Testing for business cycle asymmetries based on autoregressions with a Markov-switching intercept

Malte Knüppel

Discussion Paper
Series 1: Studies of the Economic Research Centre No 41/2004

Editorial Board:
Heinz Herrmann
Thilo Liebig
Karl-Heinz Tödter

Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main, Postfach 1006 02, 60006 Frankfurt am Main

Tel +49 69 9566-1
Telex within Germany 41227, telex from abroad 414431, fax +49 695601071

Please address all orders in writing to: Deutsche Bundesbank,
Press and Public Relations Division, at the above address or via fax No +49 69 9566-3077

Reproduction permitted only if source is stated.

ISBN 3-86558-036-X

Abstract

: In this paper, we investigate the implications of the two concepts of asymmetry defined by Sichel (1993) - deepness and steepness - for first-order autoregressive processes with a Markov-switching intercept. In order to do so, we derive the two required formulas determining the coefficient of skewness of first-order autoregressive processes with a Markov-switching intercept and the coefficient of skewness of the first differences of these processes. For the special case of two states, we present the parameter restrictions leading to non-deepness and non-steepness. We show that these restrictions imply that the conclusions of Clements \& Krolzig (2003) with respect to asymmetries of processes with a Markov-switching intercept are not correct. Finally, we apply the results to U.S. GDP which is found to exhibit strongly significant deepness and steepness.

Keywords: asymmetry, deepness, steepness, Markov-switching, business cycles
JEL-Classification: C12, C22

Non Technical Summary

The notion that business cycles exhibit asymmetries has a long history in economics. The existence of different types of asymmetric business cycle behavior has been conjectured, inter alia that recessions tend to be more pronounced and of a shorter duration than expansions, and that recoveries appear to take a more moderate course than contractions. If such asymmetries exist, their presence has important consequences for the setup of business cycle models and for our understanding of the effects of economic policy.
Most models developed for the analysis of business cycle phenomena are based on the assumption that business cycles are generated by shocks hitting a propagation mechanism. According to this concept, the economy acts as the propagation mechanism, causing single shocks to affect macroeconomic variables over a longer period. The bulk of business cycle models relies on a linear (or linearized) specification and symmetric shocks. This setup has a direct impact on the symmetry properties of business cycles generated by these models. Due to the linear specification, all variables of such models inherit the symmetry property of the shocks. Therefore, the existence of pronounced asymmetries would cast doubt on the appropriateness of this class of business cycle models. In this paper, we develop a parametric test for asymmetry.
Addressing the question of asymmetry empirically is not a trivial task. Most tests for asymmetries belong to the class of non-parametric tests. However, unless the samples of the variables under study are large, these tests often fail to detect asymmetries. In contrast to that, parametric tests typically work well also in smaller samples, but require the more restrictive assumption of a specific data generating process. Recently, Clements \& Krolzig (2003) have proposed parametric tests for asymmetries based on Markov-switching processes which are widely regarded as suitable for the investigation of variables subject to business cycle fluctuations. In this work, we derive the necessary formulas for parametric tests based on a specific form of Markov-switching processes. We thereby find that certain results of Clements \& Krolzig (2003) are not correct, so that wrong conclusions concerning the existence and the type of asymmetries can emerge.
Finally, we apply the tests for asymmetries to HP-filtered U.S. real gross domestic prod-
uct. This variable is a good candidate for our test, since it decreases during recessions and increases during expansions. While non-parametric tests have usually failed to detect asymmetries for this variable, our test clearly indicates the presence of asymmetries. This result implies that either the shocks hitting the U.S. economy have been asymmetric or that linear business cycle models miss important features of the U.S. economy. These features could, for example, be given by capacity constraints, credit constraints or downward rigid wages.

Nicht technische Zusammenfassung

Die Vorstellung, dass Konjunkturzyklen Asymmetrien aufweisen, hat eine lange Tradition in den Wirtschaftswissenschaften. Es wurde die Existenz verschiedener Arten von Asymmetrien vermutet, unter anderem dass Rezessionen ausgeprägter und kürzer als Expansionen ausfallen und dass Aufschwünge einen moderateren Verlauf nehmen als Abschwünge. Falls solche Asymmetrien vorliegen, hat dies bedeutende Auswirkungen auf den Aufbau von Konjunkturmodellen und auch auf unser Verständnis der Wirkungsweise von Wirtschaftspolitik.

Die meisten für die Analyse von Konjunkturphänomenen entwickelten Modelle basieren auf der Annahme, dass Konjunkturzyklen durch Schocks ausgelöst werden, die auf einen Mechanismus treffen, der zu einer Fortpflanzung der Schocks führt. Dieser Mechanismus ist durch die Ökonomie selbst gegeben, deren dynamische Struktur dafür sorgt, dass ein einmaliger Schock über einen längeren Zeitraum wirkt. Ein Großteil der Konjunkturmodelle beruht auf einer linearen (oder linearisierten) Spezifikation und symmetrischen Schocks. Dieser Aufbau hat direkte Konsequenzen für die Symmetrie-Eigenschaften der Konjunkturzyklen, die von diesen Modellen erzeugt werden. Aufgrund der linearen Spezifikation dieser Modelle überträgt sich die Symmetrie-Eigenschaft der Schocks direkt auf alle Variablen der Modelle. Daher würde das Vorliegen bedeutsamer Asymmetrien die Angemessenheit dieses Modellaufbaus in Frage stellen. Im vorliegenden Papier wird ein parametrischer Test auf Asymmetrie entwickelt.

