can be used to link the 
windows using some test data.  
 
In the following two sections, we will discuss two additional multilateral methods that 
have been suggested to aggregate prices at the first stage of aggregation. 
 
 
                                                 
43 However, if the commodity class in question is subject to frequent sales, then the data will be far from 
smooth. 
44 See Fox, Hill and Diewert (2004) for the use of dissimilarity indexes in the context of detecting data 
outliers.  
45 Later in the paper, we will choose P to be PT, the Törnqvist formula, when we use (30) and when we use 
(31), we will choose P to be PF, the Fisher ideal price index. 
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6. The Weighted Time Product Dummy Multilateral Method 
 
As usual, suppose that we have T time periods and N commodities and the price of 
commodity n in period t is ptn and the corresponding expenditure share is stn for n = 
1,...,N and t = 1,...,T. Suppose that prices vary in an approximately proportional manner 
from period to period. Thus we have the following model: 
 
(32) ptn = atbnetn ;                                                                                 t = 1,...,T; n = 1,...,N. 
 
The parameter at can be interpreted as the price level for period t, bn can be interpreted as 
a commodity n quality adjustment factor and etn is a stochastic error term with mean 1. 
Define the logarithms of ptn and etn as ytn ≡ lnptn and εtn ≡ lnetn for t = 1,...,T; n = 1,...,N, 
define the logarithm of at as αt ≡ lnat for t = 1,...,T and define the logarithm of bn as βn ≡ 
lnbn for n = 1,...,N. Then taking logarithms of both sides of (32) leads to the following 
linear regression model: 
 
(33) ytn = αt + βn + εtn ;                                                                         t = 1,...,T; n = 1,...,N.   
 
The αt and βn can be estimated by solving a least squares minimization problem.46 This is 
Summer’s (1973) country product dummy multilateral method adapted to the time series 
context.  
 
Rao (1995) 47  suggested the following weighted-by-economic-importance version of 
Summer’s method: find the αt and βn which solve the following weighted least squares 
minimization problem: 
 
(34) 

NT ββαα ,...,,,..., 11
min Σt=1

T Σn=1
N stn(ytn − αt − βn)2. 

 
The first order necessary (and sufficient) conditions for solving (34) are the following T 
equations (35) and the N equations (36): 
 
(35)           αt   +  Σn=1

N stnβn   = Σn=1
N stnytn ;                                                         t = 1,...,T;    

(36) Σt=1
T stnαt + (Σt=1

T stn)βn = Σt=1
T stnytn ;                                                           n = 1,...,N.    

 
Multiply both sides of equation t = 1 in equations (35) by s11, equation t = 2 in (35) by 
s21,..., equation t = T in (35) by sT1, sum the resulting equations and subtract this summed 
equation from both sides of the first equation in (36). The resulting equation has no αt 
terms. Do similar summations of equations (35) to eliminate the terms Σt=1

T stnαt in each 
of the equations (36). The resulting system of N equations is the following one: 
 
(37) Σt=1

T st1β1 − Σt=1
T st1

2β1 − Σt=1
T st1st2β2 − Σt=1

T st1st3β3 − ... − Σt=1
T st1stNβN       

         = Σt=1
T st1yt1 − Σt=1

T st1
2yt1 − Σt=1

T st1st2yt2 − Σt=1
T st1st3yt3 − ... − Σt=1

T st1stNytN ; 
                                                 
46 A normalization on the parameters such as α1 = 0 (which corresponds to a1 = 1) is required to identify the 
parameters. 
47 See also Diewert (2004) (2005) (2012) and Rao (2005) on the WTPD method.   
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         ... 
        Σt=1

T stNβN − Σt=1
T stNst1β1 − Σt=1

T stNst2β2 − Σt=1
T stNst3β3 − ... − Σt=1

T stN
2βN       

         = Σt=1
T stNytN − Σt=1

T stNst1yt1 − Σt=1
T stNst2yt2 − Σt=1

T stNst3yt3 − ... − Σt=1
T stN

2ytN . 
 
Note that st1 = 1 − Σn=2

N stn, st2 = 1 − st1 − Σn=3
N stn  ..., stN = 1 − Σn=1

N−1 stn. Substituting 
these equations into the N equations (37) leads to the following equivalent system of 
equations: 
 
(38) Σt=1

Tst1(st2+...stN)β1 − Σt=1
Tst1st2β2 − Σt=1

Tst1st3β3 − ... − Σt=1
Tst1stN−1βN−1 − Σt=1

Tst1stNβN       
         = Σt=1

T st1st2(yt1− yt2) + Σt=1
T st1st3(yt1 −yt3) + ... + Σt=1

T st1stN(yt1− ytN) ; 
         ... 
       − Σt=1

T stNst1β1 − Σt=1
T stNst2β3 − ... − Σt=1

T stNstN−1βN−1 + Σt=1
T stN(st1+...stN−1)βN       

         = Σt=1
T stNst1(ytN− yt1) + Σt=1

T stNst2(ytN −yt2) + ... + Σt=1
T stNstN−1(ytN− ytN−1) . 

 
Recall that ytn ≡ lnptn. Thus the right hand side of the first equation in (38) is a weighted 
sum of the logarithmic price ratios ln(pt1/pt2), ln(pt1/pt3),..., ln(pt1/ptN). Similarly, the right 
hand side of the last equation in (38) is a weighted sum of the logarithmic price ratios 
ln(ptN/pt1), ln(ptN/pt2),..., ln(ptN/ptN−1).         
 
Equations (38) can be simplified if we define the following TN2 weights wtnj: 
 
(39) wtnj ≡ stnstj > 0 ;                                               n ≠ j ; n = 1,...,N ; j = 1,...,N; t = 1,...,T; 
        wtnn ≡ 0 ;                                                         n = 1,...,N; t = 1,...,T. 
 
Define the N2 weights wnj as follows:48 
 
(40) wnj ≡ Σt=1

T wtnj ;                                                n = 1,...,N ; j = 1,...,N. 
 
Using the above definitions, equations (38) simplify to the following N equations: 
 
(41) (Σj=1

N wnj)βn − Σj=1
N wnjβj = Σt=1

T Σj=1
N wtnjytn − Σt=1

T Σj=1
N wtnjytj ;             n = 1,...,N. 

 
Equations (41) can be further simplified if we divide both sides of equation n in (41) by 
Σj=1

N wnj for n = 1,...,N. The resulting system of equations is: 
 
(42) βn − Σj=1

N fnjβj = Σt=1
T Σj=1

N ftnj(ytn − ytj) ;                                                      n = 1,...,N 
 
where the fractions fnj ≥ 0 and ftnj ≥ 0 are defined as follows:49 
 
(43) fnj ≡ wnj/Σk=1

N wnk ;                                                                      n,j = 1,...,N;  
(44) ftnj ≡ wtnj/Σk=1

N wnk ;                                                                    n,j = 1,...,N; t = 1,...,T. 
 
                                                 
48 Note that wnn = 0 for n = 1,...,N. 
49 fnn = 0 for n = 1,..,N and ftnn = 0 for n = 1,...,N and t = 1,...,T. The remaining fractions are positive under 
our assumptions that each price ptn and quantity qtn is positive for all n and t. 
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It can be verified that Σj=1
N fnj = 1 for n = 1,...,N and Σt=1

T Σj=1
N ftnj = 1 for n = 1,...,N. Let 

F ≡ [fnj] be the N by N matrix which has element nj equal to fnj for n =1,...,N and j = 
1,...,N. Let f ≡ [f1,...,fN]T where fn ≡ Σt=1

T Σj=1
N ftnj(ytn − ytj) for n = 1,...,N.50 Then the N 

equations in (42) can be written using matrix notation as: 
 
(45) [IN − F]β = f 
 
where IN is the N by N identity matrix and β ≡ [β1,...,βN]T is the column vector of the βn. 
Thus it would appear that the β solution to the weighted least squares minimization 
problem (34) is equal to β* ≡ [IN − F]−1f. However, the inverse of the matrix [IN − F] does 
not exist since its columns are linearly dependent; i.e., we have [IN − F]1N

 = 0N where 1N 
is a vector of ones and 0N is a vector of zeros. The solution to this problem is simple: set 
one of the βn equal to a definite number and drop one of the equations in the system of N 
equations defined by (45).51 In our empirical work, we will choose to set βN equal to 0 
and to drop the last equation in (45). Under these conditions, the remaining betas can be 
obtained by solving equations (45). Denote the solution values to the modified system of 
equations as β1*,β2*,...,βN−1* and let β* denote the column vector of all of these betas 
including βN* = 0. The corresponding parameters bn* which appear in equations (32) are 
defined as the exponentials of the βn*; i.e., we have: 
 
(46) bn* ≡ exp(βn*) ;                                                                                              n = 1,...,N. 
  
Since βN* = 0, bN* = 1. The quality adjustment parameter bn* essentially converts one unit 
of commodity n into the utility equivalent of bn* units of commodity N for n = 1,2....,N−1. 
Thus commodity N acts as a numeraire commodity.52 
 
Now that the quality adjustment parameters have been determined, the logarithm of the 
period t price level, αt*, can be determined using equation t in equations (35); i.e., we 
have:53             

                                                 
50 Note that the elements of the matrix F depend on just expenditure shares whereas the elements of the 
vector f are share weighted averages of the logarithmic price ratios ytn − ytj

  = ln(ptn/ptj). 
51 This step can be justified as follows. First note that equations (35) can be replaced by the equivalent 
equations: (35)* Σn=1

N stnαt   +  Σn=1
N stnβn   = Σn=1

N stnytn for t = 1,...,T. Now sum equations (35)* for t = 
1,...,T and note that this sum is equal to the sum of equations (36) for n = 1,...,N. Thus the last equation in 
(36) is linearly dependent on the remaining equations and can be dropped. This implies that the last 
equation in (38) and (45) can be dropped. Note that if we have found a solution to equations (35)* and (36), 
say α1

*,...,αT
*,β1

*,...,βN
*, then α1

*+µ,...,αT
*+µ,β1

*−µ,...,βN
*−µ is also a solution to these equations where µ 

is an arbitrary number. Thus a normalization on these parameters is required in order to obtain a unique 
solution to the minimization problem (34).     
52 This interpretation for the bn as quality adjustment factors in the context of the weighted time product 
dummy model follows that of Rao (2005; 574) and de Haan (2015a; 21) (2015b; 6) but this interpretation 
can be traced back to Summers (1973; 11): “The coefficients of the γα dummies have no significance for 
country price level comparisons, though they may conceivably be useful in an analysis of the relative 
values that purchasers in all m countries put on the individual items.”   
53 Rao (1995) (2004; 20) (2005; 577) derived this formula many years ago. What is new in our derivation is 
equations (45) which define the optimal βn in a fairly simple manner. 
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(47) αt* ≡ Σn=1

N stnytn − Σn=1
N stnβn*                                                                         t = 1,...,T 

             = Σn=1
N stn(ytn − βn*).   

 
Recall that ytn = lnptn and βn* = ln(bn*) for each t and n. The period t (unnormalized) price 
level at* is the exponential of αt*. Thus exponentiating both sides of (47) leads to the 
following formula for the (unnormalized) weighted time product dummy price level for 
period t: 
 
(48) at* = ∏ =

N

n
s

ntn
tnbp

1 * )/( ;                                                                                  t = 1,...,T. 
 
Thus the unnormalized price level for period t is a period t expenditure share weighted 
geometric mean of the N period t quality adjusted prices ptn/bn* where the logarithms of 
quality adjustment factors bn* are defined solving equations (45) after imposing a 
normalization on the quality adjustment factors.  
 
Define the period t normalized weighted time product dummy price level πt by dividing 
at* by a1*: 
 
(49) πt ≡ at*/a1* ;                                                                                                     t = 1,...,T. 
 
Substituting (48) into (49) and recalling that ytn ≡ lnptn and βn* = lnbn* leads to the 
following expression for the logarithm of πt: 
 
(50) lnπt = Σn=1

N stn(ytn − βn*) − Σn=1
N s1n(y1n − βn*) ;                                            t = 1,...,T. 

 
At this point, it is useful to consider some special cases for the above multilateral indexes. 
Our first special case is the case where we have only two periods, so that T = 2. In this 
case, Diewert (2005; 564) showed that the logarithm of π2 is defined as follows; 
 
(51) lnπ2 ≡ Σn=1

N sn*(y2n − y1n)    
 
where the share weights sn* are defined as the following normalized harmonic averages of 
the observed expenditure shares s1n and s2n for the two periods: 
 
(52) sn* ≡ h(s1n,s2n)/[Σk=1

N h(s1k,s2k)] ;                                                                   n = 1,...,N 
 
where h(s1n,s2n) ≡ [(1/2)s1n

−1 + (1/2)s2n
−1]−1. Diewert (2005; 564) noted that the bilateral 

price index defined by π2 approximated the corresponding Törnqvist index to the second 
order around a point where p1 = p2 and q1 = q2.54 Thus it may appear that if there are only 
two periods in the window, the weighted time product dummy (WTPD) multilateral 
method is a perfectly satisfactory method from the viewpoint of the economic approach 

                                                 
54 This second order approximation property will hold if p2 = λp1 and q2 = µq1 where λ and µ are arbitrary 
positive scalars.  
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to index number theory. Unfortunately, second order approximation results may not be 
adequate in our present context where a sale for a product (i.e., a dramatic reduction in 
price) can increase the quantity of the sale item 1000 fold.55 Consider the following 
example where there are only 2 commodities and 2 periods so that N = 2 and T = 2. 
Suppose that the period 1 and 2 price vectors are equal to p1 ≡ [1,1] and p2 ≡ [1,p22] and 
the period 1 and 2 share vectors are equal to s1 ≡ [(1/2), (1/2)] and s2 ≡ [0, 1] , where p22 
is a small positive number that is less than 1. Thus the logarithm of p22 is less than zero; 
i.e., r ≡ lnp22 < 0. The price of commodity 2 in period 2 is so low that purchasers stop 
buying commodity 1 in period 2 even though the price of commodity 1 has not changed. 
Using formula (11) for the Törnqvist index between periods 2 and 1, the logarithm of this 
index is defined as follows:  
 
(53) lnPT(2/1) ≡ ∑n=1

2 (1/2)(s1n + s2n)ln(p2n/p1n) 
                       = (1/2)[(1/2) + 0]ln(1/1) + (1/2)[(1/2) + 1]ln(p22/1) 
                       = (3/4)r  
 
where r ≡ lnp22 and is negative by assumption. Under our assumptions, h(s11,s21) = 
h(1/2,0) = 0 and h(s12,s22) = h(1/2,1) = 2(1/2)1/[(1/2)+1] = 2/3. Thus the sum h(s11,s21)  + 
h(s12,s22) = h(s12,s22) = 2/3 and substituting these numbers into formula (51) shows that 
the logarithm of the WTPD normalized price level for period 2 is equal to the following 
expression:   
 
(54) lnπ2 ≡ Σn=1

2 sn*(y2n − y1n) 
               = 0ln(1/1) + 1ln(p22/1) 
               = r 
               < (3/4)r                                                                          since r < 0 by assumption 
               = lnPT(2/1) 
 
where the last equality follows using (53) for our example. This is only a specific 
numerical example but it shows that price levels based on the weighted time product 
dummy method may have a substantial bias as compared to the price levels generated by 
a superlative index.   
 
