Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)

Andrew J. Patton Johanna F. Ziegel Rui Chen

Duke University University of Bern Duke University

September 2017

Measures of market risk

■ The simplest and most widely-used measure of risk is **variance**:

$$\sigma_t^2 \equiv \mathbb{E}_{t-1} \left[(Y_t - \mu_t)^2 \right]$$

■ In the 1990s, in part prompted by Basel I and II, attention in risk management moved to **Value-at-Risk**:

$$VaR_{t} \equiv F_{t}^{-1}(\alpha) \Rightarrow Pr_{t-1}[Y_{t} \leq VaR_{t}] = \alpha$$

■ The Basel III accord pushes banks to move from Value-at-Risk towards Expected Shortfall:

$$ES_t \equiv \mathbb{E}_{t-1} [Y_t | Y_t \leq VaR_t]$$

Why the move from VaR to ES?

- Academic work has highlighted some problems with VaR (see McNeil, et al. 2015 for a summary):
- Value-at-Risk has some positive attributes:
 - Focuses on the left tail of returns, so more relevant for risk mgmt
 - Easy to interpret ("the loss that is only exceeded on 5% of days")
 - Is well-defined even for **fat-tailed** distributions; is a **robust** statistic
- But VaR suffers from important drawbacks (Artzner et al. 1999, *MathFin*):
 - Not "sub-additive:" diversification may make VaR look worse
 - No information about losses beyond the VaR
- Expected Shortfall addresses both of these drawbacks
 - But it is not a robust statistic, and does require moment assumptions

- To answer this, consider how we estimate and model Value-at-Risk.
- For a given sample $\{Y_t\}_{t=1}^T$, VaR can be obtained as

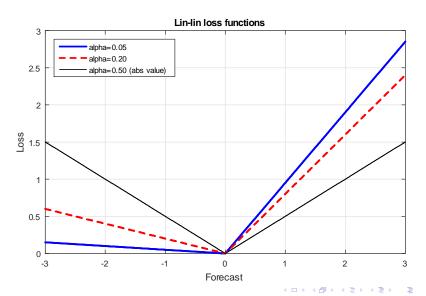
$$\widehat{VaR}_T = \arg\min_{v} \frac{1}{T} \sum_{t=1}^{T} L(Y_t, v; \alpha)$$

where
$$L(y, v; \alpha) = (\mathbf{1}\{y \le v\} - \alpha)(v - y)$$

- The loss function here is the "tick" or "lin-lin" loss function
- Given this loss function, it is possible to consider models like "CAViaR" (Engle and Manganelli, 2004, JBES):

$$\hat{\boldsymbol{\theta}}_{T} = \arg\min_{\boldsymbol{\theta}} \frac{1}{T} \sum_{t=1}^{T} L(Y_{t}, v(\mathbf{Z}_{t-1}; \boldsymbol{\theta}); \alpha)$$
 and $VaR_{t} = v(\mathbf{Z}_{t-1}; \boldsymbol{\theta})$

The "lin-lin" loss function



• Given an estimator of VaR, sample Expected Shortfall can be computed as:

$$\widehat{ES}_{T} = \frac{1}{\alpha T} \sum\nolimits_{t=1}^{T} Y_{t} \mathbf{1} \left\{ Y_{t} \leq VaR_{t} \right\}$$

• Given an estimator of VaR, sample Expected Shortfall can be computed as:

$$\widehat{ES}_{T} = \frac{1}{\alpha T} \sum\nolimits_{t=1}^{T} Y_{t} \mathbf{1} \left\{ Y_{t} \leq VaR_{t} \right\}$$

But there does not exist an objective function such that ES is the solution:

$$\nexists L^* \quad \text{s.t.} \quad \widehat{ES}_T = \arg\min_{e} \ \frac{1}{T} \sum_{t=1}^{T} L^* (Y_t, e; \alpha)$$

• Given an estimator of VaR, sample Expected Shortfall can be computed as:

$$\widehat{ES}_{T} = \frac{1}{\alpha T} \sum_{t=1}^{T} Y_{t} \mathbf{1} \left\{ Y_{t} \leq VaR_{t} \right\}$$

■ But there *does not exist* an objective function such that ES is the solution:

$$\sharp L^* \quad \text{s.t.} \quad \widehat{ES}_T = \arg\min_{e} \ \frac{1}{T} \sum_{t=1}^{T} L^* \left(Y_t, e; \alpha \right)$$

■ Expected Shortfall is "non-elicitable" (Gneiting 2011, *JASA*). This explains, perhaps, the lack of models for Expected Shortfall:

Given an estimator of VaR, sample Expected Shortfall can be computed as:

$$\widehat{ES}_{T} = \frac{1}{\alpha T} \sum_{t=1}^{T} Y_{t} \mathbf{1} \left\{ Y_{t} \leq VaR_{t} \right\}$$

But there does not exist an objective function such that ES is the solution:

$$\sharp L^* \quad \text{s.t.} \quad \widehat{ES}_T = \arg\min_{e} \ \frac{1}{T} \sum_{t=1}^{T} L^* \left(Y_t, e; \alpha \right)$$

- **Expected Shortfall is "non-elicitable"** (Gneiting 2011, JASA). This explains, perhaps, the lack of models for Expected Shortfall:
- ★ We exploit recent results in statistics and decision theory which shows that while ES is not elicitable, it is **jointly elicitable** with Value-at-Risk.

Related literature

- A lot of work has been done on models for risk management, mostly VaR:
 - McNeil, Frey and Embrechts (2015, Quantitative Risk Mgmt)
 - Daníelsson (2011, Financial Risk Forecasting)
 - Komunjer (2010, Handbook of Economic Forecasting)
- This paper is closest to Engle and Manganelli (2004, JBES) who propose time series models for conditional quantiles, and establish conditions for estimation and inference
 - We extend their paper to consider ES (jointly with VaR)
- We draw on two distinct recent advances in the literature:
 - Statistical decision theory: Fissler and Ziegel (2016, AoS)
 - Parameter-driven time series models: Creal, Koopman and Lucas (2013, JAE)

Outline

- Motivation and introduction
- Estimating Expected Shortfall (and Value-at-Risk)
 - The Fissler-Ziegel loss function
 - Dynamic models for VaR and ES
- Inference methods
 - Assumptions and main results
 - Simulation study of finite-sample properties
- Results for four international equity indices
 - In-sample parameter estimates and hypothesis tests
 - Out-of-sample forecast comparisons
- 5 Summary and conclusion