Die empirische Überprüfung des Vorliegens von Asymmetrien ist eine anspruchsvolle Aufgabe. Die meisten Tests auf Asymmetrie gehören zur Gruppe der nicht-parametrischen Tests. Diese Tests haben jedoch oft Schwierigkeiten, Asymmetrien zu erkennen, wenn die zur Verfügung stehenden Zeitreihen nicht lang genug sind. Im Gegensatz dazu funktionieren parametrische Tests üblicherweise auch für kürzere Zeitreihen gut, aber sie erfordern die restriktivere Annahme einer konkreten Form des datengenerierenden Prozesses. Kürzlich haben Clements \& Krolzig (2003) parametrische Tests auf Asymmetrien vorgeschlagen, die auf Markov-Switching-Prozessen beruhen, welche für die Untersuchung von Variablen, die konjunkturelle Schwankungen durchlaufen, weithin als geeignet angesehen
werden. In dieser Arbeit leiten wir die Formeln her, die im Falle einer bestimmten Form dieser Markov-Switching-Prozesse für die Tests benötigt werden. Dabei erweist sich, dass einige Ergebnisse von Clements \& Krolzig (2003) nicht korrekt sind, was zu falschen Schlüssen hinsichtlich der Existenz und der Art der Asymmetrie führen kann.
Schließlich wenden wir die Tests auf Asymmetrie auf das HP-gefilterte US-amerikanische reale Bruttoinlandsprodukt an. Diese Variable bietet sich für unseren Test an, da sie im Laufe einer Rezession sinkt und im Laufe einer Expansion steigt. Während bei dieser Variable mit nicht-parametrischen Tests im Regelfall keine Asymmetrien nachgewiesen werden konnten, zeigt sich bei unserem Test, dass diese Variable eindeutig Asymmetrien aufweist. Aus diesem Ergebnis ergibt sich die Schlussfolgerung, dass die US-amerikanische Ökonomie von asymmetrischen Schocks getroffen wurde oder dass lineare Konjunkturmodelle wichtige Eigenschaften der US-amerikanischen Ökonomie nicht berücksichtigen. Diese Eigenschaften könnten beispielsweise durch Kapazitätsbeschränkungen, Kreditrestriktionen oder nach unten starre Löhne begründet sein.

Contents

1 Introduction 1
2 Concepts of Asymmetries 2
3 Markov-Switching Processes 4
4 Relation of Asymmetries and Markov-Switching Processes 8
4.1 Introductory Remarks 8
4.2 MSM-processes 9
4.2.1 An Arbitrary Number of States 9
4.2.2 Two States 10
4.3 MSI-Processes 10
4.3.1 An Arbitrary Number of States 10
4.3.2 Two States 14
5 Application 19
6 Summary and Concluding Remarks 23
A Appendix 27
A. 1 Deepness of MSI-processes 27
A. 2 Steepness of MSI-processes 32
A. 3 Symmetry of MSI-processes with Two States 34

1 Introduction

The question whether macroeconomic variables exhibit asymmetries over the business cycle has a long history in macroeconomic research and at least dates back to Mitchell (1927, p. 290) who stated that "Business contractions appear to be a briefer and more violent process than business expansions". The question might be considered interesting in itself, but the answer also has important consequences for the assessment of business cycle models. If asymmetries matter, linear models with symmetric shocks do not appear to be appropriate tools for the investigation of business cycles.

Since the coefficient of skewness is a widely-used measure for the degree of asymmetry, many studies have focussed on the estimation of this coefficient in order to assess the probability that a time series is significantly asymmetric. However, as pointed out by Bai \& Ng (2002), non-parametric tests for skewness tend to suffer from low power in the presence of serial correlation. Consequently, the fact that non-parametric tests fail to reject the null of zero skewness for a large set of macroeconomic variables as, for instance, documented in Bai \& Ng (2002) and Psaradakis \& Sola (2003) has to be regarded with caution.

A possible way to address the problem of low power is the use of parametric tests whose application, of course, requires stronger assumptions. Since Markov-switching models are considered to be adequate tools for the estimation of variables that undergo fluctuations associated with business cycles, it seems natural to investigate the implications of the parameter values of these models for asymmetries. Yet, although Markov-switching models have become increasingly popular since the seminal work of Hamilton (1989), only recently Clements \& Krolzig (2003) (henceforth CK) have shown how different concepts of asymmetries are related to Markov-switching models. More precisely, in their important paper, CK derive the implications of deepness and steepness as defined by Sichel (1993) and of sharpness as defined by McQueen \& Thorley (1993) for the parameters of models with a Markov-switching mean (henceforth MSM-models). Moreover, CK claim that their test for deepness is also valid for models with a Markov-switching intercept (henceforth MSI-models). However, noting that a problem appears if the linear autoregressive pro-
cess has roots close to the unit circle, they state that in this case testing for deepness in MSI-models might actually yield results for steepness.

