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Abstract

How do derivatives markets affect corporate decisions of financial intermediaries? I in-
troduce interest rate swaps into the capital structure model of a bank. First, derivatives
are a substitute to financial flexibility for risk management. Second, I show the existence
of three distinct motives to engage in interest rate risk management. Together, they imply
that both increases and decreases in the short rate can be optimally hedged. Third, the
use of derivatives induces a “procyclical but asymmetric” lending policy. Derivatives users
are better able to exploit transitory lending opportunities in good times, but do not cut
lending proportionally more during either monetary contractions or real recessions. Finally,
despite attractive insurance properties of derivative contracts, not all banks take derivative
positions, as in the data. The model’s predictions jointly match a number of yet unexplained
stylized facts. New testable predictions are obtained.
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1 Introduction
The interest rate derivatives market is the largest market globally, with an aggregate notional
exposure totalling 505 trillion USD as of December 2014 (BIS, 2015). Yet, despite the size
and rapid growth of this contract class over the past 15 years, as depicted in figure 1, there
is only a limited theoretical or empirical understanding of how hedging through interest rate
derivatives affects other corporate decisions of firms. In the case of financial intermediaries,
which represent more than 97% of gross exposures worldwide, how does hedging using interest
rate derivatives affect bank risk management or the dynamics of lending?

I introduce interest rate derivatives in the capital structure of a bank faced with both
stochastic lending opportunities and with a stochastic short rate. Long-term assets are fi-
nanced with short-term debt and equity. Financing frictions imply that internal and external
funds are not perfect substitutes. Thus, the bank optimally engages in risk management:
it aims to secure internal funds for states in which their marginal value is high, i.e. when
large lending is optimal and financing constraints may lead to under-investment. Risk can be
managed either by preserving debt capacity (“financial flexibility”) or by using derivatives.

The analysis yields three main contributions. First, I show that the preservation of debt
capacity and derivatives hedging are substitutes for risk management. Derivatives users keep
less financial flexibility and less cash than non-users. They are more leveraged and issue
equity less often. The increase in equity value, however, is fairly small for our calibrated
parameter values, but in line with several empirical estimates.

Second, I show that banks may optimally take derivative exposures to hedge either
increases or decreases in the short rate. Both pay-fixed and pay-float derivatives positions
may be taken. This result follows from the existence of three distinct and opposite incentives
to engage in interest rate risk management, which the model features. The fact that banks
take pay-float positions (i.e. take exposure to interest rate spikes) has often been considered
earlier as evidence of speculation. I show it is consistent with hedging. The model yields
detailed predictions about bank characteristics associated with either position type.

As a third contribution, I show that the ability to hedge using interest rate derivatives
affects the dynamics of bank lending (“investment”) in three related ways. First, derivatives
users are better able than non-users to exploit transitory lending opportunities in periods
of monetary easing. Second, there are also differences in lending between users and non-
users of interest rate derivatives in response to real (“productivity”) shocks, even if these
shocks are uncorrelated with the short rate. Interest rate derivatives users increase lending
more than non-users in response to good real shocks. This is consistent with empirical
evidence by Brewer et al. (2000). There is thus an increased procyclicality of bank lending
by derivatives users. Third, these effects are asymmetric in response to positive or negative
shocks. Differences in lending between users and non-users are more significant in good
times, and they are either non-significant or smaller in magnitude in bad times. Thus, the
use of derivatives induces a procyclical but asymmetric lending policy. Derivatives users are
better able to exploit transitory lending opportunities in good times, but do not cut lending
proportionally more during either monetary contractions or real recessions.
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The model structure builds upon that by Hennessy and Whited (2005). Key to the
model structure is the existence of financing frictions: (i) A collateral constraint limits the
bank’s debt capacity, and (ii) issuing equity is costly. As in Froot et al. (1993) these frictions
induce effective risk aversion even for risk-neutral firms. Risk management makes it possible
to mitigate the under-investment problem associated with these frictions. Earlier papers
using a similar model structure (Hennessy and Whited, 2005; Gamba and Triantis, 2008;
Riddick and Whited, 2009; DeAngelo et al., 2011) do not consider a stochastic interest rate
and do not introduce derivatives. While interest rate risk management may be neglected
for non-financial firms, it is a first-order concern for banks, due to their role in maturity
transformation (e.g. Freixas and Rochet, 2008), which is here modelled explicitly.

The bank’s exposure to interest rate risk comes from three sources. Together, they give
rise to three distinct motives for interest rate risk management, which could not be modelled
earlier in settings with a constant interest rate. First, on the liabilities side, the short-term
interest rate determines the cost of debt financing. The risk that the cost of debt financing is
high in states in which profitable lending opportunities are numerous gives rise to a financing
motive for risk management, whereby the bank optimally wants to transfer resources from
future states where the short rate is low to states where it is high.

Second, on the assets side, decreases in the short rate positively affect the bank’s cash
flows, i.e. optimal lending is higher when the short rate is lower. This creates an investment
motive for risk management, as the bank optimally preserves funds to meet these lending
opportunities. Third, the short rate also affects the bank’s discount factor. When the short
rate decreases, equity holders are increasingly willing to forego present dividend distributions
to exploit current lending opportunities, i.e. optimal lending is higher. Both the investment
motive and this discount motive are such that the bank is optimally willing to transfer
resources from future states where the short rate is high to states where it is low (i.e. the
opposite incentive as that provided by the financing motive).

As a first instrument for risk management, derivatives—modelled as interest rate swaps—
make it possible to swap, in future periods, a fixed rate against a floating rate (“pay-fixed”
position), or the contrary (“pay-float” position). Derivatives transfer funds across future
states associated with particular realizations of the short-term interest rate, thus with dif-
ferent marginal values of funds for the bank. Consequently, they are valuable for hedging,
even though they have a zero expected payoff.

The second instrument for risk management, widely studied in the literature (e.g. Gamba
and Triantis, 2008), is financial flexibility. The bank optimally does not take on short-term
debt up to its borrowing limit. It may optimally forego present lending and preserve debt
capacity for next-period lending. A key difference between the two instruments is that
derivatives provide state-contingent payoffs (i.e. that depend on the realized short rate),
while financial flexibility provides funds in a non-state-contingent way. When preserving
debt capacity, the bank keeps internal funds that will be available in all states next period,
regardless of whether the marginal value of funds is high or low. While derivatives make it
possible to transfer funds across states in future periods, financial flexibility transfers funds
across periods, regardless of states.
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As an important result, the difference between the types of transfers made possible by
each instrument gives rise to a substitution between derivatives and the preservation of debt
capacity for risk management. The preservation of debt capacity is costly due to its non-
state contingent nature: present lending opportunities have to be foregone for sure, while
the benefits of increased debt capacity next period are valuable only if lending opportunities
are indeed large at that date. By providing insurance in a state-contingent way, swaps can
be more efficiently used to transfer funds towards future states where their marginal value is
high, thus reducing the need to preserve debt capacity. Derivatives users are more leveraged
than non-users, but still preserve some debt capacity. This is because future investment
states are not fully known ex ante, due to the existence of a second (real) shock.

Regarding risk management, another outcome of the model is that both pay-fixed and
pay-float positions can be taken by the bank, i.e. both increases and decreases in interest
rates can be hedged. This arises from the existence of opposite incentives shaping the hedging
policy. To support this prediction, I document a large heterogeneity between swap positions
held in the cross-section of U.S. banks. While traditional expositions of interest rate risk for
banks engaged in maturity mismatching (Freixas and Rochet, 2008; Fabozzi and Konishi,
1994) consider that banks should insure against increases in the short rate, I show that
decreases in interest rates can also be hedged, absent any speculative motive.

Which type of position is optimally held? To describe the bank’s hedging policy, I draw
a distinction between the cross-state and the cross-period dimensions of hedging. In the
cross-state dimension, hedging is motivated by the existence of financing constraints in fu-
ture periods. Depending on which of the three motives (financing, investment and discount)
prevails, derivatives can be used to address this motive. The cross-period dimension of hedg-
ing arises from the fact that both debt and swaps are collateralized. Taking swap positions
may either increase or decrease the bank’s present debt capacity. If present debt capacity is
very valuable (because the lending opportunities are large or the bank is constrained), then
its optimal hedging policy does not only depend on its expected future constraints, but also
on its present marginal value of funds, thus on present lending opportunities. Which of the
two dimension matters most is key to formulate predictions about banks that hedge or not,
and about the type of swap positions being taken.

Intertemporal aspects of hedging also imply an endogenous sorting between users and
non-users of derivatives. Despite the fact that derivatives are valuable by allowing banks to
better achieve their optimal lending policy, not all banks use them. In the U.S., only 12% of
commercial banks use interest rate derivatives for hedging. In the model, the cross-sectional
and time series distribution of users and non-users is endogenous. This feature is valuable
to obtain sharp testable predictions on the characteristics associated with either bank type.
Sorting is driven by the use of collateral for both derivatives hedging and debt financing.
When cash flows from assets-in-place do not depend on the interest rate, hedging reduces the
bank’s debt capacity. The opportunity cost of hedging is foregone financing. As is Rampini
and Viswanathan (2010), banks which are financially more constrained, or more profitable
at the margin (such as small banks), hedge less or abstain from hedging. In contrast, when
cash flows do depend on the interest rate, derivatives may at times be used to increase a
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bank’s debt capacity.
The introduction of derivatives has important implications for the dynamics of bank

lending. Derivatives users increase lending more than non-users during booms and do not
cut lending proportionally more during recessions or monetary contractions. Their lending
policy is “procyclical but asymmetric”. The increased procyclicality of bank lending comes
from two sources. First, derivatives are used to transfer funds to future states in which large
lending is optimal. Derivatives users have more net worth when it is most valuable. Second,
hedging future states may be used by the bank to increase its present debt capacity. Doing so
when it is severely constrained is valuable and makes it possible to mitigate underinvestment
problems. The model’s predictions are consistent with empirical evidence by Brewer et al.
(2000) and hold both for periods of monetary easing or of real growth. The fact that users
and non-users of interest rate derivatives respond differently to real shocks, even when they
are uncorrelated with interest rate shocks, is also an important result of the paper.

The fact that differences in bank lending between users and non-users are smaller in
magnitude and less significant during downturns follows from the partial substitutability
between derivatives and debt capacity. During downturns, all banks downsize and aim to
restore their lending capacity for future periods. They all do so by cutting lending and
preserving debt capacity. Derivatives users, however, can also restore their future lending
capacity by using swaps to transfer funds to future investment states. They do not cut
lending as much as would otherwise be the case. This yields asymmetric effects between
booms and busts.

By modelling banks’ optimal management of interest rate risk, the paper speaks to a
topical issue. Most of the recent literature on risk in banking has focused on solvency risk
(e.g. Adrian and Shin, 2014) or liquidity risk (e.g. Acharya and Naqvi, 2012). In contrast,
interest rate risk has been relatively neglected. In an environment where both short-term
and long-term interest rates have been at historically low levels for close to six years (Kr-
ishnamurthy and Vissing-Jorgensen, 2011), a well-managed interest rate risk is arguably a
first-order concern for financial intermediaries (Bednar and Elamin, 2014). Begenau et al.
(2015) quantify banks’ exposure to interest rate risk. Landier et al. (2015) show the impact
of banks’ exposure to interest rate risk for the transmission of monetary policy. An early
contribution by Flannery and James (1984) investigates the effect of interest rate changes
on banks’ stock returns. Regarding the use of interest rate swaps in the corporate sector,
Jermann and Yue (2013) study an equilibrium model of production and financing with corpo-
rate default. To my knowledge, this paper provides the first model aimed at understanding,
in a comprehensive way, which financial intermediaries hedge interest rate risk, what type of
position is taken, how derivatives interact with other instruments for risk management and
affect the provision of bank loans.

Other dynamic models of bank capital structure have focused on different questions.
Sundaresan and Wang (2014) study the optimal liability structure of a bank. De Nicolo et al.
(2014) and Hugonnier and Morellec (2015) study capital and liquidity requirements. Gornall
and Strebulaev (2013) explain the high leverage of banks. With respect to dynamic models
of corporate leverage, this paper also has a different focus. Hennessy and Whited (2005),
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DeAngelo et al. (2011) and Gamba and Triantis (2008) restrict attention to risk management
using financial flexibility. Riddick and Whited (2009) also consider cash balances. The
introduction of a stochastic short rate and of derivatives is novel in this class of models.