Joint estimation of VaR and Expected Shortfall

- Fissler and Ziegel (2016, AoS) show that while ES is not elicitable, it is **jointly elicitable** with VaR, using the class of "FZ" loss functions.
- We will use a homogeneous of degree zero FZ loss function, as for the values of α of interest we know $ES_t < 0$. There is only one such FZ loss:

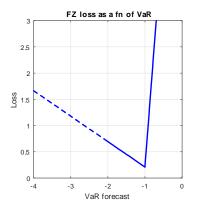
$$L_{FZ0}(Y, v, e; \alpha) = -\frac{1}{\alpha e} \mathbf{1} \{Y \le v\} (v - Y) - \frac{1}{e} (e - v) + \log(-e)$$

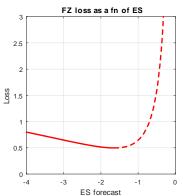
- \blacksquare where Y is the (future) return, v is the VaR forecast, and e is the ES forecast.
- This loss function yields loss function differences (between two competing sets of VaR and ES forecasts) there homogeneous of degree zero.
- Minimizing this loss function yields VaR and ES:

$$[VaR_t, ES_t] = \arg\min_{(v,e)} \mathbb{E}_{t-1} [L_{FZ0} (Y_t, v, e; \alpha)]$$

The FZ0 loss function

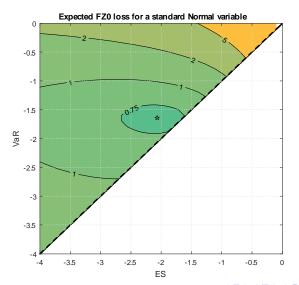
The implied VaR loss is the familiar "tick" loss function; the implied ES loss resembles "QLIKE"





The expected FZ0 loss function

for a N(0,1) target variable. Contours are convex.



Dynamic models for ES and VaR

With a loss function available, it is possible to consider dynamic models for ES and VaR:

$$VaR_t = v(\mathbf{Z}_{t-1}; \theta)$$

 $ES_t = e(\mathbf{Z}_{t-1}; \theta)$

■ The parameters of this model can then be obtained as:

$$\hat{\boldsymbol{\theta}}_{T} = \arg\min_{\boldsymbol{\theta}} \ \frac{1}{T} \sum_{t=1}^{T} L(Y_{t}, v(\mathbf{Z}_{t-1}; \boldsymbol{\theta}), e(\mathbf{Z}_{t-1}; \boldsymbol{\theta}))$$

■ We propose some new models for ES (and VaR), drawing on recent research, and then provide theory for estimation and inference for these models.

GAS models for dynamic ES and VaR I

■ Creal et al. (2013, *JAE*) proposed "generalized autoregressive score" models for time-varying density models:

$$\begin{aligned} Y_t | \mathcal{F}_{t-1} & \sim & F(\theta_t) \\ \theta_t & = & \mathbf{w} + \mathbf{B} \cdot \theta_{t-1} + \mathbf{A} \cdot \mathbf{S}_{t-1} \frac{\partial \log f(y_{t-1}; \theta_{t-1})}{\partial \theta} \end{aligned}$$

- Using the score $(\partial \log f/\partial \theta)$ as the "forcing variable" enables them to nest many existing models, including ARMA and GARCH models.
 - The "scale" matrix, S_{t-1} , is often set to the inverse Hessian.
- This choice of forcing variable can be motivated as the Newton-Raphson step in a numerical optimization algorithm.

GAS models for dynamic ES and VaR II

- We adopt this modeling approach, and apply it to our M-estimation problem.
- Consider the following GAS(1,1) specification for VaR and ES:

$$\begin{bmatrix} v_{t+1} \\ e_{t+1} \end{bmatrix} = \mathbf{w} + \mathbf{B} \begin{bmatrix} v_t \\ e_t \end{bmatrix} + \mathbf{A} \left(\frac{\partial^2 \mathbb{E}_{t-1} \left[L\left(Y_t, v_t, e_t \right) \right]}{\partial \left(\mathbf{ve} \right) \partial \left(\mathbf{ve} \right)'} \right)^{-1} \frac{\partial L\left(Y_t, v_t, e_t \right)}{\partial \left(\mathbf{ve} \right)}$$

$$= \mathbf{w} + \mathbf{B} \begin{bmatrix} v_{t-1} \\ e_{t-1} \end{bmatrix} + \mathbf{A} \begin{bmatrix} \lambda_{v,t-1} \\ \lambda_{e,t-1} \end{bmatrix}$$

where the "forcing variables" are given by

$$\lambda_{v,t} = -v_t \left(\mathbf{1} \left\{ Y_t \le v_t \right\} - \alpha \right)$$

$$\lambda_{e,t} = -\left(\frac{1}{\alpha} \mathbf{1} \left\{ Y_t \le v_t \right\} Y_t - e_t \right)$$

Competing models I

- While there are relatively few dynamic models for ES, there are some. We consider the following models as competition:
- Rolling window:

$$\widehat{VaR}_{t} = \widehat{Quantile} \left\{ Y_{s} \right\}_{s=t-m+1}^{t}$$

$$\widehat{ES}_{t} = \frac{1}{\alpha m} \sum_{s=t-m+1}^{t} Y_{s} \mathbf{1} \left\{ Y_{s} \leq \widehat{VaR}_{s} \right\}$$

 $m \in \{125, 250, 500\}$

Competing models II

ARMA-GARCH models

$$Y_t = \mu_t + \sigma_t \eta_t$$

 $\mu_t \sim ARMA(p, q)$, $\sigma_t^2 \sim GARCH(p, q)$

- a. $\eta_t \sim iid N(0,1)$
- b. $\eta_t \sim iid Skew t(0,1,\nu,\lambda)$
- c. $\eta_t \sim iid F(0,1)$ (estimated by the EDF)
- Model 2(c) is also known as "filtered historical simulation," and is probably the best existing model for ES (see survey by Engle and Manganelli (2004, book)).