In this paper, we show that the reason for this problem is given by the fact that tests for deepness and steepness in MSI-models are not equivalent to tests for deepness and steepness in MSM-models. In order to do so, we will proceed as follows. In Section 2, we present the concepts of deepness and steepness, and in Section 3 we introduce the notation used for Markov-switching models. In Section 4, we investigate the relation of deepness and steepness with Markov-switching processes. We start by briefly summarizing the results of CK for MSM processes. Then the formulas for the second and third moments of first-order autoregressive MSI-processes with an arbitrary number of states are derived. These formulas are applied to an MSI-process with two states. We investigate the implications of non-deepness and non-steepness for the parameter values of such a process and compare them to the results of CK for a corresponding MSM-process. In order to illustrate that CK's conclusion concerning the deepness of MSI-processes is not correct, we show that even for the simple MSI-process considered, non-deepness can arise with parameter values that lead to deepness of MSM-processes. In Section 5, we apply the tests for deepness and steepness based on the moments derived in Section 4 to U.S. GDP. Section 6 concludes.

2 Concepts of Asymmetries

Consider a strictly stationary univariate stochastic process $\left\{Z_{t}\right\}$ with mean μ_{Z} and standard deviation σ_{Z}. A straightforward way to think of asymmetry is given by the possible distributional asymmetry of Z_{t}. According to this concept, the stationary process $\left\{Z_{t}\right\}$ is said to be unconditionally symmetric about the mean or by convention shortly symmetric, if the condition on the marginal distribution of Z_{t}

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{t}<\mu_{Z}-\epsilon\right)=\operatorname{Pr}\left(Z_{t}>\mu_{Z}+\epsilon\right) \tag{1}
\end{equation*}
$$

holds for all $\epsilon \in \mathbb{R}$. Otherwise, the process is said to be asymmetric. In order to measure the degree of asymmetry, special interest is placed on the coefficient of skewness of Z_{t} which is the standardized third central moment and hence defined as

$$
\begin{equation*}
\tau_{Z}=\frac{E\left[\left(Z_{t}-\mu_{Z}\right)^{3}\right]}{\sigma_{Z}^{3}} \tag{2}
\end{equation*}
$$

Following the terminology of Sichel (1993), the type of asymmetry that prevails if $\tau_{Z}<0$ is called deepness, while the type of asymmetry that prevails if $\tau_{Z}>0$ is called tallness. Hence, deep distributions are skewed to the left, whereas tall distributions are skewed to the right. If $\tau_{Z}=0$ holds, the distribution is said to exhibit non-deepness or to be not skewed. If $\tau_{Z} \neq 0$ holds, but the sign of τ_{Z} is not of interest, we will simply speak of deepness of Z_{t}. It will always be clear from the context whether deepness refers to $\tau_{Z} \neq 0$ or to $\tau_{Z}<0$. It should be emphasized that non-deepness is a necessary, but not a sufficient condition for symmetry of Z_{t}.

A related concept of asymmetry deals with the change of Z_{t} over time, so that the variable of interest is not Z_{t} itself, but rather its first-order difference $Z_{t}-Z_{t-1}$ which will henceforth be denoted ΔZ_{t}. Note that these first-order differences are not used to render the stochastic process stationary, since $\left\{Z_{t}\right\}$ is stationary by assumption. The stationarity of $\left\{Z_{t}\right\}$ implies $\mu_{\Delta Z}=0$, where $\mu_{\Delta Z}$ denotes the mean of ΔZ_{t}. If ΔZ_{t} is symmetric we have that

$$
\begin{equation*}
\operatorname{Pr}\left(\Delta Z_{t}<-\epsilon\right)=\operatorname{Pr}\left(\Delta Z_{t}>\epsilon\right) \quad \text { for } \epsilon \in \mathbb{R} \tag{3}
\end{equation*}
$$

and the degree of asymmetry of ΔZ_{t} can again be measured by its coefficient of skewness

$$
\begin{equation*}
\tau_{\Delta Z}=\frac{E\left[\left(\Delta Z_{t}\right)^{3}\right]}{\sigma_{\Delta Z}^{3}} . \tag{4}
\end{equation*}
$$

If $\tau_{\Delta Z}=0$ holds, Z_{t} is said to be non-steep. Otherwise the type of asymmetry present in Z_{t} is called negative steepness if $\tau_{\Delta Z}<0$ and positive steepness if $\tau_{\Delta Z}>0$. Again, the terminology is mainly due to Sichel (1993). Exactly as in the case of non-deepness,
non-steepness of Z_{t} is a necessary, but not a sufficient condition for symmetry of ΔZ_{t}.
It is also worth noting that neither does deepness imply or prevent steepness nor does steepness imply or prevent deepness. These two concepts of asymmetry are mutually independent. In order to clarify the presented concepts of asymmetry, we present examples of a deep but non-steep process and a negatively steep but non-deep process in Figure 1.

Figure 1: Deep non-steep process (left panel), and non-deep negatively steep process (right panel)

3 Markov-Switching Processes

Markov Chains Consider a univariate stochastic process $\left\{s_{t}\right\}$, where its state variables s_{t} adopt integer values i with $i \in\{1,2, \ldots, m\}$. Suppose further that for this process it holds that $\operatorname{Pr}\left(s_{t+1}=i \mid s_{t}=j, s_{t-1}=k, \ldots\right)$ equals $\operatorname{Pr}\left(s_{t+1}=i \mid s_{t}=j\right)$ for all t, i and j. Then, the process $\left\{s_{t}\right\}$ is said to be an m-state first-order Markov chain, where for fixed t the variable s_{t} describes the state of the process in period $t .{ }^{1}$ The probability that state s_{t} is succeeded by state s_{t+1} is called transition probability. All m^{2} transition probabilities $p_{j i}:=\operatorname{Pr}\left(s_{t+1}=i \mid s_{t}=j\right)$ are collected in an $(m \times m)$ transition matrix \mathbf{P} defined by