The remainder of the paper is structured as follows. The model is introduced in section
2. Section 3 solves for the optimal policy. Section 4 describes the mechanics of interest rate
risk management. Sections 5 and 6 study how derivatives hedging affects the bank’s capital
structure and the dynamics of bank lending.

2 The model
This section introduces the model.

2.1 Long-term assets and cash flows
Time is discrete and the horizon infinite. The bank’s managers take decisions upon (i)
lending, (ii) financing and (iii) hedging to maximize the wealth of equity holders, determined
by risk-neutral security pricing in the capital market. Any variable measurable with respect
to date t+ 1 is denoted with a prime.

2.1.1 Cash flows

At the beginning of any date t, the bank holds assets-in-place a and receives two shocks
{z, r}, where z is a real (or “productivity”) shock to the bank’s asset portfolio and r the one-
period risk-free rate. Operating cash flows before financing, lending and hedging decisions
take place are denoted π (a, z, r). The bank pays a proportional tax τ ∈ [0, 1] upon receipt
of π (.), i.e. after-tax cash flows are (1− τ)π (.).

Assumption 1. π (a, z, r) is continuous with π (0, z, r) = 0, lima→∞πa (a, z, r) = 0 and sat-
isfies (A1.1) πa (a, z, r) > 0, (A1.2) πaa (a, z, r) < 0, (A1.3) πz (a, z, r) > 0 and (A1.4)
πr (a, z, r) ≤ 0. It takes the functional form

π (a, z, r) = zeγ(r∗−r)aθ, (1)

where r∗ is the unconditional expectation of r (see equation 4), θ ∈ [0; 1] and γ ≥ 0.

Absent the intermediate term, eγ(r∗−r), the cash flow function is the neoclassical pro-
duction function, a standard choice in the investment literature (e.g. Hennessy and Whited,
2005). Together, (A1.1) and (A1.2) ensure that cash flows are increasing and concave in the
asset size. Empirically, the concavity of cash flows captures the decreasing creditworthiness
of the marginal borrower when lending increases (Dell’Ariccia et al., 2012). (A1.3) reflects
the fact that a bank’s borrowers are better able repaying their loans when real economic con-
ditions are better. Innovations to z can be thought of as changes in real conditions affecting
the bank’s non-performing loans ratio.
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Assumption (A1.4), reflected in the term eγ(r∗−r), captures in reduced form the fact that
borrowers are better off repaying their loans, for a given z, when the short rate r is lower
(Friedman and Schwartz, 1982; Fuerst, 1992). This is particularly true is borrowers hold
adjustable-rate loans, such as adjustable-rate mortgages, which tend to default more when
interest rates rise (Bajari et al., 2008; Campbell and Cocco, 2014). γ captures the sensitivity
of the bank’s cash flows to the short rate. If γ = 0, as I assume in most of the paper,
cash flows do not depend on r. Whenever γ > 0, an increase in r decreases the bank’s
operating cash flows from assets-in-place. While not essential to most of the main results,
γ > 0 introduces an additional source of exposure to interest rate fluctuations and yields a
richer dynamics, discussed below. The fact that the unconditional expectation of r∗ − r is
zero implies that the average impact of r on cash flows is zero.

2.1.2 Lending

Long-term lending a is modelled under the simplifying assumption that a constant share
of loans, δ ∈ [0, 1], matures each period. The assumption that the stock of loans decays
geometrically is similar to that in Bianchi and Bigio (2014). Investment i (i.e. incremental
bank lending—both terms being used interchangeably) is defined as

i ≡ a′ − (1− δ)a. (2)

The average loan maturity is 1/δ, and δ < 1 ensures that the average maturity of the assets
exceeds that of the one-period debt, i.e. that the bank engages in maturity mismatching.
The price of one long-term loan unit is normalized to one.

2.2 Shocks
The two shocks {z, r} are modelled following Assumption 2.

Assumption 2. The shocks z and r take values in compact sets Z ≡ [z; z] and R ≡ [r; r]
respectively. They jointly follow a first-order Markov process satisfying the Feller property.
Both are AR(1) processes given by

ln
(
z′
)

= ρz ln (z) + ε′z (3)

r′ = r∗ + ρrr + ε′r, (4)

where r∗ is the unconditional mean of r.

Restricting attention to compact sets of shocks ensures that debt can be fully collater-
alized, by defining a lower boundary on the future bank value. Innovations εz and εr are
jointly normal and possibly correlated, i.e.(

εz

εr

)
∼ N

([
0
0

]
,

[
σ2
z ρσzσr

ρσzσr σ2
r

])
. (5)
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The conditional distribution at date t of future shocks {z′, r′} is denoted g (z′, r′|z, r) and
is common knowledge. While r is an aggregate shock, z can be thought of as having a
systematic and an idiosyncratic component. For explanatory purposes, it is treated as an
aggregate shock until section 4.4, where cross-sectional heterogeneity is modelled.

2.3 Debt financing
The bank has five sources of funds: internally generated cash flows π (.), internal savings in
the form of cash, one-period debt, derivatives and external equity. There is no long-term
debt, i.e. a maturity mismatch between assets and liabilities is assumed. The optimality of
maturity mismatching for banking firms has been demonstrated on theoretical grounds (e.g.
Diamond and Dybvig, 1983; Calomiris and Kahn, 1991) and is here assumed (as is also the
case in Jermann and Yue, 2013).

Net debt, i.e. debt minus cash, is denoted b. It is debt if b > 0 and cash otherwise (i.e.
gross cash is c = −min {0, b}). Cash earns the risk-free rate r. Debt comes in the form of
discount bonds, i.e., upon choosing b′ at t, the bank obtains funds b′/ (1 + r) and repays b′

at t+ 1.
Debt benefits from a tax advantage. Interests paid on debt are not taxed, while interest

earned on cash is taxed. The tax advantage, obtained at date t on interests paid between
dates t− 1 and t equals τbr−1/ (1 + r−1), where r−1 is the realized short rate at t− 1. This
tax structure implies that holding both positive debt and positive cash at the same time
cannot create value for the bank, consistent with the restricted focus on net debt.

2.4 Interest rate derivative contracts
Interest rate derivatives are modelled as interest rate swaps, i.e. the most widely used
contract in the data. A one-unit swap contract traded at date t mandates the payment at
date t+ 1 of a fixed swap rate (known at t) in exchange for the variable rate r′ (realized at
t+ 1). This contract resembles real-world interest rate swap (e.g. Titman, 1992).

Interest rate swap are provided by risk-neutral dealers, willing to take any derivative
position with a zero net present value.2 They are priced so as to prevent arbitrage oppor-
tunities for risk-neutral agents, i.e. the present expected value of the fixed leg and of the
floating leg of the contract are equal. The swap rate equals the short rate at t plus a (positive
or negative) premium p solving

r + p = Et
[
r′|r

]
. (6)

The notional amount of swap contracts traded at t is d′. Whenever d′ > 0, the bank has a
2The presence of risk-neutral dealers is assumed. The intermediation of long and short swap

contracts is not endogenized. The model is thus fit for representing non-dealer commercial banks,
but not dealers managing an inventory of derivatives. The distinction between dealers and end-users
in derivatives markets is neat, implying that the assumption is granted empirically. In the CDS
market, where the network structure is best documented, there are 14 dealers concentrating most
intermediary activities between hundreds of end-users (Peltonen et al., 2014). Similar suggestive
evidence is put forth by Fleming et al. (2012) for the interest rate derivatives market.

8



pay-fixed position, i.e. commits at t to deliver d′ (r + p) at t+ 1, and to receive d′r′. It has
a pay-float position if d′ < 0. When taking a pay-fixed (resp. pay-float) position, the bank
is insuring against increases (resp. decreases) in r: it is a net receiver of funds on its swap
exposure at t+ 1 when r is high (resp. low), and a net payer if it is low (resp. high).

In many pricing models, derivatives are redundant securities, i.e. their payoffs can be
replicated by a combination of other model securities, such as bonds (Oehmke and Zawad-
owski, 2015). Here, derivatives are not redundant because the structure of the contracts is
taken as given. For banks, the non-redundancy of interest rate derivatives can be thought
of as resulting from the (partial) illiquidity of long-term loans (e.g. Diamond and Dybvig,
1983). If long-term assets are illiquid, it may be less costly for a bank to manage its interest
rate risk using derivatives rather than by constantly reshuffling its underlying bond or loan
portfolio. Differences in bond and derivatives liquidity also motivate the non-redundancy of
CDS in the model by Oehmke and Zawadowski (2015).

2.5 Collateral constraint
Attention is restricted to risk-free debt and risk-free derivative contracts. A justification
for riskless debt contracts follows from Stiglitz and Weiss (1981), who show that lenders
may prefer credit rationing over higher required interest rates when faced with adverse
selection or asset substitution problems. The use of short-term collateralized debt by banks
is widespread, e.g. in the form of repurchase agreements (Acharya and Öncü, 2010). On
derivatives markets, the collateralization of exposures to mitigate counterparty risk is also a
widespread market practice (e.g. Duffie et al., 2015).

For both debt and swap contracts to be risk-free, lenders require the bank to be able to
repay all contracts outstanding in all future states. Full enforcement is assumed, i.e. the
bank owners cannot abscond with part of the existing cash flows or asset stock. All contracts
being one-period contracts, the ability of the bank to access both the debt and the swap
market is limited at t by the lowest possible value of the bank’s cash flows at t+ 1. Given a
set of controls at t, the short rate associated with the lowest realization of bank’s cash flows
at t+ 1 is denoted r̂, where

r̂ = arg min
r′∈[r,r]

π
(
a′, z, r′

)
− d′

(
(r + p (r))− r′

)
. (7)

By monotonicity of the two terms in r′, r̂ is well-defined. The collateral constraint writes as

b′ + d′ ((r + p (r))− r̂) ≤ (1− τ)π
(
a′, z, r̂

)
+ κa′. (8)

The first term on the right-hand side is the lowest possible after-tax cash flow at t + 1,
upon choosing a′ at t. The second term is the bank’s liquidation value, where κ ∈ [0, 1] is
the liquidation value of one unit of the long-term asset. κ < 1 follows from Asquith et al.
(1994), who show that asset liquidation is a common response to financial distress.

The collateral constraint puts an upper bound on the amount of debt and swaps. When
the bank has a pay-float position (d′ < 0), future states in which cash flows from assets in
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place are low and states where it is a net swap payer are the same. Thus, r̂ = r. The bank
is set to receive the swap rate r+ p (r) at t+ 1 and must hold enough funds to pay both its
debt and the worst-case floating rate on swaps, r′ = r, if realized. When the bank holds a
pay-fixed position (d′ > 0), r̂ ≤ r. On its swap position, the bank is worse off if the short
rate is low. In such states, however, cash flows are greater by Assumption (A1.4). Which
effect dominates depends on the size of d′ and on ∂π (.) /∂r.

2.6 Equity financing
The last source of funds is external equity. It is denoted e (.) ≡ e (a, a′, b, b′, d, z, r, r−1) and
determined jointly with lending, debt financing and swap hedging through the flow identity

e (.) = (1− τ)π (a, z, r)−
(
a′ − (1− δ)a

)
+ τbr−1

1 + r−1

+ b′

1 + r
− b+ d (r − (r−1 + p−1)) , (9)

where p−1 is the swap premium at t − 1 (solved for using equation 6), and where we note
that swap contracts traded at t, i.e. d′, do not enter contemporaneous payoffs (i.e. they are
not used directly for inter-temporal transfers of funds).

Equation (9) states that the surplus or shortage of funds after financing, lending and
hedging decisions have been made is either distributed as dividend or obtained through
equity issuance. When e (.) > 0, the bank is distributing a dividend. It issues equity if
e (.) < 0.

Together with the collateral constraint, the second main friction is a cost of issuing
external equity. It may arise from flotation and tax costs (Smith, 1977), from informational
asymmetries (Myers and Majluf, 1984) or agency problems (Myers, 1977). It implies that
internal funds and external funds are not perfect substitutes, which creates an incentive to
engage in risk management, as discussed below.