The second special case that we will consider is the case where the expenditure shares are 
constant in each period. This case is consistent with purchasers having Cobb-Douglas 
preferences for the N commodities under consideration. Thus assume that the data satisfy 
the following conditions: 
 
(55) stn = sn ;                                                                                         t = 1,...,T; n = 1,...,N.     
 
Substituting conditions (55) into (50) leads to the following formula for the logarithms of 
the normalized WTPD price levels: 
 
(56) lnπt = Σn=1

N sn(ytn − y1n) ;                                                                               t = 1,...,T. 

                                                 
55 See de Haan and van der Grient (2011). 
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Thus πt = ∏ =

N

n
s

ntn
npp

1 1 )/( , a weighted geometric mean of the ratios of the period t 
prices to the period 1 prices, ptn/p1n, using the constant expenditure shares, sn, as weights. 
 
The third special case we consider is the case where the error terms εtn in equations (33) 
are all equal to 0. In this case, equations (32) become the following equations:   
 
(57) ptn = atbn ;                                                                                      t = 1,...,T; n = 1,...,N. 
 
Thus in this special case, the period t price vector pt is equal to atb, where b is the vector 
[b1,...,bN] and thus the price vectors are proportional to each other. As usual, we can 
interpret the scalar at as the (unnormalized) period t price level. The corresponding period 
t quantity level, Qt, can be defined as period t value, Σn=1

N ptnqtn, divided by the price 
level, at. Thus we have: 
 
(58) Qt ≡ pt⋅qt/at                                                                                                     t = 1,...,T  
            = atb⋅qt/at                                                                                                   using (57) 
            = b⋅qt. 
 
Thus if the error terms in equations (33) are all equal to 0, the period t quantity aggregate, 
Qt, is equal to the linear function b⋅qt = Σn=1

N bnqtn for all t; i.e., Qt is equal to a quality 
adjusted sum of the period t quantities purchased. Thus in the case of zero errors in 
equations (33), the WTPD multilateral method is consistent with purchasers of the N 
commodities maximizing a linear utility function, which implicitly assumes that the N 
commodities are perfectly substitutable after quality adjustment. A multilateral method 
which has this property is called an additive method. In the general case where there are 
nonzero error terms in equations (33), it can be seen that the WTPD multilateral method 
is an approximately additive method.  
 
The problem with an additive multilateral method is that, in general, it is not consistent 
with the economic approach to index number theory once the number of periods is 
greater than two. We will attempt to explain the last point above when N = 2 with the 
help of a diagram.56 

                                                 
56 This explanation is due to Marris (1984; 52) and repeated in Diewert (1999; 49). Figure 1 suggests that 
the longer the window length is, the more likely it is that substitution bias will increase. Thus when using 
an additive multilateral method, increasing the window length will reduce chain drift bias but at the cost of 
increasing substitution bias. 
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Figure 1: Additive Multilateral Methods and Substitution Effects 

 
The solid curved line in Figure 1 represents an indifference curve for purchasers of the 
two goods under consideration. The consumption vectors that correspond to observations 
1, 2 and 3 are all on the same actual indifference curve and hence, the multilateral method 
should show the same volume for the three observations. If we use an additive method, it 
implies the all points should lie on a straight line. However, it is impossible for all three 
points in Figure 1 to be on the same straight line; see Diewert (1999). On the other hand, 
the indifference curve in Figure 1 can be approximated reasonably well by a flexible 
functional form that has a corresponding exact index number formula (such as the Fisher 
or Törnqvist indexes) and thus the GEKS and CCDI methods that use superlative bilateral 
indexes as their basic building blocks would give the right answer to a reasonable degree 
of approximation. The bottom line is that an additive multilateral method is not likely to 
be consistent with the economic approach to index number theory if the number of 
observations in the multiperiod comparison is greater than two. 57  However, if the 
commodities in the commodity group under consideration are highly substitutable with 
each other (so that when N = 2, the indifference curve in Figure 1 approaches a straight 
line), then the WTPD multilateral method will be consistent with the economic approach 
to index number theory to a high degree of approximation. 
 
To summarize: the WTPD multilateral method is recommended from the viewpoint of the 
economic approach to index number theory if: 

                                                 
57 “Figure 1.1 also illustrates the Gerschenkron effect: in the consumer theory context, countries whose 
price vectors are far from the ‘international’ or world average prices used in an additive method will have 
quantity shares that are biased upward. ... It can be seen that these biases are simply quantity index 
counterparts to the usual substitution biases encountered in the theory of the consumer price index.  
However, the biases will usually be much larger in the multilateral context than in the intertemporal context 
since relative prices and quantities will be much more variable in the former context. ... The bottom line on 
the discussion presented above is that the quest for an additive multilateral method with good economic 
properties (i.e., a lack of substitution bias) is a doomed venture: nonlinear preferences and production 
functions cannot be adequately approximated by linear functions. Put another way, if technology and 
preferences were always linear, there would be no index number problem and hundreds of papers and 
monographs on the subject would be superfluous!”  W. Erwin Diewert (1999; 50).   

q1 

q2 

q3 

q2 

q1 
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• Purchaser preferences are well approximated by Cobb-Douglas preferences. 
• Purchaser preferences are well approximated by linear or additive preferences.58  

 
We will now compare the WTPD price level for period t relative to period τ, πt/πτ, with 
the corresponding Törnqvist bilateral index, PT(t/τ), defined by (19). Using (50), we have: 
 
(59) ln(πt/πτ) = Σn=1

N stn(lnptn − βn*) − Σn=1
N sτn(lnpτn − βn*).   

 
Using (19) and (59), it can be shown that: 
 
(60) lnPT(t/τ) − ln(πt/πτ) = Σn=1

N (1/2)(sτn − stn)(ytn + yτn − 2βn*) 
                                        = Σn=1

N (sτn − stn)[(1/2)ln(ptn/bn*) + (1/2)ln(pτn/bn*)] 
 
where the bn* are defined by (46). It is difficult to determine the sign of the right hand 
side of (60) except in the case (55) where expenditure shares are constant across all 
observations in which case the right hand side of (60) is equal to zero and thus PT(t/τ) 
equals πt/πτ in this case.  
 
Using (20) and (59), it is possible to compare the logarithm of the CCDI price level for 
period t relative to period τ, ln(ρt/ρτ), to the logarithm of the WTPD price level for period 
t relative to period τ, ln(πt/πτ):     
 
(61) ln(ρt/ρτ) − ln(πt/πτ) = ∑n=1

N (1/2)(stn + s•n)(lnptn − lnp•n)  
         − ∑n=1

N (1/2)(sτn + s•n)(lnpτn − lnp•n) − [Σn=1
N stn(lnptn − βn*) − Σn=1

N sτn(lnpτn − βn*)]  
      = ∑n=1

N (sτn − s•n)[(1/2)ln(pτn/bn*) + (1/2)ln(p•n/bn*)]  
         − ∑n=1

N (stn − s•n)[(1/2)ln(ptn/bn*) + (1/2)ln(p•n/bn*)]. 
 
Again, it is difficult to determine the sign of the right hand side of (61) except in the case 
(55) where expenditure shares are constant across all observations, in which case the right 
hand side of (61) is equal to zero and thus ρt/ρτ  equals πt/πτ in this case. 
 
7. The Weighted Time Product Dummy Method and the Linking Problem 
 
Suppose that the WTPD multilateral method explained in the previous section is used to 
construct a sequence of price levels, π1, π2, ..., πT for T consecutive periods where T ≥ 3. 
Recall that the logarithms of these price levels can be defined by equations (50), lnπt = 
αt* − α1* = Σn=1

N stn(ytn − βn*) − Σn=1
N s1n(y1n − βn*) for t = 1,...,T, where the α1*,α2*,...,αT* 

and β1*,...,βN* solved the weighted least squares minimization problem (34) with the 
normalization βN* = 0.  
  

                                                 
58 In the context of the Constant Elasticity of Substitution (CES) model to be discussed later, the WTPD 
model is consistent with CES preferences if the elasticity of substitution is either 1 or plus infinity. 
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Assume that data on period T+1 expenditure shares sT+1,n and prices pT+1,n become 
available at the end of period T+1 for n = 1,...,N. A new set of multilateral indexes can 
now be constructed for the window of observations that include the data for periods 
2,3,...,T,T+1. The weighted least squares problem that is solved to generate the price 
levels for the new window of observations is the following one: 
 
(62) 

NT ββαα ,...,,,..., 112
min

+
Σt=2

T+1 Σn=1
N stn(ytn − αt − βn)2. 

 
Denote the solution to (62) as α2**,α3**,...,αT+1**,β1**,...,βN** with the normalization βN** 
= 0. The new set of quality adjustment coefficients βn** can be obtained by solving the 
counterpart to the matrix equation (45) where the elements of the new F matrix and f 
vector are obtained using definitions (39) to (44) except that t = 2,3,...,T+1 instead of t = 
1,2,...,T. The (unnormalized) logarithms of the price levels for the new window are 
defined as follows: 
              
(63) αt** ≡ Σn=1

N stn(ytn − βn**)                                                                         t = 2,3,...,T+1.   
 
Recall that ytn = lnptn and βn** = ln(bn**) for t = 2,3,...,T+1 and n = 1,...,N. The period t 
(unnormalized) price levels at** are defined as the exponentials of the αt**: 
 
(64) at** ≡ **teα ;                                                                                                t = 2,3,...,T+1.   
 
The new WTPD price levels need to be linked to the price levels generated by the 
original window of observations; i.e., we need to define a new price level for period T+1 
that extends the initial T normalized price levels πt defined by equations (50) for t = 
1,...,T. Suppose we link the new window price levels to the initial price levels at 
observation t where t could be any observation between periods 2 and T. Let πT+1(t) ≡ 
πt[aT+1**/at**] denote the resulting (normalized) linked price level for period T+1 that 
depends on choosing period t as link period. Thus the logarithm of this period T+1 price 
level is defined as follows:59  
 
(65) lnπT+1(t) ≡ lnπt − lnat** + lnaT+1** ;                                                               t = 2,3,...,T 
               = Σn=1

N stn(ytn − βn*) − Σn=1
N s1n(y1n − βn*) − αt** + αT+1**       using (50) and (64) 

               = Σn=1
N stn(ytn − βn*) − Σn=1

N s1n(y1n − βn*) − Σn=1
N stn(ytn − βn**)  

                   + Σn=1
N sT+1,n(yT+1,n − βn**)                                                    using (63) 

               = Σn=1
N sT+1,n(yT+1,n − βn**) − Σn=1

N s1n(y1n − βn*) + Σn=1
N stn(βn** − βn*). 

 
Thus the choice of the linking observation t between the two windows will only affect the 
last term in (65); i.e., the term Σn=1

N stn(βn** − βn*) will in general change as t changes 
because the period t expenditure shares stn will usually change as t changes. However, as 
the window length T increases, it is possible that the quality adjustment parameters will 

                                                 
59 De Haan (2015b) essentially obtained the formula (65). 
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stabilize so that βn** ≈ βn* for n = 1,...,N.60 In this case, the last term on the right hand 
side of (65) will be close to 0 and it will not matter much which period is chosen as the 
linking period. It can also be seen that in the case where the expenditure shares are 
constant for all T+1 periods, (65) simplifies to the following weighted Jevons formula: 
 
(66) lnπT+1(t) = Σn=1

N sn(yT+1,n − y1n) ;                                                                 t = 2,3,...,T 
 
where sn is the constant share for commodity n for n = 1,...,N. Thus in the case of 
constant expenditure shares, the WTPD price level estimate for period T+1 will be 
independent of the choice of the link period.   
 
In the general case where the shares are not constant, it can be seen that we are faced with 
the same set of problems that were discussed in section 5: we could choose period 2, T or 
(T+1)/2 (if T is odd) as the linking period or we could take the geometric average of the 
T−1 estimates for πT+1 defined by (65).61 In the context of very variable price data with 
little or no trends, choosing the mean estimator for πT+1 is probably a satisfactory linking 
strategy.  
 
Finally, suppose the price and quantity data for period T+1 are identical to the price and 
quantity data for some period t such that 2 ≤ t ≤ T; i.e., we have t such that: 
 
(67) sT+1,n = stn ; pT+1,n = ptn ; n = 1,...,N. 
 
