Implementation of the treatment of the scanner data in France

Guillaume Rateau Head of the CPI methodology section

Mesurer pour comprendre

May 2017

since 2009

Solution studies, implementation of the IT system to treat scanner data and establishing of the legal framework

2018

Double computation of indices without integration of the indices based on scanner data in the CPI

2019

End of the traditional price collection for the scope of the project and replacement by scanner data

Introduction : scope of scanner data

Outlets : supermarkets and hypermarkets (no discounters, no small-scale retailers)

Products : manufactured food, beverages (01-021), household goods (0561), pets products (09342), products for personal care (12132) (no fresh products : meat, fish, vegetable, fruits)

Geography : mainland France (no overseas department)

- \Rightarrow 14% of the expenditure covered by HICP
- Studiesonly voluntary retailers data = 30% target expenditureonly 8 consumption segments representative different cases

Transaction files

Day	Outlet	GTIN	Description	Quantity sold	Turnover
20160608	933	3272770004817	ST MORET PLAIN 150G	1	1,89
20160608	933	3154230040286	HERTA BACON 150G	2	4,76
20160610	933	3184670001080	RIANS STRAINED SOFT 6%MG 1KG	1	2,59
20160610	825	2071900007304	ERSTEIN SUGAR SEMOLINA BEET KG	2	2,70

produced by each outlet

Characteristics files

GTIN	Brand	Type of oil	Total volume	
3265477983004	ISIO 4	MIXTURE	1200 ml	
3760109431149	J LEBLANC	SUNFLOWER	1000 ml	

≈ twenty characteristics per products, extracted from labels and photos produced by a market intelligence company

Daily sent data \Rightarrow each day = 50 million observations, 5GB of raw data

Introduction : methodology

Objective : « usual » price index concepts

Producer discounts / relaunches

 $\begin{array}{ccc} \text{COICOP} \ {\scriptstyle \supset} & \begin{array}{c} \text{consumption} \\ \text{segment} \end{array} \xrightarrow{} & \begin{array}{c} \text{equivalence} \\ \text{class} (\text{EQ}) \end{array} \xrightarrow{} & \begin{array}{c} \text{GTIN} \end{array} \end{array}$

equivalence class

GTIN with same characteristics (similar volume, include promotions)

= same product for consumers

Fixed basket = { EQ x outlet }

Filters dump filter, outliers in price level price changes = outliers / retailer discounts ∈ [-50%, +100%] products sold since more than 30 days **Product aggregation**

price [product] = turnover (quantity sold) × (volume of material)

elementary aggregate = consumption segment × outlet

= geometric Laspeyres prices [1st-28th] month

 \Leftrightarrow Substitution of consumer in the same outlet

higher level indices = usual Laspeyres of elementary aggregates

Introduction : time aggregation ?

daily data \Rightarrow price index based on **daily prices** ? goods not bought every day \Rightarrow missing prices ?

scanner data price = unit value

- **CPI** price = price offer \approx daily unit value
 - product = goods in given outlet, at given day of month

justified approach for goods in supermarkets ?

USE current quantities

 \Rightarrow differences with unweighted aggregate ?

- 1. Can daily prices be considered ?
- 2. Time aggregation formula
- 3. Differences with unweighted aggregates

1. Can daily prices be considered ?

- 2. Time aggregation formula
- 3. Differences with unweighted aggregates

1. Daily prices : interpolating

goods not bought every day \Rightarrow missing prices

several ways of interpolating

1. Daily prices : assessment of the error

1. estimate $E\begin{bmatrix} \frac{p_{d+i}^*}{p_{d+i}} & i \end{bmatrix}$ from data by exhaustive cross-validation

2. compute the expected relative bias for each month

- Carry forward - Linear interpolating - Middle point

 \Rightarrow low level of error

 \Rightarrow thereafter, daily prices defined by the middle point method

1. Can daily prices be considered ?

2. Time aggregation formula

3. Differences with unweighted aggregates

2. Time aggregation : formulae

Consider the extreme cases :

product = EQ \times outlet \times day of month different product each day of the month

$$\overline{p}_i^m = \prod_{d=1}^{28} (p_i^{d,m})^{\omega_{i,d}}$$

product = $EQ \times outlet$

same product during the whole month

$$\overline{p}_{i}^{m} = \frac{\sum_{d=1}^{28} q_{i}^{d,m} \times p_{i}^{d,m}}{\sum_{d=1}^{28} q_{i}^{d,m}}$$

 $ω_{i,d}$ α quantities product i sold during year Y-1 x price in Dec Y-1 $q_i^{d,m}$ = quantity sold day d month m of product i

 \Rightarrow different formulae

2. Time aggregation : daily vs monthly prices

.

ω;

Comparison of monthly changes :
$$I_{v}^{m/m-1} = \prod_{i} \left(\frac{\overline{p}_{i}^{m}}{\overline{p}_{i}^{m-1}} \right)$$

- Daily prices index - Monthly unit value index

 \Rightarrow monthly unit value index more volatile, marked differences

Are the product different in level during the month?

assess day of week effect = mean (residues of moving averages over 7 days) week of month effect = mean (residues of moving averages over 4 weeks of weekly unit values prices)

 \Rightarrow relatively low differences of price levels during the month

Are the paths of prices different during the month?

 \Rightarrow monthly changes related to each day of week, each week of month

 \Rightarrow very similar price paths

 \Rightarrow some paths seem to be different

18

2. Time aggregation : conclusion

At this stage

Scope : goods (no fresh products) sold in supermarket (2013-2016)

• no structural difference of price levels

• no dynamic difference at the level of the day

 \Rightarrow no point to consider price index based on daily prices

• dynamic differences at the level of the week

 \Rightarrow are they due to discounts ?

1. Can daily prices be considered ?

2. Time aggregation formula

3. Differences with unweighted aggregates

3. Differences : discounts / relaunches

3. Differences : producer discounts / relaunches

Computation of the monthly changes without the equivalence classes

 \Rightarrow differences between indices are not due to producer discounts/relaunches

3. Differences : retailer discounts

Computation of the monthly changes without the retailer discounted products

 \Rightarrow differences between indices are mainly due to retailer discounts

23

3. Differences : retailer discounts

small sales share ($\approx 2.5\%$), very short duration (≤ 4 days in average) generally related to an increase of quantities ... but not always

... and also explosion of quantities

tiny part of very high discounts (up to 90%) are they outliers ?

May 2017

For the scope of goods (no fresh products) sold in supermarket (2013-2016)

- no structural differences of prices within the month
 - \Rightarrow no need to define a daily or weekly prices index
 - \Rightarrow prices can be computed as a monthly unit values

• may exist marked differences between price indices using fixed weights and current quantities

- \Rightarrow differences are mainly due to very short & important retailer discounts
- \Rightarrow compared to "traditional" CPI, change of weights put on discounts
- \Rightarrow fine tuning of the price change filter ?

Thank you for your attention

Insee

18 bd Adolphe-Pinard 75675 Paris Cedex 14

Informations statistiques : www.insee.fr / Contacter l'Insee 09 72 72 4000 (coût d'un appel local) du lundi au vendredi de 9h00 à 17h00