■ Consider a generic model:

$$VaR_t = v(\mathbf{Z}_{t-1}; \boldsymbol{\theta})$$

Consider a generic model:

$$VaR_t = v(\mathbf{Z}_{t-1}; \theta)$$

 $ES_t = e(\mathbf{Z}_{t-1}; \theta)$

- Such a model is a *semiparametric* model for returns:
 - We assume parametric dynamics for ES and VaR
 - We make no assumptions about the distribution of returns (beyond regularity conditions required for estimation and inference)

Consider a generic model:

$$VaR_t = v(\mathbf{Z}_{t-1}; \theta)$$

 $ES_t = e(\mathbf{Z}_{t-1}; \theta)$

- Such a model is a *semiparametric* model for returns:
 - We assume parametric dynamics for ES and VaR
 - We make no assumptions about the distribution of returns (beyond regularity conditions required for estimation and inference)
- By eliminating the need for assumptions about the distribution of returns, we hopefully obtain a more robust model. But:

Consider a generic model:

$$VaR_t = v(\mathbf{Z}_{t-1}; \theta)$$

 $ES_t = e(\mathbf{Z}_{t-1}; \theta)$

- Such a model is a *semiparametric* model for returns:
 - We assume parametric dynamics for ES and VaR
 - We make no assumptions about the distribution of returns (beyond regularity conditions required for estimation and inference)
- By eliminating the need for assumptions about the distribution of returns, we hopefully obtain a more robust model. But:
 - There may be efficiency losses. We will study this carefully in our OOS forecasting analysis.
 - This is not a complete probability model: further assumptions are needed to draw simulations, for example.

A one-factor model

• Consider a case where there is only one latent factor driving VaR and ES:

$$\begin{array}{rcl} v_t & = & a\exp\left\{\kappa_t\right\} \\ e_t & = & b\exp\left\{\kappa_t\right\}, \text{ where } b < a < 0 \\ \text{where } & \kappa_t & = & \omega + \beta\kappa_{t-1} + \gamma H_{t-1}^{-1} s_{t-1} \end{array}$$

■ If we derive the GAS dynamics for κ_t we find

$$H_{t-1}^{-1} s_{t-1} = \frac{-1}{e_{t-1}} \left(\frac{1}{\alpha} \mathbf{1} \left\{ Y_{t-1} \le v_{t-1} \right\} Y_{t-1} - e_{t-1} \right) \equiv \frac{-\lambda_{e,t-1}}{e_{t-1}}$$

lacktriangle The intercept, ω , is not identified here so we fix it at zero.

GARCH with FZ estimation

Next consider GARCH dynamics for the latent factor, but estimate using the FZ0 loss function rather than QML:

$$\begin{array}{rcl} Y_t & = & \kappa_t \eta_t, & \eta_t \sim \textit{iid } F_\eta \\ \text{so} & v_t & = & a \cdot \kappa_t \\ & e_t & = & b \cdot \kappa_t, \text{ with } b < a < 0 \\ \text{and} & \kappa_t^2 & = & \omega + \beta \kappa_{t-1}^2 + \gamma Y_{t-1}^2 \end{array}$$

- lacktriangle As above, the intercept, ω , is not identified here and we fix it at one.
- If the GARCH model is correct, this is consistent but almost certainly less efficient than QML
- If the model is **misspecified**, estimating this way yields the parameters that lead to the best possible VaR and ES forecasts.

A hybrid GAS+GARCH model

Finally, consider a "hybrid" model, where as before we have:

$$\begin{array}{rcl} Y_t & = & \exp\left\{\kappa_t\right\}\eta_t, & \eta_t \sim \textit{iid } F_{\eta} \\ \text{so} & v_t & = & a\exp\left\{\kappa_t\right\} \\ & e_t & = & b\exp\left\{\kappa_t\right\}, & \text{with } b < a < 0 \end{array}$$

■ We augment the GAS dynamics for κ_t with a "GARCH" term:

$$\kappa_t = \omega + \beta \kappa_{t-1} + \gamma \frac{-\lambda_{e,t-1}}{e_{t-1}} + \delta \log |Y_{t-1}|$$

Outline

- Motivation and introduction
- Estimating Expected Shortfall (and Value-at-Risk)
 - The Fissler-Ziegel loss function
 - Dynamic models for VaR and ES
- Inference methods
 - Assumptions and main results
 - Simulation study of finite-sample properties
- Results for four international equity indices
 - In-sample parameter estimates and hypothesis tests
 - Out-of-sample forecast comparisons
- 5 Summary and conclusion

Outline

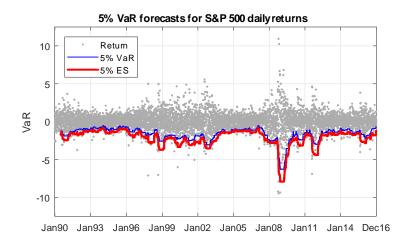
- Motivation and introduction
- Estimating Expected Shortfall (and Value-at-Risk)
 - The Fissler-Ziegel loss function
 - Dynamic models for VaR and ES
- 3 Inference methods
 - Assumptions and main results
 - Simulation study of finite-sample properties
- Results for four international equity indices
 - In-sample parameter estimates and hypothesis tests
 - Out-of-sample forecast comparisons
- 5 Summary and conclusion

Data

- We study daily returns on four equity indices
 - S&P 500
 - Dow Jones Industrial Average
 - NIKKEI 225
 - FTSE 100.
- Sample period is January 1990 to December 2016
 - Number of observations (*T*) is 6630 to 6805.
 - We use the first 10 years ($R \approx 2500$) for estimation, and the last 17 years ($P \approx 4250$) for out-of-sample forecast comparison.

Daily returns on the S&P 500 index

Rolling window estimates of the 5% VaR and ES



Summary statistics

	S&P 500	DJIA	NIKKEI	FTSE
Mean (Annualized)	6.776	7.238	-2.682	3.987
Std dev (Annualized) Skewness	17.879 -0.244	17.042 -0.163	24.667 -0.114	17.730 -0.126
Kurtosis	11.673	11.116	8.580	8.912
VaR-0.01 VaR-0.025	-3.128 -2.324	-3.034 -2.188	-4.110 -3.151	-3.098 -2.346
VaR-0.05	-1.731	-1.640	-2.451	-1.709
ES-0.01	-4.528	-4.280	-5.783	-4.230
ES-0.025 ES-0.05	-3.405 -2.697	-3.215 -2.553	-4.449 -3.603	-3.295 -2.643

ARMA-GARCH-Skew t models for these returns

	S&P 500	DJIA	NIKKEI	FTSE
Mean R^2	ARMA(1,1) 0.006	AR(2) 0.004	AR(0) 0.000	AR(4) 0.009
ω	0.014	0.017	0.066	0.016
eta lpha	0.905 0.082	0.897 0.088	0.863 0.113	0.893 0.094
ν	6.934	7.062	7.806	11.800
λ	-0.115	-0.100	-0.066	-0.10