Suppose further that we link the two windows at this observation t. The identity test for 
multilateral indexes requires that πT+1(t) = πt where πT+1(t) is defined by (65) and πt is 
defined by (50). Using equation (65) for period t, we calculate lnπT+1(t) minus lnπt as 
follows: 
 
(68) lnπT+1(t) − lnπt = lnaT+1** − lnat** 

                                 = αT+1** − αt**  
                                 = Σn=1

N sT+1,n(yT+1,n − βn**) − Σn=1
N stn(ytn − βn**)                 using (63) 

                                 = 0 
 

                                                 
60 This observation is likely to be true in a stable market situation where the number of varieties remains 
constant. However, this situation is not likely to occur in practice due to the appearance of new items and 
the disappearance of existing items; i.e., up to now, we have neglected the new goods problem. Thus if the 
window length T is chosen to be very large, the lack of matching items becomes a problem. Our 
methodology up to this point has assumed that prices ptn and shares stn are all positive. It can be shown that 
our analysis of the various multilateral methods remains valid when some shares stn are equal to zero 
provided that the corresponding reservation prices ptn remain positive; see Hicks (1940; 114) on the concept 
of reservation prices. Hausman (1997) estimated these reservation prices econometrically for new breakfast 
cereals. For a diagram explaining the Hicks methodology, see Diewert (1996; 32). However, the estimation 
of reservation prices is not a practical alternative for statistical agencies. Feenstra’s (1994) CES 
methodology avoids the estimation of reservation prices since his methodology assumes that they are 
infinite but in general, an estimate for the elasticity of substitution is required. A more complete treatment 
of the problems associated with modeling quality change is beyond the scope of this paper.  
61 See definition (26) which also applies in the present context but using the new definitions for the πt. 
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where the last equation follows using assumptions (67). Thus if the price and quantity 
data for period T+1 are exactly equal to the price and quantity data for period t, then 
linking the windows at observation t will preserve the identity test over the two windows; 
i.e., under these conditions it makes sense to link the two windows at period t. This logic 
carries over to situations where the price and quantity data of period t are closest (in some 
metric) to the price and quantity data of period T+1: it makes sense to link the windows 
at the observation which has the most “similar” price and quantity data. 62 The main 
advantage of this method is that it will preserve a Walsh type multiperiod identity test 
across the two windows. The main drawback to this method of linking is that it depends 
on a relative price and expenditure share similarity measure and it may be difficult to 
achieve consensus on exactly what the appropriate measure is. 
 
8. The Geary-Khamis Multilateral Method 
 
The GK multilateral method was introduced by Geary (1958), and Khamis (1970) 
showed that the equations that define the method have a positive solution under certain 
conditions. A modification of this method has been adapted to the time series context and 
is being used to construct some components of the Dutch CPI; see Chessa (2016).  
 
The GK system of equations for T time periods involves the T (unnormalized) price 
levels P1, P2,...,PT and a set of N quality adjustment factors b1,b2,...,bN.63 Let pt and qt 
denote the N dimensional price and quantity vectors for period t (with components ptn and 
qtn as usual) and let st (with components stn) denote the period t expenditure share vector. 
Define the total consumption vector q over the entire window as the following simple 
sum of the period by period consumption vectors:  
 
(69) q ≡ ∑t=1

T qt  
 
where q ≡ [q1,q2,...,qN]. The equations which determine the price levels Pt and quality 
adjustment factors bn (up to a scalar multiple) are the following ones: 
 
(70) bn = ∑t=1

T [qtn/qn][ptn/Pt] ;                                                                            n = 1,...,N ; 
(71) Pt = pt⋅qt/b⋅qt ;                                                                                               t = 1,...,T 
 
where b ≡ [b1,...,bN] is the vector of GK quality adjustment factors. The share of period 
t’s purchases of commodity n in total sales of commodity n over all T periods can be 
defined as Stn ≡ qtn/qn for n = 1,...,N and t = 1,...,T. Thus bn ≡ Σt=1

T Stn[ptn/Pt] is a (real) 
share weighted average of the inflation adjusted prices ptn/Pt for commodity n over all T 
periods. The period t quality adjusted sum of quantities sold, b⋅qt = Σn=1

N bnqtn, is divided 
into the value of period t sales, pt⋅qt = Σn=1

N ptnqtn, in order to obtain the period t 
(unnormalized) price level, Pt.   
 

                                                 
62 As in section 5, the exact result (68) can be extended to the case where the price data of period T+1 is 
proportional to the price data of period t. 
63 In the international context, the bn are known as international commodity reference prices. 
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It can be seen that if a solution to equations (70) and (71) exists, then if all of the period 
price levels Pt are multiplied by a positive scalar λ say and all of the quality adjustment 
factors bn are divided by the same λ, then another solution to (70) and (71) is obtained. 
Hence, the bn and Pt are only determined up to a scalar multiple and an additional 
normalization is required such as P1 = 1 or bN = 1 is required to determine a unique 
solution to the system of equations defined by (70) and (71). It can also be shown that 
only N + T − 1 of the N + T equations in (70) and (71) are independent.   
 
Once the price levels Pt have been determined, the real expenditure or volume for period t, 
Qt, can be defined as the period t value of sales, pt⋅qt, divided by its period t price level, 
Pt:64 
 
(72) Qt = pt⋅qt/Pt ;                                                                                                   t = 1,...,T 
             = b⋅qt                                                                                                         using (71). 
 
The second set of equations in (72) are the equations which characterize an additive 
method; i.e., aggregate quantity or volume in each period is a quality adjusted sum of the 
individual quantities. Hence an implication of the GK model is that it is consistent with 
utility maximizing purchasers who have a linear utility function. We encountered this 
situation in section 6, in the case where the error terms εtn in equations (33) were all equal 
to 0. In this situation, the WTPD multilateral estimate for the period t volume was also 
given by (72) except that the definition for the b vector in equations (58) was different. 
Thus the GK estimates lead to an additive system with the result that these estimates can 
approximate the results that are based on a superlative index if substitutability between 
the products in the aggregate is very high.65 Thus in general, we would expect the GK 
price level estimates to suffer from at least some substitution bias. Furthermore, in 
general, the longer is the window length T, the bigger will be the substitution bias for at 
least some observations.       
 
We now discuss alternative methods for obtaining a solution to equations (70) and (71). 
A traditional method for obtaining a solution is to iterate between these equations. Thus 
set b = 1N, a vector of ones and use equations (71) to obtain an initial sequence for the Pt. 
Substitute these Pt estimates into equations (70) and obtain a sequence of bn estimates. 
Substitute these bn estimates into equations (71) and obtain a new sequence of Pt 
estimates. Continue iterating between the two systems until convergence is achieved.  
 
An alternative method is more efficient. Following Diewert (1999; 26), substitute 
equations (71) into equations (70) and after some simplification, obtain the following 
system of equations which will determine the components of the b vector: 
 
(73) [IN − C]b = 0N   
 

                                                 
64 Khamis (1972; 101) also derived equations (72) in the time series context. 
65 However, we shall soon see that the GK indexes can also approximate the results that are based on a 
superlative index if substitutability between products is very low.  
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where IN is the N by N identity matrix, 0N is a vector of zeros of dimension N and the C 
matrix is defined as follows: 
 
(74) C ≡ 1ˆ −q Σt=1

T stqtT 

 
where q̂  is an N by N diagonal matrix with the elements of the total window purchase 
vector q running down the main diagonal and 1ˆ −q  denotes the inverse of this matrix, st is 
the period t expenditure share column vector and qtT is the transpose of the column vector 
qt and is equal to the row vector of quantities purchased during period t. Note that the N 
by N matrix stqtT has rank 1 for each t. Let qT denote the transpose of the column vector q. 
Then: 
 
(75) qTC = qT 1ˆ −q Σt=1

T stqtT 
               = 1N

TΣt=1
T stqtT 

               = Σt=1
T 1N

TstqtT 
               = Σt=1

T qtT                                                                         since 1N
Tst = 1 for each t 

               = qT                                                                                  using definition (69). 
 
Using (75), we have qT[IN − C] = qT − qT = 0N. Thus the matrix IN − C is singular which 
implies that the N equations in (73) are not all independent. In particular, if the first N−1 
equations in (73) are satisfied, then the last equation in (73) will also be satisfied. It can 
also be seen that the N equations in (73) are homogeneous of degree one in the 
components of the vector b. Thus to obtain a unique b solution to (73), set bN equal to 1, 
drop the last equation in (73) and solve the remaining N−1 equations for b1,b2,...,bN−1. 
This is the solution method we used in subsequent sections of this study.66  
 
Once the vector of quality adjustment factors b has been determined, the period t 
(unnormalized) price and quantity levels, Pt and Qt, are defined using equations (71) and 
(72); i.e., we have Pt ≡ pt⋅qt/b⋅qt and Qt ≡ b⋅qt for each period t in the window. As usual, 
the sequence of normalized price levels can be defined by πt ≡ Pt/P1 for t = 1,...,T. 
 
Equations (72) show that the GK multilateral indexes will be consistent with the 
economic approach to index number theory provided that purchasers maximize the linear 
utility function, f(q) ≡ b⋅q = Σn=1

N bnqn. However, perhaps somewhat surprisingly, the GK 
indexes will also be consistent with the economic approach to index number theory if 
purchasers have Leontief or no substitution preferences.67 Thus suppose that purchasers 

                                                 
66 In order to establish that the solution bn are all positive, use the argument in Diewert (1999; 27) which 
proceeds as follows. From (75), q is a strictly positive solution to qTC = qTIN = 1qT and hence q is a strictly 
positive left eigenvector of the strictly positive matrix C which corresponds to the positive eigenvalue 1. 
Hence by the Perron (1907) Frobenius (1909) Theorem, λ = 1 is the maximal eigenvalue of C and thus C 
also has a strictly positive right eigenvector b which corresponds to this positive eigenvalue. Hence b 
satisfies the equation Cb = 1b = INb or [IN − C]b = 0N which is (73).  
67 Diewert (1999; 27) showed that linear and Leontief preferences are the only preferences for which the 
GK system is exact. 
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of the N products have preferences which can be represented by the utility function f 
defined as follows: 
 
(76) f(q1,q2,...,qN) ≡ min {qn/βn : n = 1,...,N} 
 
where the βn are positive constants. Let β ≡ [β1,.., βN] the vector of these coefficients. The 
unit cost function that is dual to these preferences, c(p), turns out to be c(p) ≡ β⋅p where p 
is the vector of prices that purchasers face. If purchasers in period t face the price vector 
pt and chose the quantity vector qt which maximizes the utility function f(q) defined by 
(76) so that period t purchaser utility is ut ≡ f(qt), then it can be shown that pt, qt and ut 
satisfy the following equations: 
 
(77) qt = ∇pc(pt)ut = βut ;                                                                                        t = 1,...,T  
 
where ∇pc(pt) is the vector of first order partial derivatives of the unit cost function c(pt) 
≡ Σn=1

N βnpn
t and ut is the period t utility level. Note that equations (77) imply that the 

quantity vectors vary in strict proportion over the T time periods. Recall (69) where the 
vector of total commodity sales over the T periods, q ≡ ∑t=1

T qt, was defined. It can be 
seen that conditions (77) imply that period t’s share of commodity n in total sales of 
commodity n over the T periods, say σtn ≡ qtn/qn, does not depend on n. Thus we have the 
existence of shares σt = σtn for n = 1,...,n and t = 1,...,T such that period t’s quantity 
vector qt is equal to σt times the vector of total sales q; i.e., we have: 
 
(78) qt = σtq ;                                                                                                          t = 1,...,T 
(79) 1  = Σt=1

Tσt. 
 
We will use equations (78) and (79) to exhibit an explicit solution to equation (73). 
Equation (73) can be rewritten as follows: 
 
(80) b = Cb 
           = 1ˆ −q Σt=1

T stqtTb                                                               using definition (74) for C 
            = 1ˆ −q Σt=1

T stσtqTb                                                             using (78) 
            = 1ˆ −q Σt=1

T σtstq⋅b. 
 
We are allowed one normalization on the components of the vector b. We choose the 
following normalization: 
 
(81) b⋅q = 1. 
 
Equation n in the matrix equation (80) can be rewritten as follows if we make use of the 
normalization (81): 
 
(82) bn ≡ qn

−1Σt=1
T σtstn ;                                                                                         n = 1,...,N. 
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We need to check that the bn defined by (82) satisfy (81); i.e., we need to show that q⋅b = 
qTb = 1. Using definitions (82), we have: 
 
(83) qTb = 1N

T Σt=1
T σtst 

              = Σt=1
T σt 1N

Tst  
              = Σt=1

T σt                                                    since 1N
Tst = Σn=1

N stn = 1 for t = 1,...,T 
              = 1                                                              using (79). 
 
Thus the bn defined by (82) satisfy equations (70) subject to the normalization (81) and 
these bn can be used to define the period t (unnormalized) price levels Pt using equations 
(71); i.e., define Pt ≡ pt⋅qt/b⋅qt for t = 1,...,T. Finally, the sequence of normalized price 
levels can be defined by πt ≡ Pt/P1 for t = 1,...,T. Thus the GK price levels are consistent 
with purchasers having either linear or Leontief preferences over their purchases of the N 
commodities. 
 
When T = 2, Geary (1958; 98) showed that π2 ≡ P2/P1 is equal to the following 
expression: 
 
(84) P2/P1 ≡ [Σn=1

N h(q1n,q2n)p2n]/[Σn=1
N h(q1n,q2n)p1n] ≡ PGK(p1,p2,q1,q2) 

 
where h(q1n,q2n) ≡ 2q1nq2n/[q1n + q2n] is the harmonic mean of q1n and q2n. The GK 
bilateral price index PGK can be compared to the Walsh (1901; 398) (1921; 97) bilateral 
price index, PW, defined as follows:  
 
(85)  PW(p1,p2,q1,q2) ≡ [Σn=1

N (q1nq2n)1/2 p2n]/[Σn=1
N (q1nq2n)1/2 p1n]. 

