Who's fit for the low-carbon transition? Emerging skills and wage gaps in job ad data

with Misato Sato and Francesco Vona

Aurélien Saussay

London School of Economics

May 12th, 2023

Low carbon jobs are difficult to observe unlike 'dirty' jobs

- · Widespread across sectors, occupations, geography
- · New, and changing

⇒Lack of agreed definition, classification and data

- Concentrated
- Well established

Public debate exaggerates the **job killing argument** while downplaying the **job creation** effect of the **low-carbon transition**

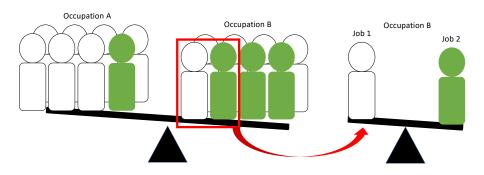
How to define green job and green skills?

- ▶ No agreed definition of green jobs or green skills
 - ▶ Green sectors? Green firms? Green activities? Green workers?
- Output approach: who produces green goods?
- Process approach: who uses green processes?
- A working definition of green jobs needs to account for the skills profile of green jobs
- Why focus on green skills?
 - Evaluate the skill gap between newly created green jobs and jobs destroyed by environmental regulation (brown jobs) to evaluate the possibility of re-employing displaced workers
 - Consider the need of complementary educational and training policies to be combined with environmental policies

Combining task-based approach with the O*NET dataset

- ► First data driven methodology
- ▶ Measure occupation level exposure to green technologies and productions: share of green tasks over total tasks (Vona et al., 2018, 2019)
- ▶ Data-driven identification of **green skills** (Vona et al., 2018) and assessing direct and indirect green jobs (multiplier effects) (Bowen et al., 2018; Vona et al., 2019)
- ▶ Using exogenous policy variation to examine the effect of policies on demand for green skills (Vona et al., 2018; Popp et al., 2021; Marin and Vona, 2019; Vona et al., 2019)
- Limitations of the O*NET data on green jobs
 - Can't precisely observe green jobs within an occupation
 - ▶ Difficult to conduct more granular analysis
 - Data updated infrequently

Going more granular

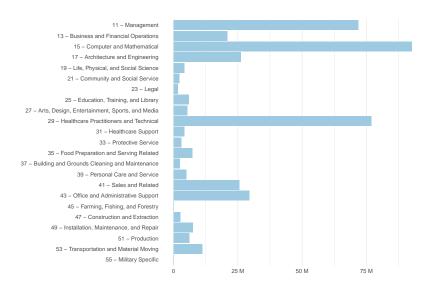


Our approach: Skill-based, using job level data

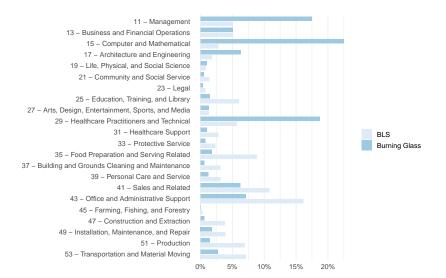
- Advantages of job level data
 - ▶ Move from occupational level to **job level** data on skill profiles
 - ► Examine skills gaps within an occupational group
- ► Lightcast dataset comprising all job advertisements in the United States over 2010-2019
 - ▶ 196 million job ads
 - Occupation
 - Skills required
 - Salary offered
 - Education requirements
- Workers more likely to transition towards green jobs within the same occupational group

The Lightcast dataset

Total job ads across occupations (SOC major groups)



High skilled occupations are over-represented



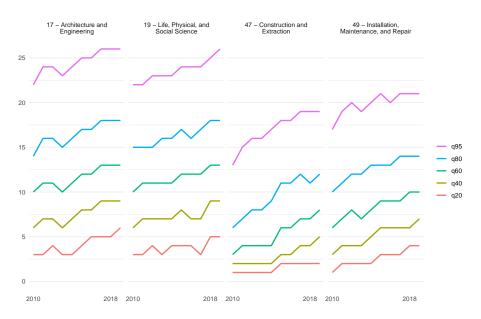
What's in an ad?

- Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
 - MSc required
 - ▶ 3 years of experience
 - Starts at \$118k
- ▶ Job ads are represented as a set of *skills*

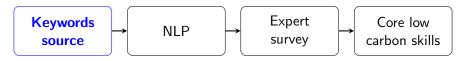
Cost Control	Project Management	Quality Assurance and Control
Fuel Cell	Process Engineering	Biotechnology
Six Sigma	Machine Operation	Manufacturing Processes
Biotechnology Product Development	Genetic Testing	Logistics

- ▶ BG reports more than 16,000 distinct skills
- We apply Natural Language Processing (NLP) and expert elicitation to identify green skills

Highly heterogeneous skill vector length across occupations

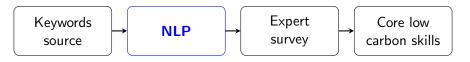


Need to identify skills that are characteristic of the core low carbon (climate-related) occupations



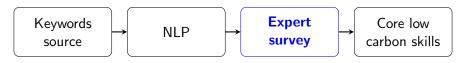
- Obtain source text from which to extract low carbon keywords
- ► **Green tasks** associated with **climate-related** occupations in **O*NET** (subset of Green Economy)
 - "Calculate potential for energy savings."
 - "Fabricate prototypes of fuel cell components, assemblies, or systems."
 - "Test wind turbine components, by mechanical or electronic testing."
- Green products descriptions from PRODCOM

Need to identify skills that are characteristic of the core low carbon (climate-related) occupations



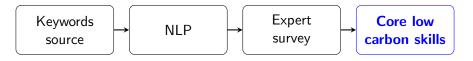
- Use natural language processing to extract low carbon keywords
- Unsupervised machine learning using TF-IDF
- Semantically matched against BG skills using word embeddings (Word2Vec)
- ▶ Yields a "greeness" score between 0 and 1
- Perfect semantic matches against top 20 keywords are considered core low carbon: 396 skills

▶ Need to identify **skills** that are characteristic of the **core low carbon** (climate-related) occupations



- High scoring skills are potentially core low carbon, but must be inspected manually
- Supervised portion of our selection algorithm
- Surveyed 60+ experts from LSE, Oxford, OECD, University of Venice among others to review 600 high scoring skills
- ▶ **51** skills were selected

▶ Need to identify skills that are characteristic of the core low carbon (climate-related) occupations



- 447 core low carbon skills
 - "Solar Energy Components"
 - "Wind Energy Engineering"
 - "Light Rail Transit Systems"
 - "Clean Air Act"
- Each of the 16,000 skills is classified as low carbon (climate-related) or generic

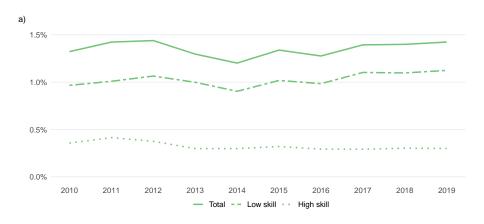
What's in an ad? Green skill edition

- ► Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
 - MSc required
 - ▶ 3 years of experience
 - ► Starts at \$118k
- ▶ Job ads are represented as a set of *skills*

Cost Control	Project Management	Quality Assurance and Control
Fuel Cell	Process Engineering	Biotechnology
Six Sigma	Machine Operation	Manufacturing Processes
Biotechnology Product Development	Genetic Testing	Logistics

Results

Low carbon jobs' share has not increased since 2010



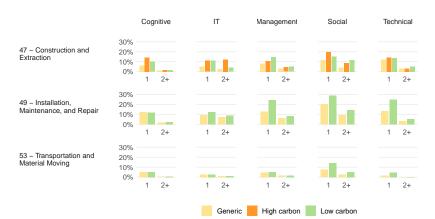
Low carbon ads are concentrated in 6 major SOC groups



Share of low-carbon ads by occupation (2010-2019)

Skill gaps are larger and broader in high-skilled occupations

Heterogeneous skills gap in low-skilled occupations



Within firm, low carbon jobs require more skills

	13-1 - Business Operations Specialists	17-1 - Architects, Surveyors, and Cartographers	17-2 - Engineers	17-3 - Engineering and Mapping Technicians
Low-carb. job	1.545*** (0.128)	3.704*** (0.301)	2.692*** (0.148)	3.178*** (0.225)
Firm FEs R^2 Observations	Yes 0.32 5,309,742	Yes 0.53 144,272	Yes 0.29 2,433,461	Yes 0.41 1,167,420
	19-2 - Physical	47 - Construction	49 - Installation,	53 - Transportation
	Scientists	and Extraction	Maintenance, and Repair	and Material Moving
Low-carb. job	•		Maintenance,	and Material

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Specialization vs diversification by occupation