[^0]\[

\mathbf{P}=\left[$$
\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{m 1} \\
p_{12} & p_{22} & \cdots & p_{m 2} \\
\vdots & \vdots & \cdots & \vdots \\
p_{1 m} & p_{2 m} & \cdots & p_{m m}
\end{array}
$$\right]
\]

which is required to be irreducible and to have exactly one eigenvalue on the unit circle. It is useful to define a random vector $\boldsymbol{\xi}_{t}$ as an $(m \times 1)$ vector whose i th element is equal to unity if $s_{t}=i$ and whose other elements all equal zero, so that the conditional expectation of $\boldsymbol{\xi}_{t+q}$ given $\boldsymbol{\xi}_{t}$ can be expressed as

$$
\begin{equation*}
E\left[\boldsymbol{\xi}_{t+q} \mid \boldsymbol{\xi}_{t}\right]=\mathbf{P}^{q} \boldsymbol{\xi}_{t} \tag{5}
\end{equation*}
$$

Let $\mathbf{1}_{m}$ denote an $(m \times 1)$ vector of ones and normalize $\boldsymbol{\gamma}$ so that $\mathbf{1}_{m}^{\prime} \boldsymbol{\gamma}=1$ holds. Then it can be shown (see, e.g. Hamilton (1994, ch. 22)) that γ contains the unconditional probabilities of each state. Stated formally, this means that

$$
E\left[\boldsymbol{\xi}_{t}\right]=\gamma
$$

holds.

Markov-Switching Processes Since the observations of most macroeconomic time series are not realizations of discrete-valued random variables, Markov chains cannot be applied directly to these observations. Instead, one must augment the Markov chain with a continuous-valued random variable, where one commonly assumes that the Markov chain governs the state variable of an otherwise standard linear stochastic process with Gaussian white noise.

Equation (5) implies that the state equation can be expressed as

$$
\begin{equation*}
\boldsymbol{\xi}_{t+1}=\mathbf{P} \boldsymbol{\xi}_{t}+\mathbf{u}_{t+1} \tag{6}
\end{equation*}
$$

where the error vector \mathbf{u}_{t+1} is defined by

$$
\mathbf{u}_{t+1}=\boldsymbol{\xi}_{t+1}-E\left[\boldsymbol{\xi}_{t+1} \mid \boldsymbol{\xi}_{t}\right] .
$$

Given the state equation, a linear measurement equation can be specified by

$$
\begin{equation*}
(1-\theta L) Z_{t}-(1-\phi L) \mu_{s_{t}}=\Upsilon(L) \varepsilon_{t} \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right) \tag{7}
\end{equation*}
$$

where $\Upsilon(L)$ is a lag polynomial given by $\Upsilon(L)=\sum_{i=0}^{q}\left(v_{i} L^{i}\right), L$ is the lag operator and θ and ϕ are scalars. ${ }^{2}$ Furthermore, the processes of the states $\left\{s_{t}\right\}$ and the normally distributed error terms $\left\{\varepsilon_{t}\right\}$ are assumed to be independent. The term $\mu_{s_{t}}$ denotes the value of μ in regime s_{t}. For instance, if in period t state two occurs, $\mu_{s_{t}}$ adopts the value μ_{2} in period t. For the following calculations, it is useful to define the vector $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots \mu_{m}\right)^{\prime}$, so that

$$
\mu_{s_{t}}=\boldsymbol{\xi}_{t}^{\prime} \boldsymbol{\mu}
$$

holds. The process of Z_{t} described by (7) is required to be stable and will be referred to as a Markov-switching process.

If $\theta=\phi$ holds, the Markov-switching process contains a Markov-switching mean as in the well-known model set up by Hamilton (1989). We will refer to this specification as MSM-process. A different process evolves when ϕ is set to zero. This specification which can be found, for instance, in Clements \& Krolzig (1998) will be referred to as MSIprocess. Obviously, MSI-processes and MSM-processes would be identical in the special case of $\theta=\phi=0$. Therefore, in order to avoid misunderstandings, we require that for MSI-processes $\theta \neq 0$ holds.

In order to give an intuition of how MSM- and MSI-processes behave, we plot an MSM-process with $\theta=\phi=0.9$ and an MSI-process with $\theta=0.9$ in Figure 2. For both

[^1]processes, the number of states equals two, σ_{ε}^{2} is set equal to zero, and both processes follow the same state equation. Evidently, the MSI-process slowly approaches a certain value after a state change, whereas the MSM-process immediately jumps to its new level. ${ }^{3}$ Moreover, the value of ϕ does not matter for the dynamics of the MSM-process if σ_{ε}^{2} equals zero, whereas the value of θ determines the speed of approaching a new value of Z_{t} for the MSI-process. A large value of θ implies slow approaching.