 
The Geary-Khamis and Walsh bilateral price indexes are both basket indexes; i.e., they 
price out a basket of commodities using the prices of period 2 in the numerator and the 
prices of period 1 in the denominator. The basket coefficient for commodity n is the 
geometric average (q1nq2n)1/2 for the Walsh index and the harmonic average h(q1n,q2n) for 
the Geary-Khamis index. Diewert (1976; 133-134) showed that the Walsh index is a 
superlative index and thus it should handle substitution effects in a satisfactory manner. It 
is straightforward to show 68  that PGK(p1,p2,q1,q2) approximates PW(p1,p2,q1,q2) to the 
second order around any strictly positive point where p1 = p2 >> 0N and q1 = q2 >> 0N and 
thus for small or moderate variations in prices and quantities, the two indexes will be 
close to each other. However, in the scanner data context where there are sales of 
products, the variations in prices and quantities can be huge going from one period to the 
next if the period length is a month or less and thus the GK index can differ considerably 
from a superlative bilateral price index under these conditions. We will illustrate this 
point with a numerical example. 
 
Suppose N = 2 and T = 2. Suppose that the period 1 and 2 price and quantity vectors are 
equal to p1 ≡ [p11,p12] ≡ [2,2]; p2 ≡ [p21,p22] ≡ [2,17/16]; q1 ≡ [q11,q12] ≡ [8,8]; q2 ≡ 

                                                 
68 This result can be established using the techniques in Diewert (1978; 897). Thus PGK is a pseudo-
superlative index. 
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[q21,q22] ≡ [1,16].69 Thus in period 1, both products sell at the price 2 and 8 units of each 
product are purchased in the market under consideration. In period 2, item 2 goes on sale 
at roughly one half of the non-sale price and sales of this product jump to 16 units while 
the price of product one remains unchanged and sales of it fall to 1 unit. Using these price 
and quantity vectors and definitions (84) and (85), it can be shown that PGK(p1,p2,q1,q2) = 
0.598 and PW(p1,p2,q1,q2) = 0.625. Thus the superlative Walsh index is 4.5 percentage 
points above the corresponding Geary-Khamis index for this very reasonable example.70 
Thus it is likely that the existence of discounted prices will cause the GK index to have a 
downward bias in the periods when the discounts took place as compared to a superlative 
index.  For a discussion of the test performance of the GK and Fisher bilateral indexes, 
see Diewert (1999).71 
 
In summary: from the viewpoint of the economic approach to index number theory, we 
cannot endorse the use of the GK multilateral index in the time series context because it 
is exactly consistent with the economic approach only if purchaser preferences are either 
linear so that all commodities in the class of commodities under consideration are perfect 
substitutes or if purchaser preferences are Leontief, where there is a complete lack of 
substitutability between the commodities. The GK system is dominated by the WTPD 
multilateral system because the latter system is exact not only for linear preferences but 
also for Cobb-Douglas preferences. 
 
9. Constant Elasticity of Substitution Preferences  
        
There is another index number formula that is used in the first stage of price aggregation 
by economists, marketing researchers and statistical agencies and that is the Constant 
Elasticity of Substitution (CES) functional form.72 We will use this functional form in 
subsequent sections of this paper in order to generate some artificial data sets. Thus in the 
present section, some of the properties of this functional form are explained. 
 
Using the economic approach to index number theory, it is assumed that purchaser 
preferences can be represented by a utility function f(q) or by the unit cost function c(p) 
which corresponds to the utility function. The CES unit cost function has the following 
functional form:  
                                                 
69 These prices and quantities are consistent with purchasers maximizing the utility function f(q1,q2) ≡ q1 + 
q2 + (1/2)q1

1/2q2
1/2. Diewert (1976; 133-135) showed that the Walsh price index defined by (77) is exactly 

equal to the true cost of living index for these preferences, which is equal to c(p2)/c(p1) where c is the unit 
cost function which is dual to the utility function f(q1,q2) defined above.  
70 The Fisher ideal index for this example is equal to 0.654 which is 9.3% above PGK for this example. 
71 Diewert (1999; 27-28) summarized the test performance of PGK defined by (76) as follows: “The Fisher 
bilateral price index satisfies all twenty of the tests listed by Diewert (1992; 214-221), while the Geary-
Khamis bilateral price index fails six of these tests: PT7 (homogeneity of degree zero in current period 
quantities), PT8 (homogeneity of degree zero in base period prices), PT13 (price reversal or price weights 
symmetry), PT16 (the Paasche and Laspeyres bounding test), PT19 (monotonicity in base period quantities) 
and PT20 (monotonicity in current period quantities). The failure of bilateral test PT13 is not important, but 
the failure of the other tests is troubling.”   
72 See Feenstra (1994) for an excellent exposition on how the CES functional form can be used to measure 
the gains from the introduction of new goods and services. The Bureau of Labor Statistics (2014) has 
recently decided to use this functional form to construct elementary indexes for at least some strata.  
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(86) c(p1,...,pN) ≡ [∑n=1

N αnpn
1−σ]1/(1−σ)             if σ ≥ 0 and σ ≠ 1 

                          ≡ ∏n=1
N n

npα                             if σ = 1 
 
where σ and the αn are positive parameters, with ∑n=1

N αn = 1.  The unit cost function 
defined by (86) corresponds to a Constant Elasticity of Substitution (CES) utility function 
which was introduced into the economics literature by Arrow, Chenery, Minhas and 
Solow (1961).  The parameter σ is the elasticity of substitution; when σ = 0, the unit cost 
function defined by (86) becomes linear in prices and hence corresponds to a fixed 
coefficients or Leontief utility function which exhibits 0 substitutability between all 
commodities. When σ = 1, the corresponding aggregator or utility function is a Cobb-
Douglas function. When σ approaches +∞, the corresponding aggregator function f 
approaches a linear aggregator function which exhibits infinite substitutability between 
each pair of inputs. The CES unit cost function defined by (86) is not a fully flexible 
functional form (unless the number of commodities N being aggregated is 2) but it is 
frequently used to aggregate commodities in a group of commodities which are thought 
to be highly substitutable with each other. 
 
Given a twice continuously differentiable cost function c(p) = c(p1,...,pN), the elasticity of 
substitution between commodities i and j (where i ≠ j) is defined as follows: 
 
(87) σij ≡ c(p)cij(p)/ci(p)cj(p) 
 
where ci(p) ≡ ∂c(p)/∂pi denotes the first order partial derivative of c(p) with respect to pi 
and cij(p) ≡ ∂2c(p)/∂pi∂pj denotes the second order partial derivative of c(p) with respect 
to pi and pj. When σij is evaluated using the CES unit cost function defined by (86), it is 
found that σij equals the parameter σ for all pairs of commodities i and j; i.e., the 
elasticity of substitution is a constant for all pairs of commodities.  
 
Suppose that we are given the price vectors pt ≡ [pt1,...,ptN]  for t = 1,..,T. Then if 
purchasers have CES preferences and are minimizing the costs of achieving their utility 
levels in each period, it will turn out that the components of their period t expenditure 
share vectors st ≡ [st1,...,stN]  for t = 1,..,T will be equal to the following expressions: 
 
(88) stn = αnptn

1−σ /[Σi=1
N αipti

1−σ] ;                                                        n = 1,...,N; t = 1,...,T. 
 
Thus given the price vectors pt, the vector of positive parameters α ≡ [α1,...,αN] whose 
components sum to unity and the nonnegative parameter σ where σ ≠ 1, then the share 
vectors st can be computed using equations (88) for t = 1,...,T. If in addition, we are given 
total expenditures on the N commodities for period t, say et > 0 for t = 1,...,T, then we can 
compute the components of the CES quantity vector for period t, say qt = [qt1,...,qtN] for t 
= 1,...,T using the following equations: 
 
(89) qtn ≡ etstn/ptn ;                                                                                 n = 1,...,N; t = 1,...,T.       
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Finally, the CES (unnormalized) period t price levels, Pt, are computed as follows: 
 
(90) Pt

 ≡ c(pt) = [∑n=1
N αnptn

1−σ]1/(1−σ) ;                                                                   t = 1,...,T. 
 
The corresponding CES (unnormalized) period t quantity levels are defined as follows: 
 
(91) Qt ≡ et/Pt = pt⋅qt/Pt ;                                                                                          t = 1,...,T. 
 
Of course, the CES normalized price levels can be defined as πt ≡ Pt/P1 for t = 1,...,T. We 
will use this method for constructing an artificial data set that is consistent with CES 
preferences in the following section.   
 
10. The Construction of an Artificial Data Set Using CES Preferences 
 
The Australian Bureau of Statistics (2016) and the Dutch Central Bureau of Statistics73 
have done extensive computations using scanner data in order to compare alternative 
methods for aggregating prices at the first stage of aggregation. A problem with these 
comparisons is that it is not known which method is closest to the “truth”. We will 
attempt to address this problem, at least in part, by constructing an artificial data set that 
is exactly consistent with purchasers having CES preferences over a group of related 
items for a number of time periods. We will then determine how well the various 
multilateral methods studied earlier in this paper approximate the “true” indexes.  
 
Recall that the CES unit cost function was defined by (86) in the previous section. We 
now assume that T = 12 and N = 4. We assume that the parameters αn which appear in 
(86) are defined as follows: α ≡ [α1,α2,α3,α4] ≡ [0.2, 0.2, 0.2, 0.4]. The elasticity of 
substitution parameter σ will take on the values 0, 0.5, 1, 2, 4, 10 and 20. In the scanner 
data context, it is likely that σ is between 1 and 5.74 
 
In order to calculate the period t (unnormalized) CES price level Pt ≡ c(pt), where c(p) is 
defined by (86), we require information on the period t vector of prices, pt ≡ 
[pt1,pt2,pt3,pt4] for t = 1,...,12. These prices are listed in Table 3 below. Once the 
unnormalized CES price levels Pt have been constructed, the normalized CES price levels 
can be calculated as πCES

t ≡ Pt/P1 for t = 1,...,12. In order to calculate the CES quantity 
vectors that match up with the given CES price vectors, we also require information on 
total expenditures et on the four commodities for each period t. These exogenously given 
expenditures are also listed in Table 3. 

                                                 
73 See de Haan and van der Grient (2011) and de Haan (2015a).  
74 See the empirical evidence on the magnitude of σ using Australian scanner data in Ivancic, Diewert and 
Fox (2010). 
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Table 3: Price and Expenditure Data for the Artificial Data Set 
 

t pt1 pt2 pt3 pt4 et 
1 2.00 1.00 1.00 0.50 10 
2 1.75 0.50 0.95 0.55 13 
3 1.60 1.05 0.90 0.60 11 
4 1.50 1.10 0.85 0.65 12 
5 1.45 1.12 0.40 0.70 15 
6 1.40 1.15 0.80 0.75 13 
7 1.35 1.18 0.75 0.70 14 
8 1.30 0.60 0.72 0.65 17 
9 1.25 1.20 0.70 0.70 15 
10 1.20 1.25 0.40 0.75 18 
11 1.15 1.28 0.70 0.75 16 
12 1.10 1.30 0.65 0.80 17 

 
The prices of commodities 1 and 3 trend downward throughout the sample period while 
the prices of commodities 2 and 4 trend upward. The trends in commodities 1 and 4 are 
very smooth but the trends in commodities 2 and 3 are interrupted by sales: item 2 goes 
on sale in periods 2 and 8 and item 3 goes on sale in periods 5 and 10. Total expenditures 
et on the commodity group trend upwards except in the four periods after a sale when 
aggregate expenditures fall a bit. 
 
For each value of the elasticity of substitution σ, we can evaluate the period t expenditure 
share vectors st ≡ [st1,st2,st3,st4] using the pt vectors that are listed in Table 3 and equations 
(88) in the previous section. Once the share vectors have been constructed, the 
components of the corresponding quantity vectors qt ≡ [qt1,qt2,qt3,qt4] can be constructed 
using equations (89) in the previous section.    
 
Once the set of twelve price vectors pt and twelve quantity vectors qt have been 
constructed for the alternative σ values, we can compare the period t chained Fisher, 
chained Törnqvist, Weighted Time Product Dummy, Geary-Khamis, GEKS and CCDI 
normalized price levels (πFCH

t, πTCH
t, πWTPD

t, πGK
t, πGEKS

t, πCCDI
t respectively) to the 

corresponding true CES normalized price level, πCES
t. These alternative indexes are 

evaluated for σ equal to 0, 0.5, 1, 2, 4, 10 and 20 and are listed in Table A1 of the 
Appendix, and plotted in Figure 2 for the considered values of σ up to 10.75 
 

                                                 
75 To simplify programming, σ = 1.001 was actually used throughout for the “σ=1” case. 
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It can be seen that when σ = 0, the CES, chained Fisher (FCH), GK and GEKS indexes 
all coincide. Furthermore the chained Törnqvist (TCH) and CCDI indexes are so close to 
the CES that they cannot be distinguished from each other in Figure 2. The only outliers 
in this case are the WTPD indexes which lie below the other indexes after period 2. 
Preferences which allow for no substitution between products are not realistic, but the 
results provide a check on our computations. 
 
For σ = 0.5, the GK indexes have a modest upwards bias while the WTPD indexes have a 
modest downward bias as compared to the true cost of living index. The remaining 
indexes are all very close to the CES price levels and cannot be distinguished separately 
in Figure 2. 
 
In theory, when σ = 1 the chained Törnqvist, CCDI and WTPD price levels should be 
exactly equal to the corresponding CES price levels and this expectation is borne out. The 
chained Fisher and GEKS indexes are also very close to the corresponding CES indexes 
and cannot be distinguished from each other in Figure 2. The GK price levels turn out to 
be substantially above the other indexes after period 2.  
 