▶ Define low and high-carbon skill coreness indices:

$$G_s^{SOC} = rac{g_s^{SOC} - 1}{g_s^{SOC} + 1}$$
 $g_s^{SOC} = rac{n_s^{SOC}}{n^{SOC}} / rac{n_s}{n}$

$$C_s^{SOC} = \frac{c_s^{SOC} - 1}{c_s^{SOC} + 1}$$
 $c_s^{SOC} = \frac{n_s^{c,SOC}}{n^{c,SOC}} / \frac{n_s^{SOC}}{n^{SOC}}$

where n_s^{SOC} is the number of ads requiring skill s in occupational group SOC

 n^{SOC} is the number of ads in occupational group SOC

 n_s is the number of ads requiring skill s in the entire sample

n is the total number of ads in the sample

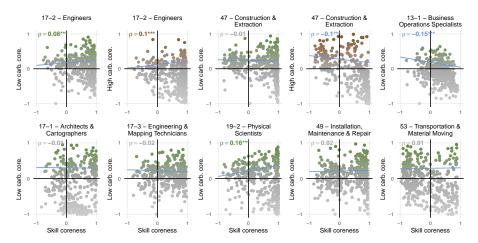
 $n_s^{c,SOC}$ is the number of low (resp. high) carbon ads requiring skill s in occupational group SOC

 $n^{c,SOC}$ is the number of low (resp. high) carbon ads in occupational group SOC

 n_s^{SOC} is the number of ads requiring skill s in occupational group SOC

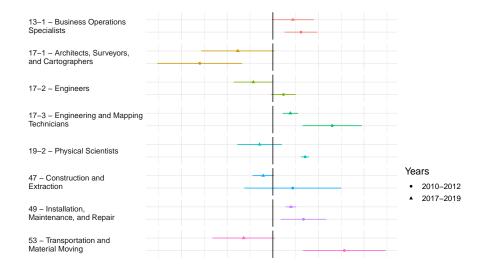
 n^{SOC} is the number of ads in occupational group SOC

Specialization vs diversification by occupation

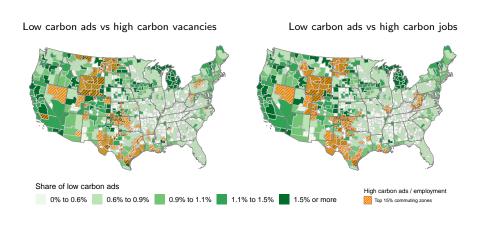


Specialization vs diversification by occupation

The green wage premium has vanished over the decade



Limited overlap between low and high-carbon low-skilled jobs



Low carbon jobs are created in relatively richer areas

Table SI.14: Correlation between the share of low-carbon ads and annual personal income

	Low skill		
	Unweighted	Weighted by ad count	Weighted by population
$\log(inc_{cz})$	0.006***	0.002*	0.002**
	(0.001)	(0.001)	(0.001)
Observations	685	685	685
R2	0.03	0.01	0.02
AIC	-4.974	-4.960	-4.961

Table SI.15: Correlation between the share of high-carbon ads and annual personal income

	Low skill		
	Unweighted	Weighted by ad count	Weighted by population
$\log(inc_{cz})$	0.007*** (0.002)	-0.001** (0.000)	-0.001*** (0.000)
Observations	647	647	647
R2	0.03	0.01	0.01
AIC	-4.522	-4.456	-4.459

Conclusions

- No increase in the overall demand for low carbon jobs over the past decade in the US
 - Increase in low skill occupations, decrease in high skill occupations
- Low carbon jobs require more skills
 - Skill gap more pronounced in high-skilled occupations, and for social, management, and technical skills
 - Emerging skill gap larger and broader than previously considered
- ► The low carbon wage premium has eroded over time
- Lack of a wage premium for low carbon jobs despite higher skills requirements is problematic for their attractiveness
- ► Powerful, replicable tool to monitor, evaluate many aspects of labour market consequences of the low-carbon transition

References I

- Bowen, A., Kuralbayeva, K., and Tipoe, E. L. (2018). Characterising green employment: The impacts of 'greening' on workforce composition. *Energy Economics*, 72:263 275.
- Marin, G. and Vona, F. (2019). Climate policies and skill-biased employment dynamics: evidence from EU countries. *Journal of Environmental Economics and Management*, 98:102253.
- Popp, D., Vona, F., Marin, G., and Chen, Z. (2021). The employment impact of a green fiscal push: Evidence from the american recovery and reinvestment act. *Brookings Papers on Economic Activity, Fall. 1-49.*
- Vona, F., Marin, G., and Consoli, D. (2019). Measures, drivers and effects of green employment: evidence from US local labor markets, 2006–2014. *Journal of Economic Geography*, 19(5):1021–1048.
- Vona, F., Marin, G., Consoli, D., and Popp, D. (2018). Environmental Regulation and Green Skills: An Empirical Exploration. *Journal of the Association of Environmental and Resource Economists*, 5(4):713–753.