Figure 2: An MSI- and an MSM-process

[^2]
4 Relation of Asymmetries and Markov-Switching Processes

4.1 Introductory Remarks

Before we proceed, it is useful to investigate the properties of the convolution of two random variables under certain conditions. Consider two independent stationary random variables Z_{t} and ϵ_{t}, where ϵ_{t} has zero mean, is symmetric and hence disposes of odd central moments equal to zero. ${ }^{4}$ Then the variance and the odd central moments of the sum of Z_{t} and ϵ_{t} are given by

$$
E\left[\left(Z_{t}+\epsilon_{t}-\mu_{Z}\right)^{2}\right]=E\left[\left(Z_{t}-\mu_{Z}\right)^{2}\right]+E\left[\epsilon_{t}^{2}\right]
$$

and

$$
\begin{equation*}
E\left[\left(Z_{t}+\epsilon_{t}-\mu_{Z}\right)^{k}\right]=E\left[\left(Z_{t}-\mu_{Z}\right)^{k}\right] \quad \text { for } k=1,3,5, \ldots, \tag{8}
\end{equation*}
$$

respectively. From these results, it follows that ϵ_{t} has no influence on the symmetry and the sign of skewness of Z_{t}, but only on the magnitude of the coefficient of skewness due to its influence on the variance of Z_{t}. Note that the normal random variables ε_{t} and $\Delta \varepsilon_{t}$, which are part of the Markov-switching process (7), as well as any linear transformation of ε_{t} and $\Delta \varepsilon_{t}$ have zero mean and are symmetric. Thus, when symmetry and the signs of deepness and steepness of Markov-switching processes are investigated, added normal error terms can be ignored during the analysis.

In order to analyze the properties with respect to symmetry and deepness of Z_{t} when Z_{t} is determined by (7), it is useful to rewrite (7) as

$$
\begin{equation*}
Z_{t}=\frac{1-\phi L}{1-\theta L} \mu_{s_{t}}+\frac{1}{1-\theta L} \Upsilon(L) \varepsilon_{t} \tag{9}
\end{equation*}
$$

[^3]and thus as the sum of two independent processes. Because of the mentioned zero mean and zero skewness of ε_{t} and its independence of the Markov chain, only the term $\frac{1-\phi L}{1-\theta L} \mu_{s_{t}}$ can cause asymmetry of Z_{t}. Equivalently, for ΔZ_{t} one obtains
\[

$$
\begin{equation*}
\Delta Z_{t}=\frac{1-\phi L}{1-\theta L} \Delta \mu_{s_{t}}+\frac{1}{1-\theta L} \Upsilon(L) \Delta \varepsilon_{t} \tag{10}
\end{equation*}
$$

\]

where in analogy to (9) because of the symmetry, zero mean and zero skewness of $\Delta \varepsilon_{t}$ and its independence of the Markov chain, only the term $\frac{1-\phi L}{1-\theta L} \Delta \mu_{s_{t}}$ can cause asymmetry of ΔZ_{t}.

4.2 MSM-processes

4.2.1 An Arbitrary Number of States

The study of MSM-processes is especially easy, since for these processes the term $\frac{1-\phi L}{1-\theta L}$ appearing in (9) and (10) simply equals one. CK show that for MSM-processes with an arbitrary number of states, the condition for non-deepness can be stated as

$$
E\left[\left(Z_{t}-\mu_{Z}\right)^{3}\right]=\boldsymbol{\gamma}^{\prime}\left(\boldsymbol{\mu}-\left(\boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}\right) \mathbf{1}_{m}\right)^{3}=0
$$

where taking the power of a vector means taking the power of each element of that vector. Note that the conditional probabilities, i.e. the elements of the transition matrix do not enter this formula directly. ${ }^{5}$ According to CK, in contrast to that, non-steepness requires

$$
\begin{equation*}
\sum_{i=0}^{m-1} \sum_{j=i+1}^{m}\left(\gamma_{i} p_{i j}-\gamma_{j} p_{j i}\right)\left(\mu_{j}-\mu_{i}\right)^{3}=0 \tag{11}
\end{equation*}
$$

to hold, so that for this concept of asymmetry also the conditional probabilities matter directly. ${ }^{6}$

[^4]
4.2.2 Two States

In the case of two states, the third central moment of an MSM-process can be expressed as

$$
E\left[\left(Z_{t}-\mu_{Z}\right)^{3}\right]=\left(\mu_{2}-\mu_{1}\right)^{3}\left(2 \gamma_{1}-1\right)\left(1-\gamma_{1}\right) \gamma_{1}
$$

so that, since in this case the unconditional probabilities are determined by

$$
\gamma_{1}=\frac{1-p_{22}}{2-p_{11}-p_{22}}
$$

and

$$
\gamma_{2}=\frac{1-p_{11}}{2-p_{11}-p_{22}}=1-\gamma_{1},
$$

non-deepness of Z_{t} occurs when the transition matrix of the states is symmetric, i.e. if $p_{11}=p_{22}$ holds. Furthermore, considering the unconditional density of an MSM-process, which can, for instance, be found in Hamilton (1994, ch. 22), it is evident that nondeepness also implies symmetry. Applying (11) to the case of two states yields

$$
E\left[\left(\Delta Z_{t}-\mu_{\Delta Z}\right)^{3}\right]=0
$$

which implies that MSM-processes with two states are non-steep regardless of their parameter values.