When σ = 2, the GK price levels are substantially above the corresponding WTPD levels 
after period 2 and the WTPD price levels are well above the CES price levels. Thus these 
indexes have substantial amounts of substitution bias for our numerical example. The 
chained Törnqvist and CCDI price levels are very close to the corresponding CES price 
levels while the chained Fisher and GEKS price levels end up being slightly below the 
CES price levels.  
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When σ = 4, the GK and WTPD price levels are substantially above the CES price levels 
for most observations.76 Thus these indexes have substantial amounts of substitution bias 
for our numerical example in this case. The chained Törnqvist and CCDI price levels are 
2-3% under the corresponding CES price levels at the end of the sample period while the 
chained Fisher and GEKS price levels end up being 4-5% below the CES price levels at 
the end of the sample period. Thus none of our approximations to the true CES indexes 
end up being very close at the end of the sample period but the upward bias in the GK 
and WTPD indexes is very large indeed (13.8% and 8.8% respectively).  
 
When σ = 10, the WTPD and GK price levels are virtually identical77 and these indexes 
turn out to give the best approximation to the true CES indexes although for many 
observations, they lie well above the corresponding true indexes. The remaining indexes 
lie below the CES indexes, with the chained Törnqvist and chained Fisher indexes 
coming the closest to the corresponding CES indexes. 
 
From Table A1 of the Appendix, when σ = 20, the WTPD and GK price levels are again 
virtually identical.78 For most observations, these price levels are either very close to the 
corresponding CES price levels or are above them, although at the end of the sample they 
are slightly below. The remaining indexes are generally substantially below the CES 
price levels. Thus for very high elasticities of substitution, the WTPD and GK methods 
provide the best approximation to CES preferences as might be expected.  
 
In summary: for elasticities of substitution in the most likely range of 1 to 4, the four 
methods based on the use of bilateral superlative indexes approximate CES preferences 
reasonably well with the chained Törnqvist generally doing the best. The GK indexes 
have substantial upward biases in all cases while the WTPD indexes also have substantial 
upward biases when σ equals 2 or 4, but they are unbiased when σ = 1.   
    
11. An Artificial Data Set Using CES Preferences Adjusted for Product Sales 
 
The CES indexes which were constructed in the previous section did not suffer from a 
chain drift problem; i.e., if prices and quantities in any two periods were exactly the same, 
the CES index levels for those two periods would also be the same. However, in actual 
practice, the assumptions which the Konüs (1924) true cost of living methodology relies 
on are not met: when a commodity goes on sale at say one half of its regular price, 
consumers tend to purchase amounts that not only satisfy their needs for the sale period 
but also they stock up to partially satisfy their needs for the subsequent period. This 
violates a basic assumption that is used in the economic approach to index number 

                                                 
76 The vector of WTPD quality adjustment factors is bWTPD ≡ [1.84, 1.26, 0.93, 1.00] and the vector of GK 
quality adjustment factors is bGK ≡ [1.78, 1.16, 0.87, 1.00].   
77 The new vector of WTPD quality adjustment factors is bWTPD ≡ [1.66, 0.93, 0.98, 1.00] and the vector of 
GK quality adjustment factors is bGK ≡ [1.64, 0.92, 0.97, 1.00]. Thus the two additive methods are 
converging to the same preferences as σ becomes large.  
78 The new vector of WTPD quality adjustment factors is bWTPD ≡ [1.64, 0.91, 0.99, 1.00] and the vector of 
GK quality adjustment factors is bGK ≡ [1.64, 0.91, 0.99, 1.00]. Thus the two additive methods have 
converged to the same preferences when σ = 20. 
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theory; i.e., the economic approach to index number theory assumes that purchases of 
goods made during a period coincide with the consumption of these purchased goods 
within the period. As was explained earlier, this stockpiling activity will cause chained 
superlative indexes to drift downwards.79 To model this situation, we will use the price 
and expenditure data listed in Table 3 and the assumption of CES preferences for varying 
σ as in the previous section but the quantity data for commodities that go on sale will be 
adjusted. Thus commodity 2 goes on sale in periods 2 and 8. For periods 3 and 9, we take 
the predicted quantities for these items that are generated by the CES model described in 
the previous section and we somewhat arbitrarily adjust these quantities downward to 
half of the predicted levels that were generated by the CES model. Similarly, commodity 
3 goes on sale in periods 5 and 10. Again, for periods 6 and 11, we adjust the quantities 
of these commodities to half of the predicted levels that were generated by the CES 
model in the previous section. Thus for periods t = 3, 6, 9 and 11 and for each alternative 
value of σ, we have a new qt vector and so for these periods, we need to define a new 
level of expenditure et ≡ pt⋅qt and new expenditure shares stn ≡ ptnqtn/et for t = 3, 6, 9 and 
11 and n = 1,2,3,4. Thus for the eight periods 1,2,4,5,7,8,10 and 12, the unnormalized and 
normalized CES price levels, Pt and πCES

t ≡ Pt/P1 for the new data set, are the same as in 
the previous section. For periods 3, 6, 9 and 11, there are no CES price levels but for 
convenience, in Table A2 and Figure 3, we simply use the normalized CES price levels 
πCES

t from the previous section for all periods.  
 
Once the new set of twelve price vectors pt and twelve quantity vectors qt have been 
constructed for the alternative σ values,80 we can compare the period t chained Fisher, 
chained Törnqvist, fixed base Fisher, fixed base Törnqvist, Weighted Time Product 
Dummy, Geary-Khamis, GEKS and CCDI normalized price levels (πFCH

t, πTCH
t, πFFB

t, 
πTFB

t,  πWTPD
t, πGK

t, πGEKS
t, πCCDI

t respectively) to the corresponding true CES normalized 
price level, πCES

t, for all periods except periods 3, 6, 9 and 11. These alternative indexes 
are evaluated for σ equal to 0, 0.5, 1, 2, 4, and 10 and are listed in Table A2 of the 
Appendix, and plotted in Figure 3.  
 
Using this adjusted data set, the chained Fisher and chained Törnqvist indexes have 
substantial downward biases as compared to the corresponding true CES indexes 
(excluding periods 1, 3, 6, 9 and 11). The new data set illustrates that superlative indexes 
are indeed subject to substantial downward chain drift when products are sold at 
substantially discounted prices.  
 
 

                                                 
79 Szulc (1983) (1987) was perhaps the first modern price statistician to note the chain drift problem in the 
context of sales. However, Persons (1921; 110) using his data set on crop production noted the downward 
drift of Fisher chained indexes relative to a Fisher index that measured price change directly between 
periods 1 and T and he also applied Walsh’s (1901; 389) multiperiod identity test to demonstrate this 
downward drift. Frisch (1936; 9) noted Persons’ research in his survey paper on index numbers.    
80 The new pt and qt will coincide with the pt and qt that were used in the previous section except for periods 
3, 6, 9 and 11, we use new qt vectors as defined above. 



 42 

 
From Figure 3 (and Table A2 of the Appendix), for σ = 0, it can be seen that the fixed 
base Fisher (FFB) and GK price levels coincide with the CES price levels for all periods 
except periods 3, 6, 9 and 11 where the CES indexes are not well defined for the new 
data.81 The fixed base Törnqvist (not plotted in Figure 3), GEKS and CCDI price levels 
are very close to the corresponding CES price levels. The WTPD price levels have a 
small amount of downward bias while the chained Fisher and the chained Törnqvist (not 
plotted in Figure 3) price levels have substantial downward biases. 
 
When σ = 0.5, the fixed base Fisher (and fixed base Törnqvist), GEKS and CCDI price 
levels are all very close to the corresponding CES price levels. The GK indexes are 
slightly above and the WTPD indexes are slightly below the corresponding CES index 
levels. The two chained superlative indexes end up well below the other indexes; i.e., the 
chain drift problem for superlative indexes is severe for this artificial data set.  We move 
on to the more applicable σ equals 1, 2 and 4 results. 
 
When σ = 1, the two chained superlative indexes have a large downward bias compared 
to the target CES index. The GK price levels are substantially above the corresponding 
CES price levels. The remaining indexes are all fairly close to their CES counterparts. 
The fixed base Törnqvist indexes are exactly equal to their CES counterparts (except for 
observations 3, 6, 9 and 11 when the CES indexes are not applicable); see Table A2.  
 
When σ = 2, the fixed base Törnqvist and CCDI price levels are very close to their CES 
counterpart price levels. The GEKS price level for period 12 ends up 1.5% below the 
                                                 
81 Recall that we are using the CES normalized price levels from the previous section for all periods in the 
present section in order to simplify the charts for this section.  
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corresponding CES price level while the fixed base Fisher price level ends up 2.5% 
below the target index. The chained Fisher and chained Törnqvist indexes end up 9.0% 
and 11.5% below the target index in period 12 while the WTPD and GK price levels for 
period 12 end up 3.2% and 8.5% above the CES price level.   

 
When σ = 4, the CCDI indexes are closest to their CES counterparts and the CCDI price 
level for period 12 ends up 2.7% below the corresponding CES level. The fixed base 
Törnqvist and GEKS price levels end up 4.4% and 5.5% below the CES price level at 
period 12. The fixed base Fisher, the chained Törnqvist and the chained Fisher indexes all 
have substantial downward biases and end up 8.3%, 10.2% and 10.3% below the 
corresponding CES price level for period 12. The WTPD and GK indexes have 
substantial upward biases and end up 9.0% and 14.2% above the corresponding CES 
price level at period 12.     
 
When σ = 10, all of the alternative indexes have some significant biases for some periods. 
The WTPD and GK price levels are close to each other and are substantially above their 
CES counterparts for many observations. These price levels end up being only 1.7% and 
2.5% above the corresponding CES price level for period 12. The worst performing 
indexes are the fixed base Fisher and fixed base Törnqvist indexes which end up 19.4% 
and 16.8% below the CES price level for period 12. The chained Fisher and Törnqvist 
indexes end up 10.2% and 9.4% below the CES price level for period 12. Finally the 
GEKS and CCDI price levels end up 11.0% and 9.1% below the CES price level for 
period 12. However, it should be kept in mind that in most empirical applications, the 
elasticity of substitution will be well below 10.    
 
Some tentative conclusions that can be drawn from the material presented in this section 
are as follows: 
 

• Chained superlative indexes are not useful target indexes for a CPI when dealing 
with aggregating scanner data where discounted prices are prevalent. 

• The CCDI multilateral method worked best overall for our numerical example for 
elasticities of substitution in the range 0 ≤ σ ≤ 4. 

• GK indexes had substantial upward biases relative to the corresponding CES true 
cost of living price levels for elasticities of substitution in the range 1 ≤ σ ≤ 4. 

• Weighted Time Product Dummy indexes will work well if σ = 1 or if σ ≥ 10 but 
for our example, they had substantial upward biases for elasticities of substitution 
in the range 2 ≤ σ ≤ 4. 

 
We turn now to an examination of the problems associated with linking the results from 
one window of observations to another subsequent window. 
 
12.  Single Window versus Linked CCDI Price Levels  
 
In this section, using the sales adjusted data, we draw on the results in section 5 and 
compare the single window πCCDI

t price levels which were listed in the previous section 
for various data sets that depended on the elasticity of substitution σ with the 
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corresponding CCDI price levels that use linked windows. The single window results 
were based on a window that consisted of all 12 observations. These CCDI price levels of 
course depended on σ and we denote their period 12 values as πCCDI

12(σ) in this section.  
In this section, for each of our σ values, we will form two windows of length 11. The first 
such window will consist of the data for periods 1-11 and the second window will consist 
of the data for periods 2-12. In keeping with CPI methodology which does not allow 
revisions to occur for the flagship CPI, we assume that the final linked series for periods 
1 to 11 will consist of the CCDI normalized price levels using the first window of length 
11. The linked in CPI for period 12 will be formed by using equations (25) in section 5 to 
link in the results from the second window by choosing the link periods t = 2,3,...,11. 
Denote these alternative linked normalized price levels for period 12 by πL

12(t,σ) for 
choice of link period t = 2,3,...,11. Define the geometric mean of these ten alternative 
period 12 price levels as πL

12(Mean,σ). 
 
We first compare the period 12 linked normalized price levels πL

12(t,σ) to the period 12 
single window normalized price level, πCCDI

12(σ). Define the differences between these 
period 12 price levels as follows:  
 
(92) D(t,σ) ≡ πL

12(t,σ) − πCCDI
12(σ) ;                                  t = 2,3,...,11; σ = 0,0.5,1,2,4,10.     

 
We also define the difference between the period 12 single window CCDI price level for 
each σ, πCCDI

12(σ), and the mean period 12 price level using the geometric mean of the 10 
alternative link periods, πL

12(Mean,σ), as follows: 
 
(93) D(Mean,σ) ≡ πL

12(Mean,σ) − πCCDI
12(σ) ;                                         σ = 0,0.5,1,2,4,10.          

 
If these differences are large in magnitude, then this indicates a chain drift problem with 
the use of successive CCDI linked windows.82 Table 4 lists these differences.  
 
For σ in the range 0 ≤ σ ≤ 2, it can be seen that the differences in the period 12 CCDI 
price levels due to the choice of alternative link periods are small. Choosing the link 
period to be period 4 or 10 leads to virtually zero differences but the differences are also 
small when periods 2, 5, 7 or 8 are chosen. Choosing the mean of the ten period specific 
estimates also leads to a fairly low difference between the single window period 12 CCDI 
price level and the two window linked period 12 price levels. 
 
The differences are much larger when the true cost of living index elasticity of 
substitution is equal to 4 or 10. It can be seen that the differences are smallest when the 
linking period is chosen to be periods 2, 5 or 10. Note that sales occurred during each of 
these periods. When σ = 10, the period 12 linked CCDI price level is always at least 1 
percentage point above its single window CCDI price level for period 12 and for the 
choice of period 6 as the link observation, it is 3 percentage points above. 