Assumption 3. The cost of issuing external equity, denoted η (e (.)) satisfies η (e (.)) > 0
if e < 0 and η (e (.)) = 0 otherwise. It is increasing and convex in the equity amount being
issued. It takes the linear-quadratic form

η (e (.)) = 1{e(.)<0}
(
−η1e+ η2e

2
)
, (10)

with η1 ≥ 0 and η2 ≥ 0.

Net equity distribution equals e (.) − η (e (.)). The tax structure, with taxes being paid
on internal savings, ensures that strictly positive dividends are distributed in at least some
periods. With τ = 0, the bank would be better off preserving any additional funds (once
optimal lending is financed) in the form of internal cash, rather than distributing it. This is
because equity may need to be re-issued at a cost at a later date. Strictly positive dividend
distributions could alternatively result from an agency cost of holding cash, as in DeAngelo
et al. (2011).
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2.7 Value function
There are three control variables. The bank chooses lending a′, financing b′ and hedging d′

each period to maximize the expected value of future distributions to equity holders. Future
dividends are discounted by a factor 1/ (1 + r) capturing the opportunity cost of funds.

The bank’s problem can be written with one state variable, by defining net worth w as

w (a, b, d) = (1− τ)π (a, z, r) + (1− δ)a+ τbr−1
1 + r−1

− b+ d (r − (r−1 + p−1)) . (11)

Net worth corresponds to the bank’s resources at hand after assets and swaps in place have
paid off, after maturing debt has been repaid, but before decisions on a′, b′ or d′ have been
made.

The Bellman equation writes as

V (w, z, r) = sup
a′,b′,d′

{
e (.)− η (e (.)) + 1

1 + r

∫ ∫
g
(
z′, r′|z, r

)
V
(
w′, z′, r′

)
dz′dr′

}
, (12)

subject to the collateral constraint (8). The first two terms are the equity distribution/infusion,
net of issuance costs. The last term is the discounted continuation value.

The model yields a unique policy function {a′, b′, d′} = Γ (w, z, r). The policy function
gives the optimal response to the trade-off between the cost of increased lending and ex-
pectations about future productivity and short rate, while optimally balancing current and
future financing needs when equity issuance is costly. The policy function also balances the
costs and benefits of hedging.

2.8 Solution and simulations
I solve numerically for the policy function Γ using value function iteration. Calibrated
parameter values are discussed in Appendix A. Details on the numerical solution are provided
in Appendix B.

Simulations of the model are also used in the remaining part of the paper. Using the
baseline calibration of Table 1, a series of random shocks {z, r} satisfying equations (3) and
(4) is simulated for 10,200 periods. The bank’s optimal controls are obtained. The first
200 periods are dropped. To assess the role of derivatives, I also simulate the model in the
absence of interest rate swap contracts, i.e. by restricting d′ = 0 in all periods. Moments of
the bank capital structure, with and without swaps, computed from simulated data using the
baseline calibration are summarized in Table 2. Moments computed for alternative values of
the calibrated parameters are in tables 3 and 4.

3 Capital structure policy
This section discusses the capital structure policy of the bank. The optimality conditions of
the model are derived, under the assumption that the value function is once differentiable.
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This assumption is not needed for the existence of a solution or for that of an optimal policy
function (Stokey and Lucas, 1989).

3.1 Lending policy
Differentiating equation (12) with respect to a′ and using the envelope condition yields the
investment Euler equation.

1− ηe (e (.)) = 1
1 + r

∫ ∫
g
(
z′, r′|z, r

) (
1− ηe

(
e′ (.)

)) [
(1− τ)πa

(
a′, z′, r′

)
+ 1− δ

]
dz′dr′

(13)
When making an optimal choice, the bank is indifferent at the margin between increasing
long-term lending by one unit at date t and waiting to lend it at date t+1. The marginal cost
of present lending is the price of the long-term asset. It is larger if equity has to be issued
(e < 0). The shadow value of a marginal loan unit at t (right-hand side of equation (13))
equals the same marginal cost—discounted by both 1/ (1 + r) and (1− δ)—plus the foregone
marginal product of assets in place captured by (1− τ)πa (.). Foregoing these future funds
is more costly on expectation if equity is more likely to be issued at t+ 1, i.e. e′ < 0.

3.2 Financing policy
Let λ be the Kuhn-Tucker multiplier on the collateral constraint (8). The first-order condition
for the optimal debt policy is given by(

1 + τr

1 + r

)
(1− ηe (e (.))) = −

∫ ∫
g
(
z′, r′|z, r

) [
Vb
(
a′, b′, z′, r′

)
+ λ′

]
dz′dr′ (14)

Rewriting using the envelope theorem,(
1 + τr

1 + r

)
(1− ηe (e (.))) + λ =

∫ ∫
g
(
z′, r′|z, r

) [
−ηe

(
e′ (.)

)
+ λ′

]
dz′dr′ (15)

The optimal debt policy is such that the marginal benefit of a unit of debt (left-hand side of
equation (15)) equals it marginal cost (right-hand side). Debt is valuable (i) because of the
tax benefit it gives and (ii) because equity issuance is costly. Debt is more valuable whenever
e (.) < 0, because an additional unit of debt, in such cases, enables saving the marginal cost
of equity financing, for a given level of investment.

The cost of an extra unit of debt is the interest rate to be paid next period. It also
depends on present expectations over e′ (.) and λ′. The first term in the expectation implies
that one additional unit of debt today is more costly if the bank is more likely to issue costly
equity next period. The second term implies that debt is more costly at t if the collateral
constraint is more likely to bind at t+ 1.

Together, these extra costs highlight the rationale for risk management in the model. The
existence of frictions by which (i) debt is capped by a collateral constraint and (ii) external
equity financing is costly makes the bank effectively risk-averse with respect to next-period
cash flows (as in Froot et al., 1993). Increasing debt at t implies that interest payments will
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absorb a larger share of the bank’s cash flows at t+ 1. Free cash flows available for lending
will be less abundant. If investment opportunities are large at t+ 1, the bank becomes more
likely to resort to equity financing and to pay the associated cost, thus to under-invest. Extra
debt capacity would be particularly valuable in such states. Consequently, the debt policy
implies that there are benefits from preserving free debt capacity, or financial flexibility for
next-period investment: The bank may optimally choose to reduce debt and forego present
lending opportunities, so as to be better able to exploit lending opportunities at t+ 1.

3.3 Hedging policy
Together with financial flexibility, interest rate swaps are the other margin for risk man-
agement. Swap contracts are valuable because they make it possible, in future periods, to
transfer funds from states in which the marginal value of funds is low to states in which it
is high. Conditional on date-t controls {a′, b′}, they can be used to transfer funds at t + 1
from states {z′, r′} where no external equity will be optimally issued to finance investment
to states where external equity financing would, absent swap hedging, be optimally needed
(or needed to a larger extend), i.e. from “low lending” to “high lending” states.

Deriving the first-order condition with respect to d′, the optimal hedging policy satisfies

1
1 + r

∫ ∫
g
(
z′, r′|z, r

) [
r′ − (r + p (r))

] (
1− ηe

(
e′ (.)

))
dz′dr′

= λ
∂

∂d′
[
(1− τ)π

(
a′, z, r̂

(
d′
))
− d′

(
(r + p (r))− r̂

(
d′
))]

, (16)

where r̂ is denoted r̂ (d′) for clarity. Equation (16) equalizes the expected marginal costs and
benefits of an additional swap unit. As can be seen on the left-hand side, swap contracts
derive value because equity issuance is costly. In case η (e (.)) = 0 when e < 0, there would
be no expected benefit from swap hedging, as the expression would simplify to zero, using
the pricing equation (6). A necessary condition for hedging to create value is that internal
and external funds are not perfectly substitutable.

While swaps pay off at t + 1 only, they have a present cost or benefit. This is because
they have to be collateralized. Taking swap positions may either tighten or relax the present
collateral constraint (to which the Lagrange multiplier λ is associated), depending on the
sign of the right-hand side term. Which case prevails as a function of the model parameters
is further discussed in section 4.2.2.

3.4 Policy function
To provide greater insights into the dynamics of the model, Figure 2 plot the optimal lending,
debt and equity distribution as a function of the shocks z (Panel A) and r (Panel B). The
policy function is evaluated at the steady state asset stock.3

3Following Strebulaev and Whited (2012), the steady state asset stock is defined as the value of
a to which the bank would converge if it were to receive no shocks, i.e. εz = 0 and εr = 0, for a
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3.4.1 Dynamics with respect to z

The policy function with respect to z, in Panel A of Figure 2, illustrates two of the cyclical
features of financing and lending in the model. First, optimal lending rises with the produc-
tivity shock, as lending opportunities become more profitable. Increased lending is funded
from two sources. As a first source of financing, dividend distributions to equity holders are
cut, and a larger share of internal funds is used for investment. The bank foregoes present
dividend distributions, which are traded off against future dividends expected to be paid
out of current investment’s proceeds. Second, the bank optimally takes on more short-term
debt. The debt-to-assets ratio—which can be interpreted either as leverage or as maturity
mismatching—increases with z. Equity is issued in a few states where large lending is opti-
mal (high z) and both internal funds and free debt capacity are insufficient to meet funding
needs.

The second element of the model dynamics that figure 2 illustrates is the preservation of
free debt capacity. The collateral constraint does not bind in all states. The bank optimally
foregoes current lending opportunities so as to be able to exploit future lending opportunities.
Doing so is more costly when current investment is highly profitable (z high). The bank
exhausts its debt capacity in such states. It instead preserves more debt capacity when
z is low, i.e. free debt capacity is counter-cyclical and under-investment may be larger in
downturns. Finally, due to the concavity of π (.) in a, preserving debt capacity is also more
costly for a small bank.

3.4.2 Dynamics with respect to r

Turning to the model dynamics with respect to r (Figure 2, Panel B), optimal lending is
increasing when r decreases. This effect is driven by three forces. First, cash flows π (.)
increase as the short rate decreases, provided γ > 0. Lending becomes more profitable.
Second, for a given profitability of assets, more investment can be sustained if debt financing
is cheaper (r lower), because fewer debt capacity needs to be preserved. A lower short rate
implies that more present debt can be obtained for a given asset stock at t + 1. A third
effect is through the discount factor. As r decreases, equity holders value future dividend
distributions relatively more. The bank trades off present versus future dividend distributions
and optimally invests more at date t, out of current internal resources. Dividend distributions
are consequently lower.

There are two main effects of shocks to the short rate on the bank’s capital structure.
First, a decrease in the short rate increases long-term lending, thus the bank’s size. Second,
the bank loads on short-term debt and increases maturity mismatching/leverage. Equity is
issued only when debt capacity is exhausted and internal funds are not sufficient to meet

sustained period of time. The steady state asset stock a∗ equals

a∗ =
[
r∗ + δ

(1− τ) θ

] 1
θ−1

. (17)
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optimal investment expenses. For high realizations of the short rate, the bank may find it
optimal to hold cash (b′ < 0). It thus keeps resources for future investment.

4 The mechanics of risk management
This section discusses the mechanics of risk management and the results related to it. There
are two dimensions of hedging: a cross-state and a cross-period dimension, which I discuss
separately. In the cross-state dimension, the main question is which future states will be
associated with the highest marginal value of funds. Derivatives can be used to transfer funds
to such states. The cross-period dimension of hedging arises from the fact that both debt and
swaps are collateralized. Because taking derivatives at t may increase or decrease a bank’s
present debt capacity, its optimal hedging policy does not only depend on its expected value
of funds next period, but also on its present marginal value of funds, thus on present lending
opportunities and financial constraints. Together, these two dimensions make it possible
to obtain predictions about (i) whether banks use derivatives or not and, conditional on
hedging, on (ii) the type of position being taken.

4.1 Hedging in the cross-state dimension: Motives
I first turn to the cross-state dimension of hedging. From the perspective of date-t decision-
making, the question is which states at t + 1 will be associated with the highest marginal
value of funds. There are three sources of exposure to the short rate: (i) through the cost
of debt financing, (ii) through the discount factor, and (iii) through the sensitivity of cash
flows π (.) to r. Each source of exposure gives rise to a distinct motive for interest rate risk
management.