4.3 MSI-Processes

4.3.1 An Arbitrary Number of States

Concerning the skewness of MSI-processes, to the best of our knowledge no formulas are documented in the literature, presumably because the derivation of the third central moment is extremely cumbersome. In order to inspect the relation of the parameters and the deepness and steepness of MSI-processes, we hence first have to derive the formulas
for the third central moments of these processes.
A formula for the second central moments of MSI-processes can be found in Krolzig (1997). Since the formula presented there, however, is based on Markov-switching processes in their unrestricted form, we also present a formula that is more convenient if the Markov-switching process is given in its restricted form. ${ }^{7}$

Deepness:

Proposition 1 The second noncentral moment of an MSI-process with $\sigma_{\varepsilon}^{2}=0$ is given by

$$
\begin{equation*}
E\left[Z_{t}^{2}\right]=\frac{1}{1-\theta^{2}} \boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}^{2}+\frac{2}{1-\theta^{2}}\left(\boldsymbol{\mu}^{\prime} \theta \mathbf{P}(\mathbf{I}-\theta \mathbf{P})^{-1}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) \tag{12}
\end{equation*}
$$

where the operator \odot denotes the Schur product.
Proof. See Appendix A.1.

Proposition 2 The third noncentral moment of an MSI-process is given by

$$
E\left[Z_{t}^{3}\right]=\left(\begin{array}{c}
\frac{1}{1-\theta^{3}} \boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}^{3} \tag{13}\\
+\frac{3}{1-\theta^{3}}\left(\boldsymbol{\mu}^{2}\right)^{\prime}\left(\theta \mathbf{P}(\mathbf{I}-\theta \mathbf{P})^{-1}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) \\
+\frac{3}{1-\theta^{3}} \boldsymbol{\mu}^{\prime}\left(\theta^{2} \mathbf{P}\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1}\right)\left(\boldsymbol{\gamma} \odot \boldsymbol{\mu}^{2}\right) \\
+\frac{6}{1-\theta^{3}} \mathbf{3}_{m}^{\prime}\left(\mathbf{A}_{1} \odot\left(\theta^{2} \mathbf{P}\right)\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1}\right)\left(\mathbf{A}_{2} \odot \mathbf{A}_{1} \odot(\theta \mathbf{P})(\mathbf{I}-\theta \mathbf{P})^{-1}\right) \mathbf{1}_{m}
\end{array}\right)
$$

where the matrices \mathbf{A}_{1} and \mathbf{A}_{2} are defined by

$$
\begin{align*}
& \mathbf{A}_{1}:=\boldsymbol{\mu} \otimes \mathbf{1}_{m}^{\prime} \tag{14}\\
& \mathbf{A}_{2}:=(\boldsymbol{\mu} \odot \gamma)^{\prime} \otimes \mathbf{1}_{m}
\end{align*}
$$

[^5]where the operator \otimes denotes the Kronecker product.

Proof. See Appendix A.1.
With the mean of an MSI-process given by

$$
\begin{equation*}
\mu_{Z}=\frac{1}{1-\theta} \gamma^{\prime} \boldsymbol{\mu} \tag{15}
\end{equation*}
$$

the central second and third moment of Z_{t} can be calculated easily by using

$$
\begin{equation*}
E\left[\left(Z_{t}-\mu_{Z}\right)^{2}\right]=E\left[Z_{t}^{2}\right]-\mu_{Z}^{2}+\sigma_{\frac{1}{1-\theta L} \Upsilon(L) \varepsilon}^{2}, \tag{16}
\end{equation*}
$$

where $\sigma_{\frac{1}{1-\theta L} \Upsilon(L) \varepsilon}^{2}$ denotes the variance of $\frac{1}{1-\theta L} \Upsilon(L) \varepsilon_{t}$, and

$$
\begin{equation*}
E\left[\left(Z_{t}-\mu_{Z}\right)^{3}\right]=E\left[Z_{t}^{3}\right]-3 E\left[Z_{t}^{2}\right] \mu_{Z}+2 \mu_{Z}^{3} \tag{17}
\end{equation*}
$$

which in turn allow the determination of the deepness of Z_{t}.

Steepness: To check for non-steepness of a two-state MSI-process, one needs to consider the equation

$$
\begin{equation*}
\Delta Z_{t}=(1-\theta L)^{-1} \Delta \mu_{s_{t}}=\sum_{i=0}^{\infty}(\theta L)^{i} \Delta \mu_{s_{t}} \tag{18}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Delta Z_{t}=\mu_{s_{t}}+(\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}} . \tag{19}
\end{equation*}
$$

While with (19) one can operate directly on the variables related to Z_{t} in order to study the coefficient of skewness of ΔZ_{t}, an investigation of (18) requires the definition of new states related to ΔZ_{t} in order to obtain a first-order Markov chain. Nevertheless, operating on (18) can turn out to be a more elegant solution, since all that is needed for the investigation of the sign of steepness is the redefinition mentioned and the insertion of the obtained
intercept vector $\boldsymbol{\mu}_{\Delta}$ and transition matrix \mathbf{P}_{Δ} into (13). Since the expectation of ΔZ_{t} is zero, this procedure directly yields the third central moment of ΔZ_{t}. If one is interested in the coefficient of skewness of ΔZ_{t}, one calculates the variance by inserting μ_{Δ} and \mathbf{P}_{Δ} into (12), where one in addition has to add the variance of $\frac{1}{1-\theta L} \Upsilon(L) \Delta \varepsilon_{t}$ which will henceforth be denoted $\sigma_{\frac{1}{1-\theta L}}^{2} \Upsilon(L) \Delta \varepsilon$.

Equivalent formulas for the second and third moment of ΔZ_{t} based on the states of the process of Z_{t}, i.e. on the intercept vector $\boldsymbol{\mu}$ and the transition matrix \mathbf{P}, are presented below.