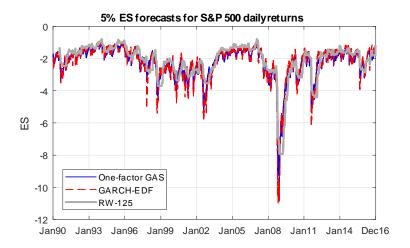
One-factor models for ES and VaR

SP500, alpha=0.05. Preferred model is the "hybrid" model

	GAS-1F	GARCH-FZ	Hybrid
β	0.990 (0.004)	0.908 (0.072)	0.968 (0.015)
γ	-0.010 (0.002)	0.030 (0.010)	-0.011 (0.002)
δ	-	-	0.018 (0.009)
a	-1.490 (0.346)	-2.659 (0.492)	-2.443 (0.473)
Ь	-2.089 (0.487)	-3.761 (0.747)	-3.389 (0.664)
Avg Loss	0.750	0.762	0.745

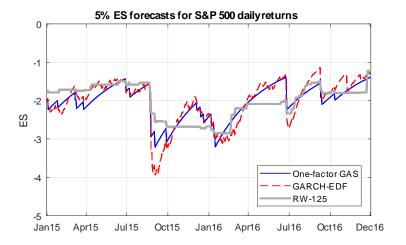
Dynamic Expected Shortfall: 1990-2016

ES ranges from around -1.5% in mid 90s, to -10% in financial crisis



Dynamic Expected Shortfall: 2015-2016

The difference between the GAS and GARCH forcing variables is apparent here



The models used for in OOS forecast comparison

- Rolling Window, with $m \in \{125, 250, 500\}$
- ⊙ GARCH(1,1) with Normal, Skew t, or EDF for the residuals
- \bigstar GAS(1,1) dynamics, 2 factors
- ★ GAS(1,1) dynamics, 1 factor
- ★ GARCH-FZ: estimating the GARCH model using the FZ loss function
- ★ Hybrid model: one-factor GAS model, with GARCH forcing variable included

Evaluating and comparing out-of-sample forecasts

- We estimate the models using data only from the estimation sample (up until Dec 1999)
 - \blacksquare $R \approx 2500$, $P \approx 4250$
- Forecasts of VaR and ES are then produced for each day in the OOS period
 - No look-ahead bias in the forecasts
- We compare the forecasts using the FZ loss function:
 - Rankings by average loss in the OOS period(s)
 - Diebold-Mariano tests on average losses from these forecasts
 - 3 Goodness-of-fit tests

OOS forecast comparison results: Average loss

SP500, alpha=0.05. 1-factor GAS model, w/wo "hybrid" forcing variable, is best.

_	SP500	DJIA	NIKKEI	FTSE
RW-125	0.914	0.864	1.290	0.959
RW-250	0.959	0.909	1.294	1.002
RW-500	1.023	0.976	1.318	1.056
GARCH-N	0.876	0.808	1.170	0.871
GARCH-Skt	0.866	0.796	1.168	<u>0.863</u>
GARCH-EDF	0.862	0.796	1.166	0.867
FZ-2F	<u>0.856</u>	0.798	1.206	1.098
FZ-1F	0.853	0.784	1.191	0.867
GARCH-FZ	0.862	0.797	1.167	0.866
Hybrid	0.869	0.797	1.165	0.862

OOS forecast comparison results : Diebold-Mariano t-stats

SP500, alpha=0.05. FZ-1F beats all. Not signif better than GARCH-EDF/Skew t

A positive entry indicates the Column model is better than the Row model

	RW125	G-EDF	FZ-2F	FZ-1F	G-FZ	Hybrid
RW125	_	2.900	2.978	3.978	3.020	2.967
RW250	2.580	3.730	3.799	4.701	3.921	4.110
RW500	4.260	4.937	5.168	5.893	5.125	5.450
G-N	-2.109	3.068	1.553	2.248	2.818	0.685
G-Skt	-2.693	2.103	0.889	1.475	1.232	-0.403
G-EDF	-2.900	_	0.599	1.157	0.024	-0.769
FZ-2F	-2.978	-0.599	_	0.582	-0.555	-0.580
FZ-1F	-3.912	-1.198	-0.582	_	-1.266	-1.978
G-FZ	-3.020	-0.024	0.555	1.266	_	-0.914
Hybrid	-3.276	0.045	0.580	1.978	0.914	_

Avg OOS forecast rankings across all alphas

The best model for each alpha is always one of the proposed new models

	0.01	0.025	0.05	0.10
RW-125	8	7.75	7.75	8
RW-250	8.25	8.25	8.75	9
RW-500	9.5	9.5	9.75	10
G-N	5.25	5	6.25	3.75
G-Skt	3	2.5	3.5	4.75
G-EDF	2.5	2.25	3.25	3.25
FZ-2F	5.5	7.25	6.25	5.5
FZ-1F	7	4.25	3	3
G-FZ	2	2.25	3.5	5.75
Hybrid	4	6	3	2

Goodness-of-fit tests for VaR and ES

Under correct specification of the models for VaR and ES, we have

$$\mathbb{E}_{t-1}\left[\begin{array}{c} \partial L_{FZ0}\left(Y_{t},v_{t},e_{t};\alpha\right)/\partial v_{t} \\ \partial L_{FZ0}\left(Y_{t},v_{t},e_{t};\alpha\right)/\partial e_{t} \end{array}\right] = 0 \Leftrightarrow \mathbb{E}_{t-1}\left[\begin{array}{c} \lambda_{v,t} \\ \lambda_{e,t} \end{array}\right] = 0$$

- \bullet $\lambda_{v,t}$ and $\lambda_{e,t}$ can thus be considered as "generalized forecast errors."
- To reduce the impact of heteroskedasticity, we consider standardized versions, which also have mean zero:

$$\begin{array}{lcl} \lambda_{v,t}^{s} & \equiv & \frac{\lambda_{v,t}}{v_{t}} = \mathbf{1} \left\{ Y_{t} \leq v_{t} \right\} - \alpha \\ \\ \lambda_{e,t}^{s} & \equiv & \frac{\lambda_{e,t}}{e_{t}} = \frac{1}{\alpha} \mathbf{1} \left\{ Y_{t} \leq v_{t} \right\} \frac{Y_{t}}{e_{t}} - 1 \end{array}$$