4.1.1 Financing motive

On the liability side, a stochastic short rate affects the cost of debt financing. There is a
risk that the future cost of debt financing will be high in states where profitable lending
opportunities are large. This may cause future lending opportunities to be foregone. When
r rises, the bank loses debt capacity, because the amount it can borrow is capped by the
collateral constraint. This effect is possibly large. To see this, denote c̄ (a′, d′) the maximum
amount of debt b′ that the bank can commit to repay in the worst state at t + 1, given
constraint (8) and controls {a′, d′}. A marginal increase in r leads to a decrease in debt
capacity by a quadratic factor

∂
(
c̄(a′,d′)

1+r

)
∂r

= − c̄ (a′, d′)
(1 + r)2 . (18)

This effect gives rise to a financing motive for risk management. The financing motive
implies that the bank optimally wants to transfer funds from future states where r is low
to states where r is high, because funding costs are higher in such states. When driven by
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the financing motive, interest rate risk management in the swap market requires the bank
to take pay-fixed positions (d′ > 0), which pay off when the short rate is high.

4.1.2 Discount motive

A second channel through which the bank is exposed to the short rate is through the discount
factor, 1/ (1 + r) in equation (12). As r decreases, foregoing present dividend distributions
is less costly for equity holders, implying that the optimal investment at date t is greater. As
the discount factor changes, the bank trades off present versus future dividend distributions,
and consequently present versus future lending. Because the optimal lending is larger when
1/ (1 + r) is larger (i.e. r is lower), this discount motive for risk management provides
incentives to transfer funds from future states where r is high to states where it is low—as
opposed to the incentive provided by the financing motive.

4.1.3 Investment motive

The third motive for risk management arises from the asset side. It exists only if γ > 0,
i.e. if a decrease in the short rate positively affects the bank’s cash flows from assets-in-
place. When this is the case, optimal lending is greater when r is lower—for a given discount
factor. This gives rise to an investment motive for risk management: for a given cost of debt
financing, the bank optimally wants more funds in states where r is lower, to meet higher
profitable investment opportunities in such states. In terms of the transfers to be realized,
the investment motive for risk management reinforces the discount motive and opposes the
financing motive. When driven by the investment or the discount motive, risk management
in the swap market requires the bank to take pay-float positions (d′ < 0), which pay off when
the short rate is low.

4.1.4 The “natural hedge” case and the role of z

Apart from r, the second stochastic factor in the model is z. Absent a stochastic short
rate, risk management would be purely driven by the need to optimally exploit investment
opportunities arising from changes in z, as in Hennessy and Whited (2005). A natural
question is how interest rate risk management operates in the absence of z, and what role
the productivity shock plays in the model.

If z were to be a constant, the bank would benefit from a natural hedge. Both its debt
capacity and its lending opportunities are decreasing in r. Thus, the bank would have a high
debt capacity in states in which high lending is optimal. This does not imply that there
is no longer a rationale to engage in interest rate risk management—because the elasticity
of debt capacity and investment opportunities with respect to the short rate need not be
the same—, but the need to do so is reduced. In particular, the relative magnitude of the
financing motive is reduced.

The introduction of z implies that the bank loses part of this natural hedge. A stochastic
productivity level implies that lending opportunities may be large at times the short rate in
high. The financing motive for risk management is thus relatively more important, as the
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bank becomes more likely to face an under-investment problem when r is high. The extent
to which the natural hedge is lost also depends on the correlation between shocks to z and
r, as well as on the persistence and volatility of z. The impact of these parameters is further
discussed below.

4.2 Hedging in the cross-period dimension
While derivatives hedging is most often thought of as providing insurance against future
states (i.e. its cross-state dimension), it also has an important cross-period dimension. In-
tertemporal trade-offs arise because both debt and swaps are collateralized. The optimality
conditions (15) and (16) make it clear that financing and hedging policies are dynamically
related, as λ appears in both. Using interest rate swaps at t to hedge states at t + 1 may
either increase or decrease the bank’s present debt capacity. Whether it finds it optimal to
hedge, and the type of position it takes, does not only depend on the bank’s expected value
of funds at t + 1, but also on its present value of funds, i.e. on its present net worth and
investment opportunities. In the cross-period dimension, present financing constraints may
affect both whether a bank hedges future states or not, and the type of swap position it
takes to do so.

4.2.1 A particular case: γ = 0

The case in which cash flows from assets-in-place do not depend on r, i.e. when γ = 0, is
an interesting particular case. First, as already outlined, the investment motive is absent.
In the cross-state dimension, which swap position is taken (if any) depends solely on the
relative magnitude of the financing and of the discount motives.

In the cross-period dimension, γ = 0 implies that derivatives hedging always reduces
the bank’s debt capacity. This is because future pledgeable cash flows (the right-hand side
term in the collateral constraint 8) do not depend on r, so that there cannot be offsets
between future cash flows from assets-in-place and from swaps. Whenever the bank takes a
swap position, collateral is required to do so, and can no longer be pledged to obtain debt
financing. The bank’s debt capacity is reduced accordingly. Whether the bank takes a pay-
fixed or a pay-float position does not make a difference in this respect. In the cross-period
dimension, collateral constraints affect the extent to which banks hedge (depending on how
they value present debt capacity) but not the sign of the positions being taken, conditional
on hedging. The case with γ = 0 is thus well-suited to study how the relative strength of
each motive for risk management (i.e. the cross-state dimension) depends on other model
parameters, as discussed below.

4.2.2 Swap hedging and debt capacity

In the more general case where γ ≥ 0, in contrast, taking swap positions may either decrease
or increase a bank’s present debt capacity. In such cases, the choice of pay-fixed or pay-float
swap positions is driven not only by the relative strength of each motive in anticipation of

17



date t+ 1, but also by concerns related to the bank’s present debt capacity. Both the extent
of hedging and the position signs are affected by collateral constraints. The interaction
between the cross-state and the cross-period dimensions of hedging is thus richer.

The impact of swap hedging on debt capacity can be seen by differentiating, for a given
choice a′, the collateral constraint in the absence of derivatives, i.e.

b′ ≤ (1− τ)π
(
a′, z, r

)
+ κa′, (19)

with that with swaps (equation 8). Denoting A (.) this difference, one gets

A
(
a′, d′, r̂

)
= (1− τ)π

(
a′, z, r

)
− (1− τ)π

(
a′, z, r̂

)
+ d′ (r + p− r̂) . (20)

The bank’s debt capacity with swap hedging is larger than that without swap hedging when-
ever A (.) < 0. For the bank’s debt capacity to increase when hedging, it has to be the case
that swap positions provide additional funds in the worst state of the world at t+ 1, against
which debt is collateralized.

When the bank holds pay-float swaps (d′ < 0), r̂ = r > r + p. Therefore, A (.) > 0
and the bank’s debt capacity is reduced. Intuitively, cash flows π (.) are low in states where
the bank is a net swap payer. Thus, when increasing swap hedging, the cash flows that can
be pledged against such states to debt holders are lower. Hedging using pay-float swaps
(i.e. motivated by investment and discount motives) creates a trade-off between hedging
and financing. The opportunity cost of collateral pledged on swaps is foregone present debt
capacity.

When the bank takes a pay-fixed swap position (d′ > 0), A (.) can be either positive or
negative. There are two opposite forces. First, cash flows π (.) reach their lower level when
r is realized. Second, the bank receives swap payments in such states. Whether cash flows
after swap payments are higher or lower when r is realized depends on the size of the swap
position d′ and on the sensitivity of cash flows to the short rate, γ. The relative importance
of these two forces is illustrated graphically in figure 3, which plots r̂ for various choices d′ at
the steady state asset stock a∗. When γ = 0, as discussed above, r̂ = r < r + p, and d′ > 0
implies that A (.) is positive and that the bank’s debt capacity is reduced. This is because
cash flows do not provide any offset to swap payments in this case. For swap hedging to
increase the bank’s debt capacity, γ must be sufficiently high, while d′ > 0 must be such
that A (.) is strictly negative.

Theoretically, the case with γ = 0 is close in spirit to that featured in Rampini and
Viswanathan (2010) and Rampini and Viswanathan (2013). A clear dynamic trade-off be-
tween financing and hedging exists. When γ > 0, in contrast, a different prediction arises
because debt capacity may either increase or decrease when banks hedge. This is because
banks borrow against the worst possible state next period, and because hedging may improve
cash flows in this particular state. In Rampini and Viswanathan (2010), in contrast, debt
and derivative contracts are written against particular future states. Empirically, the fact
that hedging may increase debt capacity has been demonstrated by Campello et al. (2011),
who show that hedging firms can commit to a lower cost of financial distress and enhance
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their ability to invest. Due to our collateral constraint, a similar effect occurs here even in
the absence of financial distress.

4.3 Pay-fixed and pay-float positions
The co-existence of several distinct motives for risk management yields a first result: both
increases and decreases in the interest rate can be hedged. Thus, both pay-fixed and pay-
float positions coexist. The relative magnitude of each motive for risk management, however,
changes over time and in the cross-section of banks. This yields predictions regarding bank
characteristics associated with either position type.

4.3.1 The coexistence of position types

With the baseline calibration, conditional on using swaps, 74.5% of the positions taken are
pay-fixed, and 25.5% pay-float (Table 2, rows 19 and 20). Traditional expositions of interest
rate risk in banking (Freixas and Rochet, 2008) or practitioners’ textbooks (Fabozzi and
Konishi, 1994) consider that hedging should primarily be concerned with increases in the
interest rate. This is because the duration of banks’ liabilities is shorter than that of assets,
so that a bank may be stuck with low-yield assets while the cost of rolling over short-term
debt increases. The fact that bank value is negatively related to the short rate has also been
documented empirically by Flannery and James (1984) and English et al. (2012). Thus,
banks should primarily take pay-fixed positions.

Consistent with the model, banks in the data use both pay-fixed and pay-float positions
for hedging, as appendix C demonstrates. According to our interpretation, the fact that they
take pay-float positions (which pay off when the short rate is low) need not imply they are
engaged in speculation.

4.3.2 Predictions in the cross-state dimension

To obtain predictions about whether pay-fixed of pay-float positions are used, we study how
the motives for interest rate risk management are affected by the model parameters. To do
so, attention is restricted to the case in which γ = 0. In this case, taking a pay-fixed or a
pay-float position always decreases a bank’s debt capacity. The observed positions then do
not reflect incentives to increase one’s present debt capacity, as can be the case when γ > 0.
Furthermore, the investment motive is absent, so that the observed positions only reflect the
relative strength of the financing and of the investment motives.

The structure of the shocks drives the relative magnitude of each motive to an important
extent. First, the financing motive is more acute as the correlation between εz and εr, i.e.
ρ, is positive and high. ρ > 0 (as in the data) implies that the cost of debt financing is more
likely to be high in states where lending opportunities driven by real factors are likely to be
large. The financing motive is larger and banks become more willing to hedge increases in
the short rate, thus to take pay-fixed positions. This can be seen in Table 3, which compares
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the baseline case (ρ = 0) with cases in which ρ ∈ {−0.6; 0.6}. When ρ > 0 pay-fixed positions
are taken to a larger extent (rows 21 and 22).

The financing motive is also relatively more important when the autocorrelation of shocks
to either z or r is lower. A high autocorrelation implies that good realizations of z (resp.
r) are more likely followed by other good realizations of z (resp. r). As a good shock
occurs, the bank value increases to reflect the fact that other good shocks are likely to follow
in subsequent periods. Expectations about the discounted bank value in future periods
increase more than when the autocorrelation of shocks is higher. Consequently, the discount
motive is relatively larger when either ρz or ρr are higher, while the financing motive is larger
when either of them is low. Banks take relatively more pay-fixed positions when ρz or ρr are
low (Table 3, rows 10 to 11 and 21 to 22).

Finally, a high standard deviation of z implies that large lending outlays are more likely.
Missing transitory investment opportunities is more costly, and the financing motives be-
comes relatively more important. Pay-fixed positions are taken more often (row 11), while
investment is larger on average (row 1) and more volatile (row 2).