                                                 
82 If the Törnqvist bilateral indexes satisfied the circularity test exactly, then these differences would all be 
0 and there would be no chain drift problem with the use of chained Törnqvist indexes. However, as was 
seen in the previous section, the circularity test does not hold exactly and there is a chain drift problem.   
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Table 4: Differences at Period 12, D(t,σ), between the Single Window CCDI Price 
Levels and the Linked CCDI Price Levels as Functions of the Linking Period t and 

the Elasticity of Substitution σ 
 

t D(t,0) D(t,0.5) D(t,1) D(t,2) D(t,4) D(t,10) 
2 0.00030 0.00014 0.00021 0.00067 0.00212 0.01004 
3 -0.00197 -0.00149 -0.00098 0.00050 0.00567 0.02197 
4 -0.00001 0.00011 0.00021 0.00098 0.00603 0.02640 
5 -0.00029 0.00000 0.00021 0.00006 -0.00222 0.01370 
6 0.00154 0.00206 0.00265 0.00442 0.01035 0.03114 
7 0.00002 0.00011 0.00021 0.00092 0.00537 0.02639 
8 0.00041 0.00022 0.00021 0.00125 0.00645 0.02581 
9 -0.00177 -0.00137 -0.00098 0.00014 0.00451 0.02312 

10 -0.00015 0.00003 0.00021 0.00010 -0.00202 0.01647 
11 0.00151 0.00204 0.00265 0.00432 0.00946 0.02675 

Mean -0.00004 0.00019 0.00046 0.00133 0.00457 0.02216 
 
We now compare the period 12 linked normalized price levels πL

12(t,σ) to the period 12 
true cost of living index, πCES

12(σ). Define the biases between these period 12 price levels 
as follows:  
 
(94) B(t,σ) ≡ πL

12(t,σ) − πCES
12(σ) ;                                    t = 2,3,...,11; σ = 0, 0.5,1,2,4,10.    

 
We also define the difference between the period 12 CES price level for each σ, πCES

12(σ), 
and the mean period 12 price level using the geometric mean of the ten alternative link 
periods, πL

12(Mean,σ), as follows: 
 
(95) B(Mean,σ) ≡ πL

12(Mean,σ) − πCES
12(σ) ;                                         σ = 0, 0.5,1,2,4,10.          

 
For each σ, these differences measure the bias in the various two window CCDI period 
12 price levels compared to the corresponding period 12 true cost of living indexes, 
πCES

12(σ). Table 5 lists these differences. It can be seen that the bias in the two window 
CCDI price levels at period 12 for elasticities of substitution in the range 0 ≤ σ ≤ 4 fairly 
small for all choices of the linking point but smallest if periods 2, 4, 5, 7, 8 or 10 are 
chosen. Note that the bias is largest in magnitude if periods 3, 6, 9 or 11 are chosen as the 
linking observations. These 4 periods are the periods that immediately follow a sale. 
Since in real life, a sale could occur during any period, this result indicates that it will be 
difficult to come up with a general rule as to which period in the first window is the 
“best” period to choose in terms of minimizing bias. Under these circumstances, choosing 
the mean splice method may be a conservative strategy which would avoid large biases.  
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Table 5: Biases at Period 12, B(t,σ), as a Functions of the Linking Period t and the 
Elasticity of Substitution σ 

 
t B(t,0) B(t,0.5) B(t,1) B(t,2) B(t,4) B(t,10) 
2 -0.00002 0.00068 0.00249 0.00187 -0.03189 -0.11420 
3 -0.00230 -0.00094 0.00130 0.00169 -0.02833 -0.10227 
4 -0.00034 0.00065 0.00249 0.00218 -0.02797 -0.09784 
5 -0.00061 0.00054 0.00249 0.00126 -0.03622 -0.11054 
6 0.00122 0.00260 0.00494 0.00562 -0.02365 -0.09310 
7 -0.00031 0.00065 0.00249 0.00212 -0.02864 -0.09785 
8 0.00008 0.00076 0.00249 0.00244 -0.02756 -0.09843 
9 -0.00210 -0.00083 0.00130 0.00134 -0.02949 -0.10112 

10 -0.00048 0.00057 0.00249 0.00130 -0.03603 -0.10777 
11 0.00118 0.00258 0.00494 0.00551 -0.02455 -0.09749 

Mean -0.00037 0.00073 0.00274 0.00253 -0.02944 -0.10208 
 
Table 5 shows that for large elasticities of substitution, the bias pattern has shifted: 
linking at observations 6 and 11 now reduces the bias. When σ = 10, the bias is greatest 
in magnitude when the linking observation is chosen to be observations 2, 5 or 10. Note 
that observations 2, 5 and 10 are periods when sales occurred.  
 
Our conclusion at this point is that no clear pattern emerged as to which observation in 
the window was the “best” one for linking the second window to the first. Until more 
conclusive evidence on this problem is obtained, it seems advisable to use the mean 
splice.   
 
13. Relative Price Similarity Linking 
 
As was suggested in Section 5, it is likely that price comparisons between two periods 
will be more accurate if the structure of relative prices is more similar. In the context of 
making comparisons of prices across countries, this method of linking countries with the 
most similar structure of relative prices has been pursued by Hill (1997) (1999a) (1999b) 
(2009), Diewert (2013b) and Hill, Rao, Shankar and Hajargasht (2017). Hill (2001) 
(2004) also pursued this similarity of relative prices approach in the time series context. 
A key aspect of this methodology is the choice of the measure of similarity (or 
dissimilarity) of the relative price structures of two countries. Various measures of the 
similarity or dissimilarity of relative price structures have been proposed by Allen and 
Diewert (1981), Kravis, Heston and Summers (1982; 104-106), Hill (1997) (2009), 
Sergeev (2001) (2009), Aten and Heston (2009) and Diewert (2009).83 
 

                                                 
83 See Diewert (2009) for a discussion of the relative merits of the various measures. Diewert suggested and 
favoured the measures defined by (96) and (97) below. It can be shown that these two functions of the 
prices and quantities pertaining to the two periods under consideration approximate each other to the 
second order around a point where the two price vectors are equal and the two quantity vectors are equal. 
For our empirical example, the dissimilarity measures defined by (96) and (97) were indeed fairly close to 
each other for each value of σ. 
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We will use the two measures of relative price dissimilarity defined by (30) and (31), ∆AL 
(the weighted asymptotic linear index of relative price dissimilarity), and ∆LQ (the 
weighted log quadratic index).84 For convenience, these two measures are defined as 
follows: 
 
(96) ∆AL(pr,pt,qr,qt) ≡ ∑n=1

N (1/2)(srn+stn){(ptn/P(pr,pt,qr,qt)prn) + (P(pr,pt,qr,qt)prn/ptn) − 2}; 
(97) ∆LQ(pr,pt,qr,qt) ≡ ∑n=1

N (1/2)(srn+stn) [ln(ptn/P(pr,pt,qr,qt)prn)]2 
 
where pr, qr, sr and pt, qt, st are the price, quantity and share vectors for periods r and s 
respectively. These measures turn out to be nonnegative and the bigger they are, the more 
dissimilar are the relative prices for periods r and t. Note that the measures defined by 
(96) and (97) require that a bilateral index formula, P(pr,pt,qr,qt), be specified so that these 
measures can be calculated. For the asymptotic linear measure of relative price 
dissimilarity, we will use the Fisher price index PF defined by (4) and for the log 
quadratic measure, we will use the Törnqvist index PT defined by (5) as the bilateral 
indexes that appear in (96) and (97) respectively. 
 
We use the same price and quantity data that were used in the previous two sections. 
Using these data, the dissimilarity measures ∆AL(pr,pt,qr,qt) defined by (96) using the 
Fisher bilateral price index as our P(pr,pt,qr,qt) are calculated for r = 1,...,12 and for t = 
1,...,12. The ∆AL(p1,pt,q1,qt) are listed in the column of Table 6 under the heading ∆AL1t, 
The ∆AL(p2,pt,q2,qt) are listed in Table 6 under the heading ∆AL2t, and so on. Note that 
when r = t, ∆ALtt = 0 for each t as expected. Note also that the matrix of measures listed in 
Table 6 is symmetric so that ∆ALrt = ∆ALtr for all r and t.   
 

Table 6: Asymptotic Linear Measures of Price Dissimilarity for σ = 0 
 

  t ∆AL1t ∆AL2t ∆AL3t ∆AL4t ∆AL5t ∆AL6t ∆AL7t ∆AL8t ∆AL9t ∆AL10t ∆AL11t ∆AL12t 
1 0.000 0.064 0.027 0.051 0.179 0.102 0.099 0.096 0.130 0.255 0.180 0.221 
2 0.064 0.000 0.070 0.119 0.282 0.166 0.184 0.053 0.187 0.384 0.288 0.324 
3 0.027 0.070 0.000 0.004 0.105 0.025 0.025 0.042 0.039 0.140 0.068 0.096 
4 0.051 0.119 0.004 0.000 0.074 0.008 0.009 0.046 0.018 0.096 0.038 0.058 
5 0.179 0.282 0.105 0.074 0.000 0.040 0.048 0.126 0.049 0.016 0.049 0.058 
6 0.102 0.166 0.025 0.008 0.040 0.000 0.001 0.049 0.004 0.046 0.015 0.025 
7 0.099 0.184 0.025 0.009 0.048 0.001 0.000 0.064 0.002 0.052 0.011 0.022 
8 0.096 0.053 0.042 0.046 0.126 0.049 0.064 0.000 0.064 0.170 0.112 0.126 
9 0.130 0.187 0.039 0.018 0.049 0.004 0.002 0.064 0.000 0.043 0.004 0.013 

10 0.255 0.384 0.140 0.096 0.016 0.046 0.052 0.170 0.043 0.000 0.026 0.027 
11 0.180 0.288 0.068 0.038 0.049 0.015 0.011 0.112 0.004 0.026 0.000 0.003 
12 0.221 0.324 0.096 0.058 0.058 0.025 0.022 0.126 0.013 0.027 0.003 0.000 
 
For each representative elasticity of substitution σ that we have chosen, we will construct 
relative price similarity linked normalized price levels, πAL

t(σ). As each new observation 
becomes available, we link the current observation to the most similar previous 

                                                 
84 This measure is a weighted generalization of the nonproportionality measure suggested by Allen and 
Diewert (1981; 433). 
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observation. Thus for σ = 0, we use the measures listed in Table 6. We set πAL
1(0) equal 

to 1. For period 2, we set πAL
2(0) ≡ PF(p1,p2,q1,q2), the Fisher price index for period 2 

relative to period 1. For period 3, we look at the first two entries in the column in Table 6 
that has the heading ∆ALt3. The smaller of these two numbers, 0.027, occurs at t = 1, so 
we use the Fisher formula to link the prices of period 3 directly to the prices of period 1; 
i.e., we set πAL

3(0) ≡ PF(p1,p3,q1,q3). For period 4, we look at the first 3 entries in the 
column in Table 6 that has the heading ∆ALt4. The smallest of these numbers, 0.004, 
occurs at t = 3, so we link the period 4 price level to the price level of period 3 using the 
Fisher price index for period 4 relative to period 3. Hence the period 4 normalized price 
level is πAL

4(0) ≡ PF(p3,p4,q3,q4)πAL
3(0). For period 5, we look at the first 4 entries in the 

column in Table 19 that has the heading ∆ALt5. The smallest of these numbers, 0.074, 
occurs at t = 4, so we link the period 5 price level to the price level of period 4 using the 
Fisher price index for period 5 relative to period 4. Thus the period 5 normalized price 
level is πAL

5(0) ≡ PF(p4,p5,q4,q5)πAL
4(0). For period 6, we look at the first 5 entries in the 

column in Table 19 that has the heading ∆ALt6. The smallest of these numbers, 0.008, 
occurs at t = 4, so we link the period 6 price level to the price level of period 4 using the 
Fisher price index for period 6 relative to period 4. Thus the period 6 normalized price 
level is πAL

6(0) ≡ PF(p4,p6,q4,q6)πAL
4(0). Continue this sequential process until all 12 of 

the price similarity linked price levels πAL
t(0) have been defined. These price levels are 

listed in Table A2 of the Appendix; see the column with the heading πAL
t.  

 
It can be seen that the price similarity linked price levels πAL

t are quite close to the 
corresponding target CES price levels, πCES

t but not as close as the CCDI price levels, 
πCCDI

t, when σ = 0. Define the mean absolute difference between the πCES
t and the 

corresponding πAL
t as the average bias, BAL and define the mean absolute differences 

between the other approximating indexes in a similar manner. Then it turns out that the 
CCDI and GEKS indexes have the smallest average biases at 0.18 and 0.19 percentage 
points whereas the price similarity linked indexes πAL

t have an average bias of 0.58 
percentage points. The average absolute differences with the πCES

t for the other indexes 
are listed in Table 7 below. 
 