We adopt the "dynamic quantile" regression-based test of Engle and Manganelli (2004) for VaR, and propose its natural analog for ES:

$$\begin{array}{rcl} \lambda_{v,t}^s & = & a_0 + a_1 \lambda_{v,t-1}^s + a_2 v_t + \varepsilon_{v,t} \\ \lambda_{e,t}^s & = & b_0 + b_1 \lambda_{e,t-1}^s + b_2 e_t + \varepsilon_{e,t} \end{array}$$

OOS goodness-of-fit tests: VaR and ES

alpha=0.05. FZ-1F performs best

	(GoF p-va	lues: Va	R		GoF p-values: ES			
	S&P	DJIA	NIK	NIK FTSE		DJIA	NIK	FTSE	
RW-125	0.021	0.013	0.000	0.000	0.029	0.018	0.006	0.000	
RW-250	0.001	0.001	0.007	0.000	0.043	0.014	0.018	0.002	
RW-500	0.001	0.001	0.000	0.000	0.012	0.011	0.001	0.000	
GCH-N	0.031	0.139	0.532	0.000	0.001	0.006	0.187	0.000	
GCH-Skt	0.003	0.085	0.114	0.000	0.003	0.085	0.282	0.000	
GCH-EDF	0.003	0.029	0.583	0.000	0.014	0.098	0.527	0.000	
FZ-2F	0.000	0.000	0.258	0.000	0.061	0.195	0.247	0.000	
FZ-1F	0.242	0.248	0.317	0.019	0.313	0.130	0.612	0.003	
GCH-FZ	0.005	0.001	0.331	0.000	0.018	0.011	0.389	0.000	
Hybrid	0.001	0.069	0.326	0.000	0.010	0.159	0.518	0.000	

Summary and conclusions

- The new Basel Accord will generate demand for models for Expected Shortfall
 - Existing models for volatility and VaR do not seem to do well for ES
- We exploit a recent result from decision theory that shows that ES is jointly elicitable with VaR
 - The "Fissler-Ziegel" loss function
- We propose new models and adaptations of old models, for forecasting ES
 - For $\alpha=0.01$ and 0.025, the best models are GARCH estimated via FZ loss minimization and GARCH with nonparametric residuals.
 - For $\alpha=0.05$ and 0.10, the best models are the one-factor GAS model, and the hybrid one-factor GAS/GARCH model.

Appendix

Basel Committee on Banking Supervision

Consultative document: A revised market risk framework, October 2013

- "The financial crisis exposed material weaknesses in the overall design of the framework for capitalising trading activities."
- "A number of weaknesses have been identified with using Value-at-Risk for determining regulatory capital requirements, including its inability to capture 'tail risk.' For this reason, the Committee proposed in May 2012 to replace Value-at-Risk with Expected Shortfall."
- "Risk reporting: the desk must produce, at least once a week... risk measure reports, including desk VaR/ES, desk VaR/ES sensitivities to risk factors, backtesting and p-value."
- ⇒ Expected shortfall is going to become an important part of risk management, complementing past emphasis on VaR.

Joint estimation of VaR and Expected Shortfall

■ Fissler and Ziegel (2016, AoS) show that while ES is not elicitable, it is **jointly elicitable** with VaR, using the following class of loss functions:

$$L(Y, v, e; \alpha) = (\mathbf{1}\{Y \le v\} - \alpha) \left(G_1(v) - G_1(Y) + \frac{1}{\alpha} G_2(e) v \right)$$
$$-G_2(e) \left(\frac{1}{\alpha} \mathbf{1}\{Y \le v\} Y - e \right) - G_2(e)$$

where

- \blacksquare G_1 is weakly increasing
- G_2 is strictly positive and increasing, and $G_2' = G_2$.
- Minimizing this loss function yields VaR and ES:

$$[VaR_t, ES_t] = \arg\min_{(v,e)} \mathbb{E}_{t-1} [L(Y_t, v, e; \alpha)]$$

 For intuition, assume that returns follow a conditional location-scale model (eg, ARMA-GARCH)

$$Y_t = \mu_t + \sigma_t \eta_t$$
, $\eta_t \sim iid F_{\eta}(0,1)$

 For intuition, assume that returns follow a conditional location-scale model (eg, ARMA-GARCH)

$$Y_t = \mu_t + \sigma_t \eta_t$$
, $\eta_t \sim iid F_{\eta}(0,1)$

In this case, we have

$$VaR_t = \mu_t + a\sigma_t$$
, where $a = F_{\eta}^{-1}(\alpha)$
 $ES_t = \mu_t + b\sigma_t$, where $b = \mathbb{E}[\eta_t | \eta_t \le a]$

and we we can recover (μ_t, σ_t) from (VaR_t, ES_t) .

 For intuition, assume that returns follow a conditional location-scale model (eg, ARMA-GARCH)

$$Y_t = \mu_t + \sigma_t \eta_t$$
, $\eta_t \sim iid F_{\eta}(0,1)$

In this case, we have

$$egin{array}{lll} \emph{VaR}_t &=& \mu_t + \emph{a}\sigma_t, & \mbox{where} & \emph{a} = \emph{F}_{\eta}^{-1}\left(lpha
ight) \ \emph{ES}_t &=& \mu_t + \emph{b}\sigma_t, & \mbox{where} & \emph{b} = \mathbb{E}\left[\eta_t | \eta_t \leq \emph{a}
ight] \end{array}$$

and we we can recover (μ_t, σ_t) from (VaR_t, ES_t) .

• If $\sigma_t = \bar{\sigma} \, \forall \, t$, then $ES_t = c + VaR_t$, where $c = (b - a)\bar{\sigma}$

 For intuition, assume that returns follow a conditional location-scale model (eg, ARMA-GARCH)

$$Y_t = \mu_t + \sigma_t \eta_t$$
, $\eta_t \sim iid F_{\eta}(0,1)$

In this case, we have

$$VaR_t = \mu_t + a\sigma_t$$
, where $a = F_{\eta}^{-1}(\alpha)$
 $ES_t = \mu_t + b\sigma_t$, where $b = \mathbb{E}[\eta_t | \eta_t \leq a]$

and we we can recover (μ_t, σ_t) from $(\textit{VaR}_t, \textit{ES}_t)$.