4.3.3 Relative magnitude of cross-state versus cross-period concerns

I depart from the case in which γ = 0. When cash flows from assets-in-place do depend
on the realized short rate, i.e. γ > 0, then collateral constraints affect both the decision
to hedge and the sign of the positions being taken. This is because, in such cases, taking
swap positions may either increase or decrease the bank’s present debt capacity. Allowing
for γ > 0 makes it possible to obtain richer predictions on the sign of the swap positions
being taken. Moments from the model with several values of γ ∈ [0; 5] are in Table 4, which
yields two results.

First, pay-fixed positions become relatively more attractive in the cross-period dimension
when γ > 0. They are used more often (Table 4, row 19). This is because they make it
possible to increase the bank’s present debt capacity. By taking pay-fixed swaps, i.e. by
hedging increases in the short rate, the bank relaxes its collateral constraint and can increase
present investment. In the above subsection with γ = 0, the fact that pay-float positions are
used much more often than pay-fixed positions could be seen as a source of concern. This
concern disappears for reasonable values of γ > 0. The case in which γ = 0 neglects a key
mechanism through which interest rate swaps may be used by banks to increase their present
debt capacity.4

Second, the ability for a bank to use swaps to relax its collateral constraint is particularly
valuable when it is severely constrained, i.e. when net worth is low relative to lending
opportunities. Thus, the bank uses more pay-fixed swaps when its collateral constraint binds
or is close to bind. This can be seen through an econometric approach, as Panel A of Table

4There is also another opposite effect at play. When γ increases, the investment motive becomes
more important, i.e. the bank is increasingly willing to hedge decreases in the short rate by taking
pay-float positions. In our simulations, the incentive to relax the collateral constraint overrides this
second effect when γ is positive but low. When γ increases, banks use more and more pay-float
positions in relative terms.
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5 reports. A dummy variable equal to one if the bank takes a pay-fixed position is regressed
on financial constraints, measured as the percentage of debt capacity used in the current
period. A positive and statistically significant coefficient is obtained across specification,
both unconditionally (regardless of whether derivatives are used) and conditional on using
non-zeros swaps.

Relatedly, given investment opportunities, banks are more likely to take pay-fixed posi-
tions if their net worth is low. This is illustrated in figure 4, which plots the hedging policy
given shocks {z = 0, r = r∗} as a function of w. For low levels of net worth, taking pay-fixed
positions enables banks to increase their debt capacity by transferring funds to future states
in which their cash flows would otherwise be low.

4.4 Cross-sectional sorting between derivatives users and non-
users

This section addresses one last question related to risk management. If derivatives create
value for equity holders and make it possible for banks to better achieve their optimal
lending policy, why is it the case that not all banks use derivatives? In the U.S., only
12% of commercial banks use interest rate derivatives for hedging. Furthermore, hedging
for banks that use derivatives is usually incomplete. Even derivatives users keep (possibly
large) exposure to interest rates, as documented by Landier et al. (2015). Part of the limited
participation in derivatives markets can be explained by fixed costs (Brown, 2001; Guay and
Kothari, 2003). It is unlikely, however, that fixed costs explain most of the cross-sectional
sorting between derivatives users and non-users, as many banks in the highest percentiles of
the size distribution also do not use derivatives (Purnanandam, 2007).

Regardless of the position signs, derivatives in the model are not used in all periods
(Table 2, row 18), and the percentage of periods in which the bank uses non-zero derivatives
varies with the model parameters (Table 3, rows 9 and 20). The results of Table 3 can be
given a cross-sectional interpretation, as in DeAngelo et al. (2011), if banks differ along some
of the structural model parameters. While derivatives have attractive insurance properties,
banks optimally choose to use them to a larger or smaller extent. In this respect, the model
is one where sorting between users and non-users arises endogenously.

I study two questions. First, how changes in the model parameters affect the extent to
which derivatives are used, as captured by the fraction of periods in which non-zero positions
are taken? Second, given a set of structural parameters, what aggregate and bank-level
characteristics explain the fact that derivatives positions are traded at particular dates?

4.4.1 The use of derivatives: Cross-sectional results

Changes in the properties of the shocks imply that the incentive of the bank to engage in
any type of risk management changes, i.e. either through financial flexibility or through
interest rate derivatives. Banks use more swaps on average for calibrations in which they
also preserve more financial flexibility on average.
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When z is highly volatile (σz high) or persistent (ρz high), banks keep more debt capacity
(Table 3, rows 3 and 8). Their collateral constraint binds less often (row 7). This is because
a high σz implies that large funding needs may arise, while a high ρz implies that periods
in which funding needs are large are likely followed by other periods in which funding needs
are large. Banks exposed to more volatile or more persistent real shocks (possibly due to the
composition of their portfolio) are expected to hedge more, as the value of risk management
is greater for them.

Not surprisingly, there is more interest rate risk management when the short rate is less
predictable, i.e. either when it is highly volatile (high σr) or highly transitory (low ρr).
Derivatives are used more often in such cases (row 20). This fact, however, does not have a
clear cross-sectional interpretation, because the short rate is typically the same for all banks
in a given banking sector. Over time, it implies that hedging may be larger in periods of
high interest rate uncertainty, all else equal.

4.4.2 The use of derivatives: Within-bank results

For a given set of parameters, both the decision to use derivatives (a binary variable) and the
extent of derivatives hedging (a continuous variable) vary over time. Collateral constraints
are a key driver of whether derivatives are used or not. To see this, consider the case
where γ = 0. In this case, there is a dynamic trade-off between financing and hedging.
Theoretically, this trade-off has been studied by Rampini and Viswanathan (2010, 2013).
Predictions similar to theirs arise.

Banks that are more constrained hedge less. This can be seen in Panel B of Table 5. Both
the decision to hedge (a binary variable that takes value one if the bank uses derivatives)
and the extent of hedging (the absolute value of the derivative position d′) are regressed
on financial constraints, measured as the percentage of debt capacity used. The relation
is negative and significant at a 1% level across specifications. An interesting implication
follows: while hedging is motivated by the existence of financing constraints, banks which
are more constrained hedge less, not more. Empirically a negative relation between hedging
and financial constraints has been demonstrated for non-financial firms by Rampini et al.
(2014).

A corollary is that, due to collateral constraints, complete hedging using derivatives is
not optimal. At times the trade-off between hedging and financing is too acute, banks cut
hedging, or optimally choose not to hedge. Relatedly, small banks also choose to hedge
less, as in the data (Purnanandam, 2007). This is because they are more profitable at the
margin, due to the concavity of π (.) in a, so that foregoing debt capacity is more costly for
them. Incomplete hedging is observed in the data, as shown by Landier et al. (2015). Even
after accounting for their derivatives portfolio, U.S. commercial banks keep open exposure
to interest rate risk, as measured by the income gap.

In case γ > 0, the relation between hedging and financial constraints is more subtle. This
is because pay-fixed positions can be used by the bank to relax its collateral constraint and
increase its debt capacity. They may thus be taken at times the bank is more constrained,
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especially if γ is sufficiently high. The relation between financial constraints and hedging
is consequently weaker. It is still the case, however, that pay-float positions are primarily
taken at times the bank is less constrained.

5 Derivatives hedging and bank capital structure
This section compares the capital structure of banks that use or do not use interest rate
derivatives.

5.1 Substitution between derivatives and the preservation of
debt capacity

While hedging may both increase or decrease a bank’s debt capacity—i.e. the maximum
amount it can borrow—, a related question is how it affects the preservation of debt capacity,
i.e. the distance between a bank’s collateral constraint and its optimal choice of debt. This
section shows that derivatives users substitute swaps for financial flexibility, i.e. take higher
leverage.

5.1.1 Derivatives versus financial flexibility

To answer the question whether derivatives hedging induces a bank to preserve more or
less debt capacity, simulations of the model are used. Table 2 compares moments obtained
from the models with and without swaps. When the moment of interest is an average, a
two-sample t-test is also conducted, to test whether differences in average are statistically
significant.

The most important result is that debt capacity and derivatives are substitutes for risk
management. In the simulation results, the bank uses about 97.7% of its total debt capacity
(given by the collateral constraint) on average in the model with swaps, as compared to
95.9% in the model without swaps (row 8). The bank has a higher debt-to-assets ratio on
average (row 3) and finances a larger share of its expenses using debt (row 15).5 These
differences are statistically significant at a 1% level.

In the U.S. data, Purnanandam (2007, Table 3) provides suggestive evidence consistent
with this substitution effect. In his sample, non-user banks keep more liquid assets as a
percentage of total assets than user banks (35.86% versus 30.64%). They have a lower lever-
age, reflected in the fact that their equity ratio is higher (10.83% versus 9.53%). Derivatives
users also have more loans to total assets than non-users (63.90% versus 60.86%). All these
differences are statistically significant at a 1% level when performing a two-sample t-test.

In the model, the substitution between swaps and debt capacity can be explained by
differences in the types of transfers they make possible. Preserving debt capacity at t makes
it possible to transfer funds from t to t + 1 in a non-state contingent way. As such, it is

5In unreported simulations with alternative calibrated parameters, for which the bank’s leverage
is lower on average, users of derivatives keep less cash than non-users.
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particularly costly if just a subset of states next period are associated with high funding
needs, because present investment opportunities have to be foregone. Derivatives, which
make it possible to transfer funds in a state-contingent way, can alleviate this problem.
Funds can be channelled towards future states where funding needs are high, thus reducing
the need to preserve debt capacity and preserving present investment to some extent. The
fact that using derivatives makes it possible to increase leverage is also consistent with Stulz
(1996).

Another implication of the fact that swaps and debt capacity do not provide the same
payoffs is that the extent to which they are substitute varies over time. The benefits of
swaps arise particularly when there is investment only in a few future states, i.e. when state-
contingent wealth is particularly valuable. If, in contrast, high investment is likely to occur
in most or all future states, then non-state contingent wealth is more valuable. In such a
case, derivatives provide a poor substitute to debt capacity for risk management.

5.1.2 The preservation of debt capacity in the presence of swaps

The opportunity to hedge using swaps, however, does not imply that the bank no longer
keeps debt capacity. There is partial, but not complete, substitution. Some debt capacity is
still preserved in most periods (Table 2, row 7). There are two main reasons for this.

First, debt capacity would still be preserved in the absence of a stochastic short rate,
in order to hedge fluctuations in z. As in Hennessy and Whited (2005), the bank finds it
optimal to preserve funds for future states in which z is high. Even when shocks to z and r
are correlated, this motivates the need to preserve funds in a non-state contingent way, i.e.
through debt capacity.

Second, as soon as both z and r co-exist (i.e. outside the “natural hedge” case of section
4.1.4) future investment states can be associated either with high or low realizations of r.
Even though one of the three motives for interest rate risk management dominates, all three
are always present. Because of the state-contingent nature of their payoffs, derivatives cannot
address all three motives simultaneously, while the preservation of debt capacity can. Thus,
debt capacity is optimally preserved to some extent, and derivatives are used to address the
prevailing motive at each date.

5.2 Hedging, equity financing and bank value
When the bank optimally preserves less free debt capacity as a consequence of the use of
derivatives, additional short-term debt financing can be used either to increase lending or be
distributed to equity holders. This subsection focuses on the payout policy. Section 6 later
focuses on the interaction between derivatives hedging and bank lending.

5.2.1 Equity financing

The equity issuance/distribution policy is altered with the introduction of swaps. The fre-
quency of equity issuance is lower for the simulated bank in the model with swaps (Table 2,
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row 11). Conditional on equity issuance, the amount being issued is also lower, even though
not statistically significant (row 12). For the simulated bank, equity is issued in about 8.7%
of the periods in the model without swaps and in 7.8% in the model with swaps (row 11).
Even though small in magnitude, non-user banks finance a larger share of their expense with
equity (row 16), the difference being significant at the 10% level.