We turn now to the Log Quadratic measures of relative price dissimilarity defined by (97). 
Again, we use the same price and quantity data that were used in the previous two 
sections. Using these data, the dissimilarity measures ∆LQ(pr,pt,qr,qt) defined by (97) 
using the Törnqvist bilateral price index as our P(pr,pt,qr,qt) are calculated for r = 1,...,12; 
t = 1,...,12. The resulting dissimilarity measures ∆LQ(pr,pt,qr,qt) for σ = 0 are listed in 
Table 21 below. Note that when r = t, ∆LQtt = 0 for each t as expected. Note also that the 
matrix of measures listed in Table 21 is symmetric so that ∆LQrt = ∆LQtr for all r and t. 
Finally, we note that the alternative dissimilarity measures listed in Tables 6 and 7 are 
fairly similar.  
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Table 7: Log Quadratic Measures of Price Dissimilarity for σ = 0 
     

t ∆LQ1t ∆LQ2t ∆LQ3t ∆LQ4t ∆LQ5t ∆LQ6t ∆LQ7t ∆LQ8t ∆LQ9t ∆LQ10t ∆LQ11t ∆LQ12t 
1 0.000 0.063 0.027 0.050 0.174 0.101 0.098 0.095 0.128 0.248 0.177 0.217 
2 0.063 0.000 0.068 0.116 0.268 0.161 0.178 0.052 0.180 0.364 0.276 0.311 
3 0.027 0.068 0.000 0.004 0.102 0.025 0.025 0.041 0.039 0.137 0.068 0.096 
4 0.050 0.116 0.004 0.000 0.071 0.008 0.009 0.045 0.018 0.094 0.038 0.058 
5 0.174 0.268 0.102 0.071 0.000 0.039 0.047 0.122 0.048 0.016 0.048 0.057 
6 0.101 0.161 0.025 0.008 0.039 0.000 0.001 0.049 0.004 0.045 0.014 0.025 
7 0.098 0.178 0.025 0.009 0.047 0.001 0.000 0.063 0.002 0.051 0.011 0.022 
8 0.095 0.052 0.041 0.045 0.122 0.049 0.063 0.000 0.063 0.164 0.109 0.123 
9 0.128 0.180 0.039 0.018 0.048 0.004 0.002 0.063 0.000 0.042 0.004 0.013 

10 0.248 0.364 0.137 0.094 0.016 0.045 0.051 0.164 0.042 0.000 0.026 0.027 
11 0.177 0.276 0.068 0.038 0.048 0.014 0.011 0.109 0.004 0.026 0.000 0.003 
12 0.217 0.311 0.096 0.058 0.057 0.025 0.022 0.123 0.013 0.027 0.003 0.000 

 
For each representative elasticity of substitution σ, we construct relative price similarity 
linked normalized price levels, πLQ

t(σ).85 For σ = 0, as each new observation becomes 
available, we link the current observation to the most similar previous observation as was 
done when we constructed the price levels πAL

t(0), except that we now use the 
dissimilarity measures listed in Table 21 instead of those listed in Table 19. The resulting 
sequence of price similarity linked price levels πLQ

t(0) is listed under the heading πLQ
t in 

Table 20 above. It can be seen that the price similarity linked price levels πLQ
t are fairly 

close to the corresponding target CES price levels, πCES
t, when σ = 0 with an average 

absolute difference of 0.62 percentage points. Thus the approximation of the Log 
Quadratic price similarity linked index πLQ

t(0) to the target CES index is similar to the 
approximation of the Asymptotic Linear price similarity linked index πAL

t(0) to πCES
t and 

both of these approximations are not as good as the approximations provided by the 
GEKS and CCDI indexes when the elasticity of substitution is 0.         
  
We can construct counterparts to Tables 6 and 7 for σ equal to 0.5, 1, 2, 4 and 10 and 
form the price similarity linked indexes πAL

t(σ) and πLQ
t(σ) for these values of σ using 

the above linking methodology. The resulting price levels are listed in Table A2 of the 
Appendix. In Table 8, we list the mean absolute difference between our ten 
approximating indexes to the corresponding true cost of living indexes, πCES

t(σ) for each 
of our representative σ values. However, we exclude periods 3, 6, 9 and 11 from this 
comparison because the true cost of living is not defined for these observations.  
 
 
 
 
 
 

                                                 
85 As σ changes, the prices do not change but the expenditure shares change. Hence the measures of relative 
price dissimilarity change as σ changes. We have not listed all of the counterpart tables to Tables 19 and 21 
but we note that for fixed σ, the AL and LQ dissimilarity measures were quite similar.   
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Table 8: Mean Absolute Differences in Percentage Points between πCES
t(σ) and Ten 

Approximating Indexes as Functions of the Elasticity of Substitution σ 
 

σ BFCH BTCH BFFB BTFB BWTPD BGK BGEKS BCCDI BAL BLQ 
0 3.78 4.77  0.00 0.11 1.66 0.00 0.12 0.08 0.55 0.63 
0.5 3.89 4.84  0.12 0.04 0.89 1.19 0.05 0.17 0.47 0.43 
1 4.06 4.81  0.46 0.00 0.00 2.58 0.17 0.29 0.53 0.27 
2 4.81 4.75  1.91 0.37 2.19 5.68 1.40 0.10 1.07 0.47 
4 6.84 5.65  5.96 3.41 5.37 8.90 4.98 2.47 2.69 1.61 
10 9.08 7.68 10.83 9.19 4.91 5.01 9.57 7.83 6.05 5.08 

 
When σ = 0, the fixed base Fisher and GK indexes are exactly equal to the CES indexes. 
The fixed base Törnqvist, CCDI and GEKS indexes are all very close to the true cost of 
living index. When σ = 0.5, GEKS does best followed closely by the fixed base Fisher 
and CCDI indexes. When σ = 1, the fixed base Törnqvist and WTPD price levels are 
exactly equal to the corresponding CES price levels. The GEKS, CCDI and LQ price 
similarity linked price levels are all fairly close to the corresponding CES price levels. 
For σ = 2, The CCDI price levels are very close to the corresponding CES price levels 
followed by the fixed base Törnqvist and the log quadratic price similarity linked indexes 
(LQ indexes). The GK price levels are on average furthest from the corresponding CES 
price levels when σ = 2 and 4. For σ = 4, the LQ indexes are closest to the corresponding 
true cost of living indexes followed by the CCDI and Asymptotic Linear price similarity 
linked indexes (AL indexes). Finally, for σ = 10, the WTPD, GK and LQ indexes are the 
clear winners. 
 
The results in this section can be summed up as follows: 
 

• The Chained Fisher and Chained Törnqvist indexes performed poorly for all 
elasticities of substitution. 

• The Weighted Time Product Dummy indexes worked well for our numerical 
example when the elasticity of substitution σ was equal to 1 or 10 but they did not 
work well when σ was equal to 2 or 4.  

• The Geary-Khamis indexes worked well when σ = 0 or 10 but poorly when σ = 1, 
2 or 4.  

• For 0 ≤ σ ≤  ½, the Fixed Base Fisher, Fixed Base Törnqvist, GEKS and CCDI 
indexes all worked well. However the cases where σ ≥ 1 are the cases of interest. 

• For 1 ≤ σ ≤ 2, the CCDI indexes performed well. 
• The LQ price similarity linked indexes performed the best by a substantial margin 

for σ = 4 and the LQ generally performed well for 1 ≤ σ ≤ 10. 
 
In applications of multilateral methods using scanner data at the elementary level of 
aggregation, it is likely that the elasticity of substitution is greater than one so the very 
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limited results in this section support the use of the CCDI and Log Quadratic price 
similarity linked indexes in this context.86   
 
We have not directly addressed the possibility of using the price dissimilarity measures 
for choosing the period for linking windows in applying multilateral methods. However, 
we can make some observations on this from the price dissimilarity measures of tables 6 
and 7. Using the Log Quadratic measures from Table 7, ∆LQ12t suggests the optimality of 
using period 11 as the link period for updating an initial 11 period window as period 12 
data becomes available, with the smallest dissimilarity value being 0.003. This suggests 
that the movement splice updating method is optimal, i.e. using the immediately prior 
period as the linking period. However, if we have, say, an initial 10 period window, as 
period 11 data becomes available, ∆LQ11t suggests the linking period should be period 9, 
which means that movement splice updating is not optimal.  
 
The length of the initial window in this example is not relevant. What it demonstrates is 
that it is not necessarily the case that, for any window length, the previous period is the 
optimal linking period. Again, in the absence of additional information, this suggests the 
use of the mean splice. 
  
14. Conclusion 
 
The dot points at the end of the previous section will not be repeated here but they could 
serve as the main conclusions from this study. However, there are two important 
limitations of our study: 
 

• The conclusions of this study are based on only a single artificial data set example. 
More research into how the different multilateral methods perform under different 
conditions is needed. 

• We have assumed that all prices and quantities are positive over all periods. Our 
results will still be valid if some quantities are zero in some periods but the 
assumption of positive prices cannot be entirely relaxed. Many of the multilateral 
methods depend on taking the logarithms of prices and if prices are 0 in some 
periods, this can cause the multilateral method to be undefined. But more 
fundamentally, the economic approach to index number theory can deal with new 
and disappearing commodities using the shadow price approach due to Hicks 
(1940) which can in theory generate positive reservation prices to go along with 
the associated zero quantities. However, it will be difficult for statistical agencies 
to estimate these reservation prices. 

 

                                                 
86  We have not recommended the use of the Sato-Vartia formula to compute price indexes that are 
consistent with CES preferences because a limitation of the CES functional form is that the degree of 
substitutability between every pair of commodities is constrained to be the same. Methods like GEKS, 
CCDI or similarity linking are based on the use of superlative bilateral index number formulae as building 
blocks and thus these methods will allow for an arbitrary pattern of substitutability between each 
commodity pair.  
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An important result in our study is that linking the price and quantity data for a new 
period to the data of previous periods by using a price dissimilarity measure is the only 
multilateral method that is consistent with Walsh’s powerful multiperiod identity test; i.e., 
if the price data for the new period is equal to or proportional to the price data of a 
previous period, then the price level for the new period will be equal to or proportional to 
the price level of the previous period. The drawback to the use of this multilateral method 
is that it requires agreement on how to measure the degree of price dissimilarity. For our 
sales adjusted data sets, we found that the Log Quadratic measure of price dissimilarity 
worked well. It remains to be seen whether this result will hold up under other conditions.   
 
In the meantime, for elasticities of substitution in reasonable ranges that are expected to 
be found empirically, overall our results suggest the use of the CCDI index, combined 
with a new method, the mean splice, for updating.  
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Appendix 
Table A1: Alternative Price Levels for Different Methods and Elasticities of Substitution 

 t πCES
t πFCH

t πTCH
t πWTPD

t πGK
t πGEKS

t πCCDI
t 

Alternative Price Levels when σ = 0 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8600 0.8600 0.8585 0.8830 0.8600 0.8600 0.8571 
3 0.9500 0.9500 0.9515 0.9227 0.9500 0.9500 0.9507 
4 0.9500 0.9500 0.9515 0.9179 0.9500 0.9500 0.9506 
5 0.8740 0.8740 0.8726 0.8612 0.8740 0.8740 0.8724 
6 0.9700 0.9700 0.9705 0.9367 0.9700 0.9700 0.9705 
7 0.9360 0.9360 0.9364 0.9042 0.9360 0.9360 0.9366 
8 0.7840 0.7840 0.7829 0.7717 0.7840 0.7840 0.7832 
9 0.9100 0.9100 0.9109 0.8816 0.9100 0.9100 0.9106 

10 0.8700 0.8700 0.8698 0.8645 0.8700 0.8700 0.8689 
11 0.9260 0.9260 0.9268 0.9040 0.9260 0.9260 0.9265 
12 0.9300 0.9300 0.9308 0.9144 0.9300 0.9300 0.9303 

Alternative Price Levels when σ = 0.5 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8639 0.8626 0.8635 0.8753 0.8523 0.8620 0.8633 
3 0.9831 0.9839 0.9834 0.9680 1.0005 0.9831 0.9831 
4 0.9915 0.9923 0.9918 0.9735 1.0126 0.9915 0.9915 
5 0.8951 0.8935 0.8946 0.8898 0.9046 0.8931 0.8944 
6 1.0223 1.0221 1.0223 1.0033 1.0458 1.0221 1.0222 
7 0.9831 0.9829 0.9831 0.9650 1.0053 0.9829 0.9831 
8 0.8213 0.8200 0.8208 0.8138 0.8314 0.8202 0.8209 
9 0.9570 0.9572 0.9571 0.9406 0.9776 0.9568 0.9569 

10 0.8990 0.8981 0.8987 0.8974 0.9053 0.8971 0.8983 
11 0.9770 0.9770 0.9770 0.9637 0.9948 0.9766 0.9768 
12 0.9817 0.9818 0.9817 0.9719 0.9966 0.9811 0.9815 

Alternative Price Levels when σ = 1 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8716 0.8675 0.8716 0.8716 0.8529 0.8668 0.8716 
3 1.0172 1.0183 1.0172 1.0172 1.0538 1.0160 1.0172 
4 1.0346 1.0357 1.0346 1.0347 1.0803 1.0329 1.0346 
5 0.9137 0.9078 0.9137 0.9137 0.9329 0.9062 0.9137 
6 1.0771 1.0750 1.0771 1.0771 1.1299 1.0744 1.0771 
7 1.0321 1.0301 1.0321 1.0322 1.0818 1.0297 1.0321 
8 0.8616 0.8567 0.8616 0.8616 0.8857 0.8570 0.8616 
9 1.0058 1.0047 1.0058 1.0059 1.0526 1.0033 1.0058 

10 0.9244 0.9205 0.9244 0.9244 0.9373 0.9172 0.9244 
11 1.0301 1.0285 1.0301 1.0301 1.0719 1.0270 1.0301 
12 1.0355 1.0339 1.0355 1.0355 1.0717 1.0316 1.0355 

Alternative Price Levels when σ = 2 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8953 0.8801 0.8926 0.8803 0.8776 0.8809 0.8927 
3 1.0794 1.0770 1.0790 1.1131 1.1496 1.0696 1.0775 
4 1.1151 1.1125 1.1146 1.1588 1.2095 1.1023 1.1126 
5 0.9366 0.9156 0.9328 0.9442 0.9774 0.9086 0.9312 
6 1.1817 1.1676 1.1791 1.2341 1.3023 1.1643 1.1783 
7 1.1248 1.1114 1.1223 1.1738 1.2364 1.1090 1.1217 
8 0.9418 0.9207 0.9380 0.9647 1.0013 0.9205 0.9378 
9 1.0981 1.0874 1.0961 1.1447 1.2068 1.0818 1.0950 