- If $\sigma_t = \bar{\sigma} \, \forall \, t$, then $ES_t = c + VaR_t$, where $c = (b a)\bar{\sigma}$
- If $\mu_t = 0 \, \forall \, t$, then $ES_t = d \times VaR_t$, where d = b/a

Baseline specification:

$$\left[\begin{array}{c} v_{t+1} \\ e_{t+1} \end{array}\right] = \mathbf{w} + \mathbf{B} \left[\begin{array}{c} v_{t} \\ e_{t} \end{array}\right] + \mathbf{A} \left[\begin{array}{c} \lambda_{v,t} \\ \lambda_{e,t} \end{array}\right]$$

Baseline specification:

$$\left[\begin{array}{c} v_{t+1} \\ e_{t+1} \end{array}\right] = \mathbf{w} + \mathbf{B} \left[\begin{array}{c} v_t \\ e_t \end{array}\right] + \mathbf{A} \left[\begin{array}{c} \lambda_{v,t} \\ \lambda_{e,t} \end{array}\right]$$

• Motivated by the familiarity of **location-scale models**, where $Y_t = \mu_t + \sigma_t \eta_t$, we consider the following versions of this model

Baseline specification:

$$\left[\begin{array}{c} v_{t+1} \\ e_{t+1} \end{array}\right] = \mathbf{w} + \mathbf{B} \left[\begin{array}{c} v_{t} \\ e_{t} \end{array}\right] + \mathbf{A} \left[\begin{array}{c} \lambda_{v,t} \\ \lambda_{e,t} \end{array}\right]$$

- Motivated by the familiarity of **location-scale models**, where $Y_t = \mu_t + \sigma_t \eta_t$, we consider the following versions of this model

$$H_0: rac{w_e}{w_v} = rac{a_{ev}}{a_{vv}} = rac{a_{ee}}{a_{ve}} \cap b_e = b_v$$

Baseline specification:

$$\left[\begin{array}{c} v_{t+1} \\ e_{t+1} \end{array}\right] = \mathbf{w} + \mathbf{B} \left[\begin{array}{c} v_t \\ e_t \end{array}\right] + \mathbf{A} \left[\begin{array}{c} \lambda_{v,t} \\ \lambda_{e,t} \end{array}\right]$$

- Motivated by the familiarity of **location-scale models**, where $Y_t = \mu_t + \sigma_t \eta_t$, we consider the following versions of this model
- **11** $\mu_t = 0 \ \forall \ t$. This implies:

$$H_0: \frac{w_e}{w_v} = \frac{a_{ev}}{a_{vv}} = \frac{a_{ee}}{a_{ve}} \cap b_e = b_v$$

 $\mu_t = \bar{\mu} \ \forall \ t$. This implies:

$$H_0: \frac{a_{ev}}{a_{vv}} = \frac{a_{ee}}{a_{ve}} \cap b_e = b_v$$

Baseline specification:

$$\left[\begin{array}{c} v_{t+1} \\ e_{t+1} \end{array}\right] = \mathbf{w} + \mathbf{B} \left[\begin{array}{c} v_t \\ e_t \end{array}\right] + \mathbf{A} \left[\begin{array}{c} \lambda_{v,t} \\ \lambda_{e,t} \end{array}\right]$$

- Motivated by the familiarity of **location-scale models**, where $Y_t = \mu_t + \sigma_t \eta_t$, we consider the following versions of this model
- **11** $\mu_t = 0 \ \forall \ t$. This implies:

$$H_0: \frac{w_e}{w_v} = \frac{a_{ev}}{a_{vv}} = \frac{a_{ee}}{a_{ve}} \cap b_e = b_v$$

 $\mu_t = \bar{\mu} \ \forall \ t$. This implies:

$$H_0: \frac{a_{ev}}{a_{vv}} = \frac{a_{ee}}{a_{ve}} \cap b_e = b_v$$

 $\sigma_t = \bar{\sigma} \ \forall \ t.$ This implies:

$$H_0: a_{ev} = a_{vv} \cap a_{ee} = a_{ve} \cap b_e = b_v$$

Outline

- Motivation and introduction
- Estimating Expected Shortfall (and Value-at-Risk)
 - The Fissler-Ziegel loss function
 - Dynamic models for VaR and ES
- Inference methods
 - Assumptions and main results
 - Simulation study of finite-sample properties
- Results for four international equity indices
 - In-sample parameter estimates and hypothesis tests
 - Out-of-sample forecast comparisons
- 5 Summary and conclusion

Statistical inference on models for ES and VaR

The models we consider fit in the general framework of M-estimation for time series models:

$$\hat{\boldsymbol{\theta}}_{T} = \arg\min_{\boldsymbol{\theta}} \ \frac{1}{T} \sum\nolimits_{t=1}^{T} L\left(Y_{t}, v\left(\mathbf{Z}_{t-1}; \boldsymbol{\theta}\right), e\left(\mathbf{Z}_{t-1}; \boldsymbol{\theta}\right); \alpha\right)$$

- Our loss function is **non-differentiable**, but if we assume that Y_t is continuously distributed, this is easily handled.
- Under some regularity conditions, we obtain consistency and asymptotic Normality:

$$\sqrt{\mathcal{T}}\left(\boldsymbol{\hat{\theta}}_{\mathcal{T}}-\boldsymbol{\theta}^{*}\right)\overset{d}{\longrightarrow}\textit{N}\left(0,\mathbf{H}^{-1}\mathbf{G}\mathbf{H}^{-1}\right)$$

- **G** is the usual covariance matrix of the scores (easy to estimate)
- H is the Hessian, which is a bit trickier to obtain

Consistency

- **Assumption 1**: See paper for details. Key parts of this assumption:
 - Need finite first moments (unlike VaR estimation)
 - Need unique α -quantiles (see Zwingmann and Holzmann (2016) for results when this condition is violated).
- Theorem 1: Under Assumption 1, $\hat{\theta}_T \stackrel{p}{\to} \theta^0$ as $T \to \infty$.
- Proof is straightforward given Theorem 2.1 of Newey and McFadden (1994) and Corollary 5.5 of Fissler and Ziegel (2016).