The effect is driven by the nature of each margin for risk management. Non-user banks
manage risk by preserving debt capacity, i.e. by transferring non-contingent funds to future
periods. They trade off present versus future investment opportunities, and transfers to
future periods occur regardless of whether equity issuance will indeed be needed at t+ 1. It
is thus particularly costly, because the cost (foregone investment) is paid in all present states
while the benefit of increased debt capacity is obtained in some future states only. Swap
payoffs, in contrast, can be targeted more precisely to future states in which equity will be
optimally issued. The optimal choice of each margin for risk management is an equilibrium
condition; however, for a bank that engages in risk management, swaps can be relatively less
costly, due to their state-contingent payoffs. It is the case that banks in the model without
swaps engage less in risk management and optimally choose to issue equity more often.

5.2.2 Bank value

Does hedging increase bank value? Existing evidence on whether risk management using
derivatives affects firm value is mixed. Jin and Jorion (2006) find no relation between hedging
and firm market value in the oil and gas industry. Most of the recent studies (Allayannis
and Weston, 2001; Mackay and Moeller, 2007; Perez-Gonzalez and Yun, 2013; Gilje and
Taillard, 2014), however, find statistically and economically significant differences in firm
value between hedgers and non-hedgers.

The average value of a bank increases by 1.0% when it uses derivatives (Table 2, row
21). This difference is statistically significant at a 1% level. It is to be compared with the
empirical estimates by Graham and Rogers (2002), who finds that hedging increases firms’
market value by 1.1%, or with those by Mackay and Moeller (2007), who find an increase
in firm value between 2% and 3% for firms hedging concave revenues. While bank value
is higher for derivatives users, the standard deviation of bank value is lower for them (row
22). Supportive evidence has been put forth by Bartram et al. (2011), who show that the
volatility of the market value of derivatives users is lower than that of non-users.

6 Derivatives hedging and the dynamics of bank
lending

How is lending affected by the possibility to hedge using interest rate derivatives? This
section uses a regression approach to address this question. It yields three main results.
First, there are significant differences between users and non-users in the response of bank
lending to interest rate shocks. Second, lending by users and non-users of interest rate
derivatives also responds differently to real shocks (z), even if these shocks are uncorrelated
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with interest rates. Third, differences in lending growth between users and non-users are
larger in periods in which “good” shock realizations hit (from the equity holders’ perspective),
i.e. either when the short rate decreases or when productivity rises. The use of derivatives
increases the procyclicality of bank lending during booms.

6.1 Baseline lending regression
The regression approach uses data simulated from the model to investigate differences in
bank lending between derivatives users and non-users. Our econometric model is inspired by
Purnanandam (2007). In the absence of a closed-form solution, this approach yields further
insights into the model’s dynamics. Theoretical elements from the model make it possible
to interpret the empirical findings.

6.1.1 Econometric specification

I reproduce the two main regressions of Purnanandam (2007) using simulated data. First,
the log change in total loans for group j ∈ {0 ≡ Non-users, 1 ≡ Users} at date t is regressed
on its own four lags, and on contemporaneous and three lags of innovations to z and r:

∆ log (a)jt = α0 +
k=4∑
k=1

αk∆ log (a)jt−k +
k=3∑
k=0

βk∆rt−k +
k=3∑
k=0

γk∆zt−k + εjt, (21)

where ∆ log (a)jt is the model equivalent of ∆ log (LOAN)jt in Purnanandam (2007)’s em-
pirical work. Relatedly, ∆rt ≡ rt − rt−1 can be seen as innovations to the Fed funds rate
and ∆zt ≡ zt− zt−1 as innovations to the log GDP in his setup. After estimating the model
of equation (21), I test the null hypothesis that the sums of coefficients on innovations to
the short rate (

∑k=3
k=0 βk) and on the real factor (

∑k=3
k=0 γk) are equal to 0. From the policy

function, a negative and a positive coefficient signs are expected, respectively, indicating that
lending decreases with the short rate and increases with real conditions.

Second, the lending behaviour of derivatives users and non-users is compared. The
difference in lending growth of the two groups (non-user minus user) in a given quarter is
used as the dependent variable. The model, which provides the most stringent evidence that
the lending policy of users and non-users differs, writes as

∆ log (a)0t −∆ log (a)1t = α0 +
k=4∑
k=1

αk
[
∆ log (a)0t−k −∆ log (a)1t−k

]

+
k=3∑
k=0

βk∆rt−k +
k=3∑
k=0

γk∆zt−k + εt. (22)

Coefficients of interest include both
∑k=3
k=0 βk and

∑k=3
k=0 γk. I test for the null hypothesis

that they are equal to zero. For example, a negative and significant coefficient on
∑k=3
k=0 γk

would indicate that, when z increases (which can be interpreted as growth in real terms),
user banks’ lending volume increases significantly more than that of non-user banks. These
models are estimated using 10,000 observations simulated from the model for both users and
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non-users, receiving the same path of shocks. The regressions are estimated in both cases
where γ = 0 and γ = 3 (baseline value), as the incentives to use derivatives are different in
each case. The estimated coefficients for the models in equations (21) and (22) are reported
in Panel A of Table 6.

6.1.2 Response to interest rate shocks

Consistent with the policy function, the summed coefficients on contemporaneous and lagged
innovations to the short rate r are negative and significant. This is true for both users and
non-users of derivatives, regardless of the value of γ. The decrease is larger when γ > 0,
since cash flows are decreasing in r in this case. While Purnanandam (2007) also finds a
negative and significant coefficient for derivatives non-users, his estimated coefficient is not
significant for derivatives users. In the model, optimal lending is decreasing in the short rate,
so that using derivatives to offset the full increase in the short rate and preserve lending to
its full extent cannot be optimal.

Whether lending growth differs between derivatives users and non-users, and whether the
difference is significant, is seen by estimating equation (22). When γ = 0, i.e. when the bank
cannot use derivatives to increase its debt capacity, the coefficient

∑k=3
k=0 βk, also reported

in Table 6, is negative but non-significant. Purnanandam (2007) also finds a negative but
significant coefficient, which he interprets as derivatives users shielding their lending policy
against interest rate spikes. A potential explanation why our estimate is not significant is
that, when γ = 0, derivatives are used in a rather small number of periods (Table 4, row 18).

When γ > 0, as also shown in Table 6, the estimated difference between users and
non-users turns positive and significant at a 1% level. Thus, derivatives users increase lend-
ing more during periods of monetary easing and may cut lending more during monetary
tightenings. Which effect is more important is discussed below. Even though statistically
significant, the economic magnitude of this difference is small. The difference in lending
response between users and non-users amounts to around 2% of the overall response of bank
lending, regardless of whether derivatives are used. In this respect, the model’s predictions
are consistent with Landier et al. (2015), who argue that the effect of derivatives hedging on
bank lending is likely small.

6.1.3 Response to real shocks

Turning to real shocks, bank lending is increasing in z, also consistent with the policy
function. More interesting is the difference in lending response by user and non-user banks
to real shocks. It is again not significant when γ = 0 and turns negative and significant at
a 5% level when γ > 0. This coefficient estimate suggests that derivatives users increase
lending more during periods of real growth. The next section shows that this estimate is
driven by periods in which ∆z > 0, i.e. that derivatives users do not cut lending more than
non-users during recessions.

It is the case that, while banks use derivatives to hedge interest rate fluctuations only,
differences in lending dynamics between users and non-users also arise in response to real
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shocks. This is the true even when the correlation between εz and εr is zero, as in Table 6.
This result is consistent with empirical evidence by Brewer et al. (2000), who show that loan
growth is positively related to the use of interest rate derivatives.

6.1.4 Procyclical lending: Mechanism

The increased procyclicality of bank lending for derivatives users comes from two sources, in
the cross-state and in the cross-period dimensions. When γ = 0, banks cannot increase their
present debt capacity by taking swaps. Whether banks hedge or not depends on whether
they expect to fall short of funds next period to meet their optimal lending level. Using
derivatives to transfer funds to such states, they have higher net worth in states in which it
is most valuable, and can thus exploit profit opportunities to a larger extent.

The procyclicality of lending for derivatives users is further reinforced by a second force,
whenever γ > 0. In this case, hedging future states can increase the bank’s present debt
capacity. Thus, derivatives tend to be used at times internal funds are low relative to
lending opportunities. Lending is consequently higher in good times. This is true regardless
of whether lending opportunities arise from shocks to z or r. The fact that interest rate
hedging increase the procyclicality of lending in response to real shocks, even when real
shocks are uncorrelated with interest rates, should therefore not be considered a surprise.

6.2 Asymmetric response to shocks
A limitation of the regression model in equation (22) is that it cannot account for asymmetric
effects between positive and negative shocks. For example, the estimated coefficient

∑k=3
k=0 γk

(Table 6, Panel A) should be interpreted as indicating that derivatives users increase lending
more than non-users during booms, and decrease lending more during busts, in similar
proportions. In contrast, another outcome of the model is an asymmetric response of bank
lending to positive and negative shocks, yielding a procyclical but asymmetric lending policy.

6.2.1 Regression approach

To document the differential response of lending by user and non-user banks, the model in
equation (22) is re-estimated on subsets of observations when ∆r or ∆z are either positive
or negative. Panel B in Table 6 summarizes these additional regression results, both γ = 0
and γ > 0.

As earlier, estimated differences in lending policy when γ = 0 are not statistically signif-
icant. Asymmetric effects arise when γ > 0. In response to good real shocks (∆z > 0), the
difference between users and non-users is significant at a 10% level, while it is not significant
when ∆z < 0. It is thus the case that derivatives users increase lending more than non-users
but do not decrease lending more than non-users in bad times.

With respect to interest rate shocks, a positive and statistically significant coefficient is
estimated both when ∆r > 0 and ∆r < 0. Therefore, derivatives users increase lending more
than non-users during periods of monetary easing, and cut lending more when the short rate
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rises. However, the magnitude of the coefficient for periods in which ∆r < 0 is close to 50%
larger than that estimated for periods in which ∆r > 0. Consequently, the decrease in bank
lending during periods of monetary tightening is larger for users than for non-users, but does
not fully offset the difference made in good times, when ∆r < 0. Together with the results
related to shocks to z, these results point to a “procyclical but asymmetric” lending policy,
by which derivatives users are better able to exploit transitory lending opportunities in good
times, and where the difference is not fully offset during downturns.

6.2.2 Asymmetric lending: Mechanism

The fact that derivatives users are able to preserve during downturns some of the benefits ob-
tained in good times (in the form of additional lending) can be explained by the substitution
between swaps are financial flexibility for risk management. When bad shocks hit (either
a low z or a high r), the present optimal lending is low. Banks cut lending both to regain
profitability and to restore their debt capacity for future investment. To regain profitability,
derivatives users may cut lending more than non-users. This is because they operate at a
larger scale, and are consequently less profitable at the margin, due to the concavity of π (.)
in a. When it comes to the restoration of lending capacity, however, derivatives users are
better able to continue lending. At such times, non-users restore their ability to exploit
future opportunities by cutting present lending and preserving debt capacity. Derivatives
users also preserve debt capacity to some extent, but the availability of an extra instrument
for them—which is a partial substitute—implies that they do so to a lower extent. The fact
that more debt capacity is preserved during downturns implies that the substitution between
financial flexibility and derivatives plays a larger role in such periods.

7 Conclusion
The interest rate derivatives market is the largest market worldwide, and is used extensively
by financial intermediaries. This paper provides the first comprehensive model of interest
rate hedging by commercial banks. It yields novel predictions about who hedges, the types
of positions being taken, as well as on the effects of derivatives hedging on bank’s capital
structure and lending policy. These predictions leave room for future empirical work on the
use of interest rate derivatives and on their effects on intermediaries’ capital structure.
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A Calibration
The model is calibrated and solved for numerically. This section discusses the calibrated
parameter values„ which are all summarized in Table 1.

A.1 Cash flow function
The value of θ is inferred from Mankart et al. (2014). They estimate the convex cost to be
paid by a bank that increases lending. Equating marginal cash flow when lending increases
by one unit in both models (given their parameter estimate), yields a value of θ close to
θ = 0.85, which I choose. The concavity of cash flows for banks is thus lower than for
non-financial firms (see estimates by Hennessy and Whited, 2007).

In the absence of guidance on the value of γ, the sensitivity of the bank’s cash flows to
the short rate, I treat it as a free parameter. In the baseline calibration, γ = 3 is assumed.
Most results are also provided for γ = 0. In this case, changes in the short rate do not affect
the bank’s cash flows from assets-in-place. Moments of the model for several alternative
values of γ are also contained in Table 4.