Proposition 3 If Z_{t} is described by an MSI-process, the second central moment of ΔZ_{t} is given by

$$
\begin{equation*}
E\left[\left(\Delta Z_{t}\right)^{2}\right]=\gamma^{\prime} \boldsymbol{\mu}^{2}+2(\theta-1) \boldsymbol{\mu}^{\prime}(\mathbf{I}-\theta \mathbf{P})^{-1} \mathbf{P}(\boldsymbol{\gamma} \odot \boldsymbol{\mu})+(\theta-1)^{2} E\left[Z_{t}^{2}\right]+\sigma_{\frac{1}{1-\theta L}}^{2} \Upsilon(L) \Delta \varepsilon \tag{20}
\end{equation*}
$$

Proof. See Appendix A.2.

Proposition 4 If Z_{t} is described by an MSI-process, the third central moment of ΔZ_{t} is given by

$$
\begin{align*}
& E\left[\left(\Delta Z_{t}\right)^{3}\right] \\
& =E\left[\begin{array}{c}
\gamma^{\prime} \boldsymbol{\mu}^{3} \\
+3(\theta-1)^{2}\left[\begin{array}{c}
+3(\theta-1)\left(\boldsymbol{\mu}^{2}\right)^{\prime}(\mathbf{I}-\theta \mathbf{P})^{-1} \mathbf{P}(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) \\
\boldsymbol{\mu}^{\prime}\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1} \mathbf{P}\left(\boldsymbol{\gamma} \odot \boldsymbol{\mu}^{2}\right) \\
+2 \cdot \mathbf{1}_{m}^{\prime}\left(\mathbf{A}_{1} \odot\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1} \mathbf{P}\right)\left(\mathbf{A}_{2} \odot \mathbf{A}_{1} \odot(\theta \mathbf{P})(\mathbf{I}-\theta \mathbf{P})^{-1}\right) \mathbf{1}_{m} \\
+(\theta-1)^{3} E\left[Z_{t}^{3}\right]
\end{array}\right]
\end{array}\right. \tag{21}
\end{align*}
$$

where again, \mathbf{A}_{1} and \mathbf{A}_{2} are defined by (14).

Proof. See Appendix A.2.

Evidently, the coefficient of skewness of ΔZ_{t} can be calculated easily from (20) and (21). The application of these formulas might be more convenient if the definition of $\boldsymbol{\mu}_{\Delta}$ and \mathbf{P}_{Δ} appears difficult.

4.3.2 Two States

According to CK, testing for deepness of MSI-processes is equivalent to testing for deepness of MSM-processes, unless the roots of the autoregressive process are close to the unit circle. In the latter case, CK state that using the restrictions for non-deepness of MSMprocesses implies non-steepness of MSI-processes instead of non-deepness. This means that for two-state MSI-processes, $p_{11}=p_{22}$ would be the only restriction for non-deepness if θ is not too large in absolute value. However, if θ is large in absolute value, $p_{11}=p_{22}$ would be the restriction for non-steepness.

In what follows, we will show that MSI-processes can be non-deep if $p_{11} \neq p_{22}$. Moreover, we will show that $p_{11}=p_{22}$ is the restriction for non-steepness for all $\theta \neq 0$.

Deepness: For the special case of two states, application of (12) and (13) shows that the second central moment simplifies to

$$
\begin{equation*}
E\left[\left(Z_{t}-\mu\right)^{2}\right]=\left(\mu_{2}-\mu_{1}\right)^{2} \frac{\left(1-p_{22}\right)\left(1-p_{11}\right)\left(1+\theta\left(p_{11}+p_{22}-1\right)\right)}{\left(1-\theta^{2}\right)\left(1-\theta\left(p_{11}+p_{22}-1\right)\right)\left(2-p_{11}-p_{22}\right)^{2}}+\sigma_{\frac{1}{1-\theta L} \Upsilon(L) \varepsilon}^{2} \tag{22}
\end{equation*}
$$

and the third central moment becomes

$$
\begin{equation*}
E\left[\left(Z_{t}-\mu\right)^{3}\right]=\left(\mu_{2}-\mu_{1}\right)^{3} \frac{\left(1-p_{22}\right)\left(1-p_{11}\right)\left(p_{11}-p_{22}\right)\left(\left(p_{11}+p_{22}-1\right)^{2} \theta^{3}+2\left(p_{11}+p_{22}-1\right)\left(\theta^{2}+\theta\right)+1\right)}{(1-\theta)\left(\theta^{2}\left(1-p_{11}-p_{22}\right)+1\right)\left(\theta\left(1-p_{11}-p_{22}\right)+1\right)\left(2-p_{11}-p_{22}\right)^{3}\left(\theta^{2}+\theta+1\right)} . \tag{23}
\end{equation*}
$$

Thus, in contrast to the MSM-processes, it is not possible to determine the third central moment using only the unconditional probabilities. ${ }^{8}$

In order to generate non-deepness for an MSI-process with two states, (23) must equal

[^6]zero. Since we are not considering cases where either p_{11} or p_{22} equal one, ${ }^{9}$ it follows that only the solutions
\[

$$
\begin{equation*}
p_{11}=p_{22} \tag{24}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
p_{11}=1-p_{22}-\frac{1}{\theta}\left(\frac{1}{\theta}+1\right)+\frac{1}{\theta^{2}} \sqrt{\theta^{2}+\theta+1} \tag{25}
\end{equation*}
$$

are feasible. While the non-deepness condition stated in (24) is identical for MSMprocesses and identical to the condition for symmetry of two-state MSM- and MSIprocesses which is given by $p_{11}=p_{22},{ }^{10}$ condition (25) has no counterpart in the case of MSM-processes, is unrelated to symmetry and therefore emerges unexpectedly. This second possibility contradicts CK's claim that testing for non-deepness of MSI-processes is directly related to testing for non-deepness of MSM-processes.