Asymptotic normality

- **Assumption 2:** See paper for details. Key parts of this assumption:
 - Need $2 + \delta$ moments of returns
- **Theorem 2:** Under Assumptions 1 and 2, we have

$$\sqrt{T} \boldsymbol{\mathsf{A}}_{T}^{-1/2} \boldsymbol{\mathsf{D}}_{T} (\boldsymbol{\hat{\boldsymbol{\theta}}}_{T} - \boldsymbol{\boldsymbol{\theta}}^{0}) \overset{d}{\to} \textit{N}(0, \textit{I}) \text{ as } T \to \infty$$

where

$$\begin{aligned} \mathbf{A}_{T} &= & \mathbb{E}\left[T^{-1}\sum_{t=1}^{T}g_{t}(\boldsymbol{\theta}^{0})g_{t}(\boldsymbol{\theta}^{0})'\right], \ g_{t}(\boldsymbol{\theta}^{0}) = \frac{\partial L\left(y_{t},v_{t}\left(\boldsymbol{\theta}^{0}\right),e_{t}\left(\boldsymbol{\theta}^{0}\right);\alpha\right)}{\partial \boldsymbol{\theta}} \\ \mathbf{D}_{T} &= & \mathbb{E}\left[T^{-1}\sum_{t=1}^{T}\left\{\nabla'v_{t}(\boldsymbol{\theta}^{0})\frac{f_{t}\left(v_{t}(\boldsymbol{\theta}^{0})\right)}{-e_{t}(\boldsymbol{\theta}^{0})\alpha}\nabla v_{t}(\boldsymbol{\theta}^{0}) + \frac{\nabla'e_{t}(\boldsymbol{\theta}^{0})\nabla e_{t}(\boldsymbol{\theta}^{0})}{e_{t}(\boldsymbol{\theta}^{0})^{2}}\right\}\right] \end{aligned}$$

■ The proof builds on Huber (1967), Weiss (1991), Engle-Manganelli (2004).

Dynamic Models for ES (and VaR)

Estimation of the asymptotic covariance matrix

- **Assumption 3:** See paper for details. Key parts of this assumption:
 - Bandwidth (c_T) satisfies $c_T \to 0$ and $c_T \sqrt{T} \to \infty$.
- **Theorem 3:** Under Ass'ns 1–3, $\hat{\mathbf{A}}_T \mathbf{A}_T \stackrel{p}{\to} \mathbf{0}$ and $\hat{\mathbf{D}}_T \mathbf{D}_T \stackrel{p}{\to} \mathbf{0}$, where

$$\begin{split} \hat{\mathbf{A}}_{T} &= T^{-1} \sum_{t=1}^{T} g_{t}(\hat{\boldsymbol{\theta}}_{T}) g_{t}(\hat{\boldsymbol{\theta}}_{T})' \\ \hat{\mathbf{D}}_{T} &= T^{-1} \sum_{t=1}^{T} \left\{ \frac{1}{2\hat{c}_{T}} \mathbf{1} \left\{ \left| y_{t} - v_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right) \right| < \hat{c}_{T} \right\} \frac{\nabla' v_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right) \nabla v_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right)}{-e_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right) \alpha} \\ &+ \frac{\nabla' e_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right) \nabla e_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right)}{e_{t} \left(\hat{\boldsymbol{\theta}}_{T} \right)^{2}} \right\} \end{split}$$

■ This extends Engle and Manganelli (2004) from dynamic VaR models to dynamic joint models for VaR and ES.

Simulation study

■ For comparability with the existing literature, we simulate a GARCH process:

$$\begin{array}{rcl} Y_t & = & \sigma_t \eta_t \\ \eta_t & \sim & \textit{iid } F_{\eta} \left(0, 1 \right) \\ \sigma_t^2 & = & \omega + \beta \sigma_{t-1}^2 + \gamma Y_{t-1}^2 \\ \left[v_t, e_t \right] & = & \left[a, b \right] \sigma_t \end{array}$$

- $[\omega, \beta, \alpha] = [0.05, 0.9, 0.05] .$
- $F_{\eta} \in \{ N(0,1), Skewt(5,-0.5) \}.$
- $\quad \bullet \ \alpha \in \{ \ 0.01 \ , \ 0.025 \ , \ 0.05 \ , \ 0.1 \ , 0.2 \} \, .$
- For std errors, we use $c_T = T^{-1/3}$.
- $T \in \{ 2500, 5000 \}$, and reps = 1000.

Finite-sample properties of the estimator

Estimator is approximately unbiased, and 95% confidence intervals have reasonable coverage

Normal innovations, $\alpha = 0.05$

	T = 2500					<i>T</i> = 5000			
	β	γ	b_{lpha}	c_{lpha}	-	β	γ	b_{lpha}	c_{lpha}
True	0.900	0.050	-2.063	0.797		0.900	0.050	-2.063	0.797
Median	0.901	0.048	-2.051	0.800		0.899	0.049	-2.094	0.799
Bias	-0.013	0.005	-0.097	0.002		-0.008	0.002	-0.081	0.001
St dev	0.062	0.046	0.707	0.015		0.041	0.021	0.511	0.010
Cov'age	0.913	0.874	0.916	0.947		0.923	0.907	0.927	0.948

Finite-sample properties of the estimator

Std dev goes up for skew t errors, coverage remains reasonable

T=5000, $\alpha = 0.05$

	Normal					Skew t				
	β	γ	b_{lpha}	c_{lpha}		β	γ	b_{lpha}	c_{α}	
True	0.900	0.050	-2.063	0.797		0.900	0.050	-2.767	0.651	
Median	0.899	0.049	-2.094	0.799		0.898	0.048	-2.795	0.654	
Bias	-0.008	0.002	-0.081	0.001		-0.011	0.003	-0.114	0.003	
St dev	0.041	0.021	0.511	0.010		0.053	0.025	0.782	0.017	
Cov'age	0.923	0.907	0.927	0.948		0.916	0.904	0.922	0.951	

Estimation of VaR and ES

FZ estimation dominates CAViaR, but QMLE performs best here

Skew t innovations, T=5000

		VaR			ES			
	MAE	MAE ratio			MAE	MAE	ratio	
α	QML	CAViaR	FZ		QML	CAViaR	FZ	
0.01	0.138	1.369	1.375		0.245	1.256	1.248	
0.025	0.087	1.245	1.234		0.145	1.197	1.185	
0.05	0.061	1.184	1.143		0.101	1.164	1.119	
0.10	0.041	1.155	1.067		0.071	1.158	1.069	
0.20	0.024	1.316	1.066		0.048	1.409	1.089	