A.2 Shocks
Parameters ρz and σz are calibrated following the structural estimation by Hennessy and
Whited (2007), as ρz = 0.68 and σz = 0.12, where one period is thought of a one year. ρr
and σr are estimated from the time series of the Fed funds rate over the period from 1995
to 2014. The estimates are ρr = 0.8 and σr = 0.008. r∗ is the average Fed funds rate over
that period, equal to 0.03. In the baseline model, ρ, the correlation between εz and εr, is
assumed to be zero. Non-zero correlations are also explored.

A.3 Other structural parameters
The parameter δ, which captures the share of assets maturing between any two periods, is
obtained from the Call reports data. For each bank, the share of loans and debt securities
with a remaining maturity or next repricing data below one year is computed, as a percentage
of total loans. δ is parameterized as 0.23, which is the mean (weighted by total assets) over
all sampled banks and periods.

The liquidation value κ is set to 0.7, following Granja et al. (2014). They show that the
cost of a sold failed bank to the FDIC represents 28% of its assets. The corporate tax rate
is set to τ = 0.35, consistent with the U.S. tax code. Parameters for the issuing equity are
calibrated following the structural estimation by Hennessy and Whited (2007). η1 is set to
0.09 and η2 to 0.0004.
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B Model solution
This appendix details the numerical solution method. To solve the model, I specify a finite
state space for the state variable and for the shocks. Net worth w, defined in equation (11),
is the only state variable. It lies within a bounded set [w;w]. This follow from the fact that
a, b and d all lie within bounded sets.

Values of b and d are bounded by the collateral constraint (8). Equation (8) ensures the
existence of an upper limit on the amount of debt, b. A lower limit b on b′, even though
not computable in closed form, is ensured by the tax structure if τ > 0: when b′ becomes
too negative, the tax cost of holding cash becomes too large, and additional internal funds
are optimally distributed to equity holders. Consequently, b′ lies within a compact set

[
b, b
]
.

Equation (8) also imposes a lower and an upper bound on d′, which thus lies within a compact
set

[
d, d

]
.

Regarding a, it is bounded below by 0. The fact that it is bounded above follows from
the fact that z and r both have bounded supports, [z; z] and [r; r]. Denote ā the value of
the asset stock such that a > ā is not profitable for the bank, i.e.

(1− τ)πa (ā, z, r)− δ = 0. (23)

ā is well-defined by concavity of π (.) in a and because lima→∞πa (a, z, r) = 0. From the
definition of ā, b̄ is computed as b̄ = (1− τ) z (R− r)γ āθ + κā. d̄ is also obtained from the
collateral constraint in equation (8), given ā. w and w cannot be computed in closed form.
I let the grid values for w take 30 equally spaced values in the interval [−w̄a/4, w̄a], where
w̄a ≡ w (a∗, 0, 0) and a∗ is the steady state asset. The lower and upper limits are never hit
by the optimal choice of w′.

The shock processes for z and r, described by equations (5), (3) and (4), are trans-
formed into discrete-state Markov chains using an extension of Tauchen (1986)’s method to
multivariate and correlated AR(1) processes. They each take 10 equally spaced values in
[−2σz; 2σz] and [−2σr; 2σr] respectively.

The model is solved by value function iteration. It yields a policy function {a′, b′, d′} =
Γ (w, z, r).
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C Pay-fixed and pay-float swap positions in the
U.S. data

The prediction that both pay-fixed and pay-float swap positions can be optimally chosen is
broadly consistent with the data. Measuring banks’ net exposure in the derivatives market
is a challenging endeavour, discussed in Begenau et al. (2015). In this appendix, I simply
provide evidence that both types of positions co-exist in the data. A precise test of the
model’s predictions regarding position signs is left for future research.

I define the net swap position of a bank as

Net swap position = Gross pay-fixed exposure−Gross pay-float exposure
Total assets , (24)

where only exposures in the interest rate swap market are considered. To compute the net
swap position of U.S. commercial banks, I retrieve data from the Call Reports from 1995Q to
2013Q4. I exclude derivatives user for trading and restrict attention to derivatives used for
risk management. These exposures are reported separately in the call reports, as derivatives
“held for trading” or “held for purposes other than trading”.6 Furthermore, the net swap
position can be computed only for a subset of banks. The notional amount of interest rate
swaps used for hedging on which the bank pays a fixed rate is known for all banks, but both
the amount on which it pays a floating rate or the total amount of swaps for hedging are
unknown. The aggregate amount of swaps on which the bank pays a floating rate can be
computed only for a subset of banks which use only interest rate swaps for hedging and not,
for example, futures or options. These swaps represent 71.7% of all interest rate derivatives
held by U.S. commercial banks. These restrictions imply that the net swap position can be
computed for 4,464 bank-quarter observations, i.e. about 89 observations per quarter (which
is about one fourth of the sample of banks that actively use interest rate derivatives).

The net swap position of U.S. commercial banks is plotted in figure 5. There is consid-
erable heterogeneity in the type of positions taken by commercial banks, as both pay-fixed
and pay-float positions are observed among exposures reported for risk management. Fur-
thermore, the average net swap position is negative over the sample period, implying that
pay-float positions are held on average. Absent a detailed understanding of the reasons why
decreases in the interest rate may be hedged, this fact could be considered a puzzle, or as
evidence of misreporting or speculation. Whether alternative theories of interest rate risk in
banking can also rationalize this pattern is a question which is left for future work.

6Derivative contracts held for trading include (i) dealer and market making activities, (ii) taking
positions with the intention to resell in the short-term or to benefit from short-term price changes (iii)
taking positions as an accommodation for customers and (iv) taking positions to hedge other trading
activities. Derivatives for purposes other than trading thus include contracts held for hedging.
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D Tables and figures

Table 1: Calibrated values of the model parameters.
This table contains the baseline calibrated values for the model parameters. Appendix A provides
justifications for the chosen parameter values. Tables 2 to 4 provide moments of the bank’s capital
structure obtained using alternative calibrated values for the most relevant model parameters.

Parameter Description Value

Structural parameters

δ Share of maturing loans 0.23
θ Profit function concavity 0.85
η1 Cost of equity financing (linear part) 0.09
η2 Cost of equity financing (convex part) 0.0004
τ Corporate tax rate 0.35
κ Liquidation value of an asset unit 0.7
γ Profit sensitivity to the short rate 3

Shocks

r∗ Unconditional mean of r 0.03
ρz Persistence of z 0.68
σz Standard deviation of z 0.12
ρr Persistence of r 0.8
σr Standard deviation of r 0.008
ρ Correlation between εz and εr 0
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Table 2: Moments of the bank capital structure, with and without swaps.
This table provides moments of the bank capital structure, as obtained from simulated data with
the baseline calibration. The first and second columns contain moments obtained respectively in the
model without and with interest rate swaps. In the model without swaps, the restriction that d′ = 0
is imposed in all periods. Each model is simulated for 10,200 periods in which the bank receives
stochastic productivity and interest rate shocks {z, r}. The first 200 periods are dropped before the
moments of interest are calculated. All calibrated parameters are the same for the two models, and
are given in Table 1. The simulated sequence of shocks is also the same for the two models. The third
column contains the difference between the moments obtained from the model with swaps and those
obtained from the model without swaps. When the moment of interest is an average over simulated
observations, the fourth column provides the p-value as obtained from a two-sample t-test. ∗, ∗∗ and
∗∗∗ denote respectively statistical significance at the 10%, 5% and 1% level.

Without With Diff. (With p-value
swaps swaps minus without)

1 Average investment (i/a) 0.361 0.364 0.003 0.715
2 Standard deviation of investment (i/a) 0.555 0.570 0.015 —

3 Average debt to assets ratio (b/a) 0.878 0.895 0.017 0.000∗∗∗
4 Standard deviation of (b/a) 0.045 0.040 -0.006 —
5 Frequency of positive debt outstanding 1.000 1.000 0.000 —
6 Average cash balances to assets 0.000 0.000 0.000 1.000

7 Frequency of collateral constraint binding 0.376 0.456 0.080 —
8 Average percent of debt capacity used 0.959 0.977 0.018 0.000∗∗∗

9 Average equity distribution (e/a) 0.043 0.044 0.000 0.665
10 Standard deviation of equity distribution (e/a) 0.040 0.040 -0.001 —
11 Equity issuance frequency 0.087 0.078 -0.008 —
12 Average of non-zero equity issuance/assets 0.003 0.002 0.000 0.472

Average fraction of expenses
(incl. lending) funded from:

13 Current cash flow 0.265 0.261 -0.004 0.001∗∗∗
14 Cash balances 0.000 0.000 0.000 1.000
15 Debt issuance 0.735 0.738 0.003 0.029∗∗
16 Equity issuance 0.000 0.000 -0.000 0.052∗
17 Swap payoffs 0.000 0.001 0.001 0.000∗∗∗

18 Frequency of swaps use — 0.576 — —
19 Frequency of pay-fixed (cond.) — 0.745 — —
20 Frequency of pay-float (cond.) — 0.255 — —

21 Bank value for equity holders (V ) 418.084 422.300 4.216 0.000∗∗∗
22 Standard deviation of bank value (V ) 59.045 58.702 -0.344 —
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Table 3: Moments of the bank capital structure — With alternative properties of the
shocks.
This table provides moments of the bank capital structure with alternative structural properties of the
shocks. Panel A contains moments for alternative properties of the productivity shock z and Panel B
for alternative properties of the interest rate r. All moments are computed from simulated data with
γ = 0. The restriction that γ = 0 ensures that the incentive to take derivatives exposures is not driven
by the need to increase its debt capacity. The first column in Panel A contains moments obtained
with the baseline calibration of the model with interest rate swaps. Other columns contain the same
moments with alternative parameterizations of the shocks, respectively the standard deviation and
persistence of the productivity shock (σz and ρz) and of the interest rate shock (σr and ρr), as well as
the correlation between εz and εr (i.e. ρ). Other calibrated parameters are set at their baseline value.
For each parameter, we study high and low values, respectively σz ∈ {0.05; 0.15}, ρz ∈ {0.2; 0.85},
σr ∈ {0.004; 0.012}, ρr ∈ {0.1; 0.9} and ρ ∈ {−0.6; 0.6}. In each case, the model is simulated for
10,200 periods in which the bank receives stochastic productivity and interest rate shocks {z, r}. The
first 200 periods are dropped before the moments of interest are calculated. The simulated sequence
of shocks is the same in each case.

Panel A: Capital structure moments with alternative
properties of the productivity shock z (with γ = 0)

Baseline σz ρz
w/ γ = 0 Low High Low High

1 Average investment (i/a) 0.345 0.266 0.407 0.256 0.418
2 Standard deviation of investment (i/a) 0.522 0.279 0.689 0.239 0.721

3 Average debt to assets ratio (b/a) 0.906 0.965 0.859 0.940 0.839
4 Standard deviation of (b/a) 0.038 0.018 0.057 0.022 0.063
5 Frequency of positive debt outstanding 1.000 1.000 1.000 1.000 1.000
6 Average cash balances to assets 0.000 0.000 0.000 0.000 0.000

7 Frequency of collateral constraint binding 0.499 0.973 0.354 0.776 0.273
8 Average percent of debt capacity used 0.975 0.999 0.939 0.995 0.924

9 Frequency of swaps use 0.174 0.012 0.262 0.059 0.203
10 Frequency of pay-fixed (cond.) 0.032 0.029 0.047 0.272 0.043
11 Frequency of pay-float (cond.) 0.968 0.971 0.953 0.728 0.957

Panel B: Capital structure moments with alternative properties
of the interest rate r and of the correlation ρ (with γ = 0)

σr ρr ρ
Low High Low High < 0 > 0

12 Average investment (i/a) 0.336 0.358 0.348 0.345 0.390 0.311
13 Standard deviation of investment (i/a) 0.494 0.557 0.530 0.519 0.643 0.428

14 Average debt to assets ratio (b/a) 0.913 0.900 0.908 0.904 0.852 0.876
15 Standard deviation of (b/a) 0.020 0.050 0.022 0.053 0.045 0.036
16 Frequency of positive debt outstanding 1.000 1.000 1.000 1.000 1.000 1.000
17 Average cash balances to assets 0.000 0.000 0.000 0.000 0.000 0.000

18 Frequency of collateral constraint binding 0.570 0.388 0.409 0.492 0.269 0.554
19 Average percent of debt capacity used 0.982 0.968 0.977 0.972 0.947 0.973

20 Frequency of swaps use 0.073 0.258 0.255 0.160 0.375 0.133
21 Frequency of pay-fixed (cond.) 0.056 0.055 0.280 0.058 0.017 0.941
22 Frequency of pay-float (cond.) 0.944 0.945 0.720 0.942 0.983 0.059
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Table 4: Moments of the bank capital structure — With alternative value of γ.
This table provides moments of the bank capital structure, as obtained from simulated data, for
alternative values of γ ∈ {0; 5}. γ captures the sensitivity of the bank’s cash flow from assets-in-place
to the short rate r. Other calibrated parameters are set at their baseline value. In each case, the
model is simulated for 10,200 periods in which the bank receives stochastic productivity and interest
rate shocks {z, r}. The first 200 periods are dropped before the moments of interest are calculated.
The simulated sequence of shocks is the same in each case.