10 0.9559 0.9387 0.9527 0.9558 0.9842 0.9270 0.9502 
11 1.1312 1.1186 1.1288 1.1742 1.2348 1.1125 1.1276 
12 1.1370 1.1243 1.1346 1.1738 1.2325 1.1153 1.1328 



 60 

Table A1 (cont.): Alternative Price Levels for Different Methods and Elasticities of Substitution 

t πCES
t πFCH

t πTCH
t πWTPD

t πGK
t πGEKS

t πCCDI
t 

Alternative Price Levels when σ = 4 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.9465 0.8924 0.9196 0.9406 0.9670 0.8988 0.9220 
3 1.1558 1.1337 1.1447 1.2174 1.2298 1.1177 1.1343 
4 1.2209 1.1972 1.2090 1.3145 1.3389 1.1704 1.1925 
5 0.9305 0.8881 0.9078 0.9336 0.9771 0.8661 0.8931 
6 1.3293 1.2745 1.3000 1.4674 1.5194 1.2610 1.2915 
7 1.2529 1.2013 1.2253 1.3772 1.4222 1.1910 1.2185 
8 1.0640 0.9890 1.0254 1.1351 1.1815 0.9830 1.0205 
9 1.2259 1.1811 1.2017 1.3502 1.4003 1.1627 1.1909 

10 0.9453 0.9132 0.9279 0.9297 0.9726 0.8832 0.9088 
11 1.2728 1.2244 1.2467 1.3979 1.4545 1.2022 1.2339 
12 1.2745 1.2260 1.2484 1.3870 1.4509 1.1954 1.2309 

Alternative Price Levels when σ = 10 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0088 0.8565 0.8885 1.0835 1.0912 0.8752 0.9010 
3 1.1981 1.1439 1.1568 1.2072 1.2061 1.1266 1.1376 
4 1.2933 1.2341 1.2483 1.3174 1.3158 1.1888 1.2046 
5 0.8630 0.8710 0.8777 0.8188 0.8293 0.8174 0.8240 
6 1.4582 1.3399 1.3687 1.5312 1.5342 1.3042 1.3309 
7 1.3631 1.2526 1.2795 1.4270 1.4300 1.2256 1.2490 
8 1.1896 0.9935 1.0381 1.3051 1.3141 0.9741 1.0125 
9 1.3380 1.2386 1.2629 1.4086 1.4151 1.1962 1.2218 

10 0.8636 0.8923 0.8921 0.8165 0.8275 0.8383 0.8429 
11 1.3934 1.3216 1.3464 1.4626 1.4726 1.2372 1.2658 
12 1.3618 1.2935 1.3172 1.3827 1.3942 1.1997 1.2257 

Alternative Price Levels when σ = 20 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0218 0.7971 0.8173 1.0962 1.0962 0.8237 0.8408 
3 1.2000 1.1328 1.1411 1.2001 1.2001 1.1249 1.1318 
4 1.2998 1.2269 1.2359 1.3011 1.3010 1.1855 1.1949 
5 0.8297 0.8727 0.8787 0.8065 0.8107 0.8104 0.8144 
6 1.4892 1.3172 1.3387 1.5141 1.5146 1.3048 1.3226 
7 1.3907 1.2301 1.2502 1.4129 1.4133 1.2272 1.2427 
8 1.2197 0.9157 0.9478 1.3126 1.3125 0.9169 0.9427 
9 1.3704 1.2186 1.2376 1.4038 1.4062 1.1960 1.2165 

10 0.8297 0.8762 0.8721 0.8065 0.8107 0.8320 0.8349 
11 1.4194 1.3645 1.3836 1.4418 1.4461 1.2258 1.2475 
12 1.3456 1.3028 1.3198 1.3204 1.3260 1.1755 1.1876 
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Table A2: Price Levels for the Sales Adjusted Data 
  

t πCES
t πFCH

t πTCH
t πFFB

t πTFB
t
 πWTPD

t πGK
t πGEKS

t πCCDI
t πAL

t πLQ
t 

Alternative Price Levels when σ = 0 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8600 0.8600 0.8585 0.8600 0.8585 0.8828 0.8600 0.8624 0.8612 0.8600 0.8585 
3 0.9500 0.9232 0.9169 0.9444 0.9450 0.9296 0.9559 0.9524 0.9531 0.9444 0.9450 
4 0.9500 0.9205 0.9141 0.9500 0.9502 0.9179 0.9500 0.9495 0.9505 0.9416 0.9421 
5 0.8740 0.8468 0.8384 0.8740 0.8712 0.8615 0.8740 0.8759 0.8751 0.8663 0.8640 
6 0.9700 0.9216 0.9091 0.9794 0.9813 0.9357 0.9654 0.9688 0.9691 0.9651 0.9657 
7 0.9360 0.8904 0.8784 0.9360 0.9364 0.9042 0.9360 0.9354 0.9364 0.9325 0.9330 
8 0.7840 0.7458 0.7343 0.7840 0.7858 0.7715 0.7840 0.7863 0.7863 0.7942 0.7965 
9 0.9100 0.8394 0.8224 0.8937 0.8956 0.8659 0.8937 0.9010 0.9008 0.9036 0.9041 

10 0.8700 0.7970 0.7789 0.8700 0.8680 0.8648 0.8700 0.8706 0.8703 0.8623 0.8600 
11 0.9260 0.8350 0.8140 0.9385 0.9398 0.9103 0.9286 0.9272 0.9279 0.9168 0.9172 
12 0.9300 0.8412 0.8201 0.9300 0.9299 0.9144 0.9300 0.9290 0.9297 0.9236 0.9241 

Alternative Price Levels when σ = 0.5 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8639 0.8626 0.8635 0.8626 0.8635 0.8751 0.8527 0.8644 0.8672 0.8626 0.8635 
3 0.9831 0.9574 0.9493 0.9790 0.9796 0.9718 1.0020 0.9849 0.9851 0.9790 0.9796 
4 0.9915 0.9634 0.9552 0.9915 0.9915 0.9735 1.0126 0.9916 0.9921 0.9852 0.9857 
5 0.8951 0.8674 0.8615 0.8919 0.8940 0.8900 0.9045 0.8963 0.8984 0.8870 0.8891 
6 1.0223 0.9712 0.9578 1.0354 1.0364 1.0018 1.0392 1.0220 1.0218 1.0206 1.0211 
7 0.9831 0.9351 0.9223 0.9830 0.9831 0.9650 1.0053 0.9833 0.9838 0.9827 0.9832 
8 0.8213 0.7801 0.7701 0.8224 0.8217 0.8137 0.8317 0.8230 0.8246 0.8334 0.8365 
9 0.9570 0.8861 0.8677 0.9427 0.9447 0.9250 0.9606 0.9496 0.9490 0.9539 0.9544 

10 0.8990 0.8261 0.8086 0.8960 0.8979 0.8976 0.9052 0.8992 0.9013 0.8907 0.8929 
11 0.9770 0.8825 0.8597 0.9923 0.9944 0.9711 0.9964 0.9796 0.9799 0.9719 0.9724 
12 0.9817 0.8901 0.8671 0.9806 0.9813 0.9719 0.9965 0.9816 0.9822 0.9802 0.9808 

Alternative Price Levels when σ = 1 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8716 0.8675 0.8716 0.8675 0.8716 0.8716 0.8537 0.8691 0.8754 0.8675 0.8716 
3 1.0172 0.9929 0.9845 1.0145 1.0154 1.0181 1.0510 1.0170 1.0186 1.0145 1.0154 
4 1.0346 1.0083 0.9998 1.0341 1.0346 1.0347 1.0804 1.0338 1.0359 1.0303 1.0311 
5 0.9137 0.8838 0.8829 0.9020 0.9137 0.9137 0.9331 0.9106 0.9190 0.9031 0.9106 
6 1.0771 1.0225 1.0107 1.0931 1.0950 1.0743 1.1203 1.0756 1.0777 1.0787 1.0795 
7 1.0321 0.9810 0.9697 1.0305 1.0321 1.0322 1.0818 1.0312 1.0339 1.0349 1.0357 
8 0.8616 0.8159 0.8094 0.8633 0.8616 0.8616 0.8864 0.8605 0.8659 0.8559 0.8578 
9 1.0058 0.9345 0.9171 0.9917 0.9960 0.9906 1.0356 0.9982 1.0001 1.0062 1.0069 

10 0.9244 0.8512 0.8371 0.9129 0.9244 0.9244 0.9375 0.9208 0.9290 0.9135 0.9213 
11 1.0301 0.9318 0.9096 1.0463 1.0524 1.0376 1.0717 1.0321 1.0352 1.0294 1.0302 
12 1.0355 0.9407 0.9184 1.0298 1.0355 1.0355 1.0717 1.0336 1.0378 1.0392 1.0402 

Alternative Price Levels when σ = 2 
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.8953 0.8801 0.8926 0.8801 0.8926 0.8809 0.8802 0.8830 0.8960 0.8801 0.8926 
3 1.0794 1.0561 1.0517 1.0782 1.0800 1.1080 1.1395 1.0700 1.0781 1.0782 1.0800 
4 1.1151 1.0904 1.0859 1.1111 1.1144 1.1589 1.2102 1.1047 1.1153 1.1133 1.1151 
5 0.9366 0.8974 0.9088 0.8920 0.9277 0.9439 0.9793 0.9154 0.9390 0.9163 0.9332 
6 1.1817 1.1151 1.1123 1.1983 1.2063 1.2257 1.2850 1.1684 1.1812 1.1885 1.1903 
7 1.1248 1.0626 1.0598 1.1142 1.1229 1.1739 1.2373 1.1126 1.1256 1.1325 1.1342 
8 0.9418 0.8802 0.8857 0.9382 0.9411 0.9651 1.0039 0.9251 0.9432 0.9356 0.9383 
9 1.0981 1.0224 1.0129 1.0763 1.0896 1.1309 1.1913 1.0809 1.0934 1.1039 1.1056 

10 0.9559 0.8787 0.8757 0.9094 0.9462 0.9555 0.9861 0.9336 0.9579 0.9347 0.9523 
11 1.1312 1.0210 1.0068 1.1404 1.1601 1.1792 1.2290 1.1222 1.1370 1.1378 1.1397 
12 1.1370 1.0320 1.0178 1.1085 1.1315 1.1738 1.2336 1.1204 1.1382 1.1500 1.1521 
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Table A2 (cont.): Price Levels for the Sales Adjusted Data  
 

t πCES
t πFCH

t πTCH
t πFFB

t πTFB
t πWTPD

t πGK
t πGEKS

t πCCDI
t πAL

t πLQ
t 

Alternative Price Levels when σ = 4 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.9465 0.8924 0.9196 0.8924 0.9196 0.9439 0.9735 0.9006 0.9244 0.8924 0.9196 
3 1.1558 1.1236 1.1311 1.1539 1.1560 1.2062 1.2171 1.1193 1.1355 1.1539 1.1560 
4 1.2209 1.1868 1.1949 1.2084 1.2152 1.3153 1.3405 1.1750 1.1970 1.2187 1.2212 
5 0.9305 0.8804 0.8972 0.8200 0.8608 0.9347 0.9833 0.8758 0.9035 0.9041 0.9170 
6 1.3293 1.2284 1.2414 1.3299 1.3486 1.4516 1.4947 1.2698 1.2978 1.3390 1.3419 
7 1.2529 1.1584 1.1706 1.2126 1.2337 1.3783 1.4251 1.1979 1.2252 1.2627 1.2653 
8 1.0640 0.9537 0.9796 1.0193 1.0411 1.1386 1.1891 0.9891 1.0269 0.9912 1.0281 
9 1.2259 1.1309 1.1373 1.1694 1.1979 1.3398 1.3912 1.1681 1.1957 1.2347 1.2373 

10 0.9453 0.8726 0.8760 0.8358 0.8737 0.9308 0.9790 0.8932 0.9197 0.9183 0.9315 
11 1.2728 1.1328 1.1338 1.2487 1.2877 1.4002 1.4445 1.2198 1.2503 1.2856 1.2885 
12 1.2745 1.1433 1.1446 1.1691 1.2180 1.3887 1.4560 1.2050 1.2405 1.2975 1.3007 

Alternative Price Levels when σ = 10 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0088 0.8565 0.8885 0.8565 0.8885 1.0846 1.0924 0.8768 0.9025 0.8565 0.8885 
3 1.1981 1.1434 1.1562 1.1971 1.1974 1.2061 1.2052 1.1305 1.1410 1.1971 1.1974 
4 1.2933 1.2337 1.2477 1.2847 1.2874 1.3176 1.3159 1.1949 1.2100 1.2916 1.2921 
5 0.8630 0.8707 0.8773 0.7515 0.7539 0.8210 0.8309 0.8284 0.8352 0.9116 0.9085 
6 1.4582 1.3077 1.3280 1.4227 1.4406 1.5206 1.5217 1.3163 1.3394 1.4632 1.4649 
7 1.3631 1.2223 1.2412 1.2860 1.3094 1.4278 1.4305 1.2346 1.2574 1.3676 1.3692 
8 1.1896 0.9695 1.0070 1.0239 1.0585 1.3065 1.3156 0.9809 1.0190 0.9948 1.0368 
9 1.3380 1.2082 1.2246 1.2114 1.2462 1.4088 1.4152 1.2058 1.2308 1.3464 1.3481 

10 0.8636 0.8703 0.8650 0.7762 0.7776 0.8187 0.8291 0.8501 0.8549 0.9122 0.9091 
11 1.3934 1.2356 1.2468 1.2805 1.3252 1.4768 1.4828 1.2620 1.2892 1.4097 1.4115 
12 1.3618 1.2228 1.2336 1.0983 1.1325 1.3857 1.3963 1.2120 1.2376 1.3950 1.3966 

 