Finite-sample properties of the estimator

Std dev higher for smaller alpha, and coverage worse for smaller alpha

T=5000, Normal

	$\alpha = 0.01$					$\alpha = 0.10$			
	β	γ	b_{lpha}	c_{lpha}		β	γ	b_{lpha}	c_{lpha}
True	0.900	0.050	-2.665	0.873		0.900	0.050	-1.755	0.730
Median	0.899	0.049	-2.671	0.877		0.898	0.048	-1.778	0.730
Bias	-0.011	0.006	-0.089	0.004		-0.009	0.001	-0.072	0.000
St dev	0.049	0.033	0.805	0.015		0.040	0.020	0.435	0.009
Cov'age	0.884	0.876	0.888	0.937		0.922	0.902	0.934	0.960

For comparison: Finite-sample properties of QMLE

Estimator is approximately unbiased, and 95% confidence intervals have reasonable coverage

Skew t innovations

		T = 2500)	<i>T</i> = 5000			
	ω	β	γ	ω	β	γ	
True	0.500	0.950	0.500	0.500	0.950	0.500	
Median	0.052	0.895	0.049	0.052	0.897	0.050	
Bias	0.017	-0.023	0.005	0.006	-0.008	0.002	
St dev	0.077	0.095	0.028	0.026	0.037	0.017	
Cov'age	0.899	0.907	0.897	0.913	0.907	0.903	

OOS forecast comparison results : Diebold-Mariano t-stats

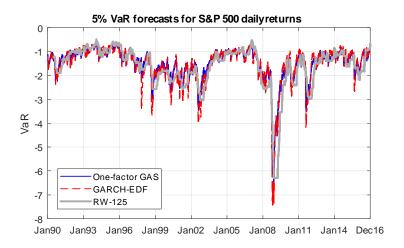
S&P 500 returns, alpha=0.025. G-FZ beats all, not signif better than G-EDF.

A positive entry indicates the Column model is better than the Row model

	RW125	G-EDF	FZ-2F	FZ-1F	G-FZ	Hybrid
RW125	_	3.125	1.972	3.599	3.212	2.642
RW250	2.035	3.472	2.637	4.240	3.613	3.447
RW500	3.587	4.731	3.966	5.605	4.879	4.968
G-N	-1.100	3.522	1.645	2.346	3.835	1.963
G-Skt	-2.728	2.393	0.093	0.738	2.850	-0.447
G-EDF	-3.125	_	-0.595	-0.198	1.482	-1.500
FZ-2F	-1.972	0.595	_	0.348	1.111	0.368
FZ-1F	-3.599	0.198	-0.348	_	0.739	-1.406
G-FZ	-3.212	-1.482	-1.111	-0.739	_	-2.300
Hybrid	-2.642	1.500	-0.368	1.406	2.300	_

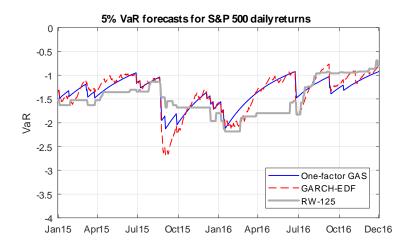
Dynamic Value-at-Risk: 1990-2016

VaR ranges from around -1% in mid 90s, to -6% in financial crisis



Dynamic Value-at-Risk: 2015-2016

The difference between the GAS and GARCH forcing variables is apparent here



GARCH estimated by FZ loss is best on average

	S&P	DJIA	NIK	FTSE	Avg
RW-125	7	8	10	7	8
RW-250	8	9	8	8	8.25
RW-500	10	10	9	9	9.5
G-N	6	6	5	4	5.25
G-Skt	5	3	2	2	3
G-EDF	4	2	3	1	2.5
FZ-2F	1	4	7	10	5.5
FZ-1F	9	7	6	6	7
G-FZ	3	1	1	3	2
Hybrid	2	5	4	5	4

GARCH-EDF and GARCH-FZ are best on average

	S&P	DJIA	NIK	FTSE	Avg
RW-125	8	8	8	7	7.75
RW-250	9	9	7	8	8.25
RW-500	10	10	9	9	9.5
G-N	7	6	4	3	5
G-Skt	5	3	1	1	2.5
G-EDF	2	2	3	2	2.25
FZ-2F	4	5	10	10	7.25
FZ-1F	3	4	6	4	4.25
G-FZ	1	1	2	5	2.25
Hybrid	6	7	5	6	6

FZ-1F, with and without "hybrid" term, is best

	S&P	DJIA	NIK	FTSE	Avg
RW-125	8	8	8	7	7.75
RW-250	9	9	9	8	8.75
RW-500	10	10	10	9	9.75
G-N	7	7	5	6	6.25
G-Skt	5	3	4	2	3.5
G-EDF	4	2	2	5	3.25
FZ-2F	2	6	7	10	6.25
FZ-1F	1	1	6	4	3
G-FZ	3	5	3	3	3.5
Hybrid	6	4	1	1	3

FZ-1F with "hybrid" term is best

	S&P	DJIA	NIK	FTSE	Avg
RW-125	8	8	8	8	8
RW-250	9	9	9	9	9
RW-500	10	10	10	10	10
G-N	3	2	5	5	3.75
G-Skt	7	4	4	4	4.75
G-EDF	4	3	3	3	3.25
FZ-2F	2	6	7	7	5.5
FZ-1F	1	7	2	2	<u>3</u>
G-FZ	6	5	6	6	5.75
Hybrid	5	1	1	1	2

OOS goodness-of-fit tests: VaR and ES

alpha=0.025. GARCH-EDF and FZ-1F performs best

	GoF p-values: VaR				GoF p-values: ES			
	S&P	DJIA	NIK	FTSE	S&P	DJIA	NIK	FTSE
RW-125	0.022	0.003	0.000	0.000	0.009	0.004	0.001	0.001
RW-250	0.005	0.007	0.002	0.000	0.023	0.039	0.010	0.005
RW-500	0.001	0.000	0.004	0.000	0.019	0.011	0.007	0.000
GCH-N	0.000	0.002	0.172	0.000	0.000	0.000	0.048	0.000
GCH-Skt	0.005	0.057	0.789	0.000	0.010	0.076	0.736	0.001
GCH-EDF	0.164	0.149	0.789	0.000	0.237	0.379	0.588	0.000
FZ-2F	0.000	0.117	0.000	0.000	0.001	0.341	0.000	0.000
FZ-1F	0.343	0.314	0.043	0.028	0.393	0.334	0.047	0.045
GCH-FZ	0.095	0.358	0.608	0.000	0.188	0.419	0.473	0.000
Hybrid	0.002	0.082	0.700	0.000	0.007	0.064	0.629	0.000