γ = 0 γ = 1 γ = 3 γ = 5
1 Average investment (i/a) 0.345 0.351 0.364 0.381
2 Standard deviation of investment (i/a) 0.522 0.536 0.575 0.625

3 Average debt to assets ratio (b/a) 0.906 0.910 0.901 0.895
4 Standard deviation of (b/a) 0.038 0.028 0.035 0.035
5 Frequency of positive debt outstanding 1.000 1.000 1.000 1.000
6 Average cash balances to assets 0.000 0.000 0.000 0.000

7 Frequency of collateral constraint binding 0.499 0.535 0.485 0.450
8 Average percent of debt capacity used 0.975 0.986 0.984 0.983

9 Average equity distribution (e/a) 0.044 0.044 0.043 0.042
10 Standard deviation of equity distribution (e/a) 0.039 0.037 0.040 0.041
11 Equity issuance frequency 0.060 0.084 0.091 0.088
12 Average of non-zero equity issuance/assets 0.011 0.012 0.013 0.014

Average fraction of expenses
(incl. lending) funded from:

13 Current cash flow 0.258 0.258 0.259 0.261
14 Cash balances 0.000 0.000 0.000 0.000
15 Debt issuance 0.742 0.742 0.739 0.736
16 Equity issuance 0.000 0.000 0.000 0.000
17 Swap payoffs 0.001 0.001 0.001 0.002

18 Frequency of swaps use 0.174 0.700 0.644 0.670
19 Frequency of pay-fixed (cond.) 0.032 0.762 0.704 0.619
20 Frequency of pay-float (cond.) 0.968 0.238 0.296 0.381
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Table 5: Financial constraints and derivatives hedging
This table contains regression results relating banks’ financial constraints to their hedging policy.
These regressions are run on data simulated from the model. In Panel A, a dummy variable equal
to one if the bank takes a pay-fixed position is regressed on a measure of financial constraints. The
measure of financial constraints is the percentage of debt capacity used, computed as the ratio of debt
taken to the maximum amount of debt possible, given by the collateral constraint. The regression
is run both unconditionnally (whether the bank uses derivatives or not), and conditional on using
non-zeros derivatives. In Panel B, the decision to hedge (a binary variable equal to one if the bank
takes non-zero derivatives) and the extent of hedging (the absolute value of the swap position d′) are
regressed on the same measure of financial constraints. Data is simulated from the baseline model
with interest rate swaps, with calibrated parameter values given in Table 1. In Panel B, γ = 0. In each
panel, the model is simulated for 10,200 periods in which the bank receives stochastic productivity
and interest rate shocks {z, r}. The first 200 periods are dropped before the regression coefficients
are estimated. p-values are in parentheses. Standard errors are heteroskedasticity-consistent. ∗, ∗∗
and ∗∗∗ denote respectively statistical significance at the 10%, 5% and 1% level.

Panel A: Regression of pay-fixed exposure on
the percentage of debt capacity used

Unconditional Conditional on using swaps

OLS OLS Probit
% of debt capacity used 5.153∗∗∗ 8.799∗∗∗ 30.023∗∗∗

p-value (0.000) (0.000) (0.000)

R2 0.285 0.398 0.344
N. obs. 10,000 5,761 5,761

Panel B: Regression of the decision to hedge on
the percentage of debt capacity used (γ = 0)

Decision to hedge Extent of hedging

OLS Probit OLS
% of debt capacity used −.797∗∗∗ −2.916∗∗∗ −255.011∗∗∗

p-value (0.000) (0.000) (0.000)

R2 0.009 0.009 0.016
N. obs. 10,000 10,000 10,000
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Table 6: Bank lending regressions.
This table presents regression results comparing the response of bank lending for derivatives users and
non-users to both interest rate and productivity shocks. These regressions are run on data simulated
from the model. In Panel A, the response of bank lending to (contemporaneous and lagged) interest
rate and productivity shocks is compared between users and non-users of derivatives, using the whole
sample of simulated data. The first two columns present estimates by groups, as in equation (21).
The last columns contains estimates of the differences in lending between groups, i.e. of the model
in equation (22). In Panel B, asymmetric responses in bank lending to “good” and “bad” shocks is
investigated. The model of equation (22) is estimated on subsamples of the data in which ∆r and
∆z are positive or negative. Data for derivatives users is simulated from the baseline model with
interest rate swaps. Each panel contains estimates obtained with γ = 0 and γ = 3. γ captures
the sensitivity of the bank’s cash flows to the short rate. Data for non-users is simulated once the
policy function is solved for under the restriction that d′ = 0 in all periods. Each model is simulated
for 10,200 periods in which the bank receives stochastic productivity and interest rate shocks {z, r}
each period. The first 200 periods are dropped before the regression coefficients are estimated. All
calibrated parameters are the same for the two models, and are given in Table 1. The simulated
sequence of shocks is also the same for the two models. p-values are in parentheses. Standard errors
are heteroskedasticity-consistent. ∗, ∗∗ and ∗∗∗ denote respectively statistical significance at the 10%,
5% and 1% level.

Panel A: Response of bank lending to shocks
for derivatives users vs. non-users.

With γ = 0.

Derivatives non-users Derivatives users Non-users minus users∑k=3
k=0 ∆rt−k -40.867∗∗∗ -40.878∗∗∗ -.272

(0.000) (0.000) (0.431)∑k=3
k=0 ∆zt−k 9.387∗∗∗ 9.459∗∗∗ .031

(0.000) (0.000) (0.208)
N. Obs. 9,996 9,996 9,996
Adj.-R2 0.939 0.937 0.400

With γ = 3.

∑k=3
k=0 ∆rt−k -73.782∗∗∗ -75.118∗∗∗ 1.617∗∗∗

(0.000) (0.000) (0.000)∑k=3
k=0 ∆zt−k 9.337∗∗∗ 9.392∗∗∗ -.061∗∗

(0.000) (0.000) (0.022)
N. Obs. 9,996 9,996 9,996
Adj.-R2 0.925 0.938 0.399

Panel B: Asymmetric response of bank lending to shocks
for derivatives users vs. non-users.

With γ = 0.

Subsample Coefficient Non-users minus users p-value N. Obs. Adj.-R2

∆r > 0 ∑k=3
k=0 ∆rt−k .418 (0.404) 4,806 0.519

∆r < 0 ∑k=3
k=0 ∆rt−k -.391 (0.542) 4,844 0.281

∆z > 0 ∑k=3
k=0 ∆zt−k .013 (0.769) 4,860 0.372

∆z < 0 ∑k=3
k=0 ∆zt−k .025 (0.502) 4,856 0.439

With γ = 3.

Subsample Coefficient Non-users minus users p-value N. Obs. Adj.-R2

∆r > 0 ∑k=3
k=0 ∆rt−k 1.182∗∗ (0.034) 4,806 0.482

∆r < 0 ∑k=3
k=0 ∆rt−k 1.834∗∗∗ (0.005) 4,844 0.312

∆z > 0 ∑k=3
k=0 ∆zt−k -.079∗ (0.091) 4,860 0.378

∆z < 0 ∑k=3
k=0 ∆zt−k -.037 (0.358) 4,856 0.430
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Figure 1: The growth of derivatives markets.
This figure represents the gross notional amount of all over-the-counter (OTC) derivative contracts
outstanding worldwide (blue line). Its most sizeable component is the interest rate derivatives market
(solid green line). Most of the exposures in the interest rate derivatives market are held by financial
institutions (dashed green line). These derivatives market are compared with the global nominal
GDP (red line) over the period from 1998 to 2014. Data sources: BIS (for derivatives data) and
World Bank (for GDP data).
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Figure 2: Policy function.
This figure depicts the policy function of the model, using the baseline calibration. Each function
maps a current shock to the optimal investment (lending), debt and dividend distribution/issuance
to equity holders. Panel A depicts the policy function with respect to the log productivity shock and
Panel B with respect to the short rate. The policy functions are computed at the steady state asset
size, defined as the asset size to which the bank would converge if it were to receive a long series
of zeros shocks, i.e. εz = εr = 0. Each variable is normalized by this steady state asset size. The
collateral constraint is also depicted. The collateral constraint is that from the model with no swaps,
d′ = 0.
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Figure 3: “Worst-case” interest rate realization r̂.
This figure plots the “worst-case” interest rate realization for the bank at date t+ 1, i.e. r̂, given its
choice of its choice of interest rate swaps d′ at date t. The value of r̂ is given by equation (7). The
value of r̂ is evaluated at the steady state asset stock a∗, as a function of d′ and for three values of
γ. The parameter γ captures the sensitivity of the bank’s cash flow to the short rate. When γ = 0
(black line), cash flows do not depend on the realization of r. When d′ < 0, it is always the case
that r̂ = r, because states in which cash flows from assets in place and states in which the bank is
a net swap payer coincide. When d′ > 0, swaps provide hedging on low cash flow realizations, and
whether r̂ equals r or not depends on the relative magnitude of γ and of the swap position d′. In this
calibration, r = 0.065 and r = 0.005.
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Figure 4: Hedging policy given {z, r}.
This figure plots the optimal hedging policy of the bank, given shock realizations {z = 0, r = r∗}, as
a function of its net worth w. The policy function is obtained by solving the model with the baseline
calibration using value function iteration. A positive value of the swap position d′ denotes a pay-fixed
position, while negative values denote pay-float positions. The fact that banks use pay-fixed positions
when their net worth is lower, given investment opportunities (determined by {z, r}), reflects the fact
that pay-fixed positions are used by constrained banks to increase their present debt capacity by
transfering funds to future states in which their cash flows would otherwise be low. In doing so, they
increase the pledgeable value in this “worst-case” state, which determines the bank’s debt capacity,
given by the collateral constraint in equation (8).
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Figure 5: Net swap position of U.S. commercial banks.
This figure plots the distribution of the net swap position for U.S. commercial banks. There is one
cross-sectional box plot for each quarter from 1995Q1 to 2013Q4. In each of them, the horizontal dash
is the median and the diamond is the mean. The whiskers represent the 5th and 95th percentiles. The
grey rectangle represents the 25th and 75th percentiles. The net swap position is computed as the
difference between gross notional pay-fixed and gross notional pay-float swap positions, normalized
by total assets (equation 24). A positive (resp. negative) value of the net swap position indicates
a net pay-fixed (resp. pay-float) position at the bank level. The sample is restricted to a subset of
commercial banks that hedge interest rate risk using interest rate swaps only, as the net swap position
cannot be computed for other banks. There are between 120 and 207 banks in the sample, depending
on the quarter. Data is from the call reports, obtained from the Federal Reserve Bank of Chicago.
Total assets is variable rcon2170 in the call reports. Swaps on which the bank pays a pay-fixed
position is variable rcona589 and total derivatives for purposes other than trading is rcon8725 (plus
rcon8729 between 1995 and 2000). For banks that use only swaps for hedging, pay-float swaps are
thus equal to rcon8725 − rcona589. Derivatives used for trading purposes are not included in the
calculation of the net swap position.
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