Taking into account stability restrictions of the process and the restrictions placed on \mathbf{P}, one obtains that for

$$
\theta \in(0.382,1)
$$

condition (25) yields admissible combinations of p_{11} and p_{22}. Inserting this restriction for θ into (25), it turns out that

$$
\begin{equation*}
p_{11}+p_{22} \in(0,0.732) \tag{26}
\end{equation*}
$$

has to be fulfilled if (25) holds. ${ }^{11}$ Equation (25) can also be illustrated graphically as done in Figure 3. The line represents all combinations of θ and $p_{11}+p_{22}$ generating zero deepness. It is easy to show that combinations on opposite sides of that line give rise to

[^7]opposite signs of the third central moment when the signs of $\mu_{2}-\mu_{1}$ and $p_{11}-p_{22}$ are identical for these combinations. Thus, the sign of the third central moment depends on the sign of the expression
\[

$$
\begin{equation*}
\left(p_{11}+p_{22}-1\right)^{2} \theta^{3}+2\left(p_{11}+p_{22}-1\right)\left(\theta^{2}+\theta\right)+1 \tag{27}
\end{equation*}
$$

\]

Suppose that μ_{1} and p_{11} are larger than their respective counterpart of state 2. Then formula (23) implies that, if expression (27) is positive, the third central moment is negative and vice versa. The values that expression (27) can take multiplied by -1 are depicted in Figure 4. In the left panel, only values smaller than zero which thus cause negative third central moments are plotted, whereas in the right panel only positive values are displayed. Note that for most combinations of θ and $p_{11}+p_{22}$, the third central moment adopts negative values under the mentioned conditions on the signs of $\mu_{1}-\mu_{2}$ and $p_{11}-p_{22}$. Nevertheless, in contrast to MSM-processes, it is not sufficient to know the signs of $\mu_{1}-\mu_{2}$ and $p_{11}-p_{22}$ in order to determine the sign of the coefficient of skewness of an MSI-process.

Figure 3: A condition for non-deepness in MSI(1)-models

For the purpose of hypotheses tests dealing with macroeconomic data, it is evidently very important to know that non-deepness of MSI-processes with two states can actually arise without a symmetric transition matrix. Suppose that a likelihood-ratio test for

Figure 4: Expression determining the sign of $E\left[\left(Z_{t}-\mu\right)^{3}\right]$
non-deepness is to be performed. Then, two restricted models have to be estimated, one restricted by (24) and the other one restricted by (25). Only the model with the larger value of the log-likelihood function then has to be tested against the unrestricted model. Considering only restriction (24) as proposed by CK can therefore lead to wrong conclusions.

Finally, note that the skewness of a two-state MSI-process without Gaussian white noise can be determined by means of (22) and (23) and is hence given by

$$
\begin{equation*}
\tau_{Z}=\operatorname{sign}\left(\mu_{2}-\mu_{1}\right) \frac{(1+\theta) \sqrt{\left(1-\theta^{2}\right)} \sqrt{1-\theta\left(p_{11}+p_{22}-1\right)}\left(p_{11}-p_{22}\right)\left(\left(p_{11}+p_{22}-1\right)^{2} \theta^{3}+2\left(p_{22}+p_{11}-1\right)\left(\theta^{2}+\theta\right)+1\right)}{\sqrt{\left(1-p_{22}\right)} \sqrt{\left(1-p_{11}\right)}\left(\sqrt{1+\theta\left(p_{11}+p_{22}-1\right)}\right)^{3}\left(\theta^{2}+\theta+1\right)\left(1-\left(p_{11}+p_{22}-1\right) \theta^{2}\right)} \tag{28}
\end{equation*}
$$

where $\operatorname{sign}(z)$ is defined by

$$
\operatorname{sign}(z)=\left\{\begin{array}{l}
\frac{z}{|z|} \text { if } z \neq 0 \\
0 \text { if } z=0
\end{array} .\right.
$$

Steepness: As mentioned above, there are two possibilities to calculate the moments of ΔZ_{t}. If one is interested in a first-order Markov process for $\Delta \mu_{s_{t}}$, one needs to define
four new states

$$
\begin{aligned}
\left\{\tilde{s}_{t}=1\right\} & :=\left\{s_{t}=1\right\} \cap\left\{s_{t-1}=2\right\} \\
\left\{\tilde{s}_{t}=2\right\}: & =\left\{s_{t}=1\right\} \cap\left\{s_{t-1}=1\right\} \\
\left\{\tilde{s}_{t}=3\right\}: & =\left\{s_{t}=2\right\} \cap\left\{s_{t-1}=2\right\} \\
\left\{\tilde{s}_{t}=4\right\}: & =\left\{s_{t}=2\right\} \cap\left\{s_{t-1}=1\right\}
\end{aligned}
$$

with associated mean vector $\boldsymbol{\mu}_{\Delta}$ and transition matrix \mathbf{P}_{Δ} given by

$$
\boldsymbol{\mu}_{\Delta}:=\left[\begin{array}{c}
\mu_{1}-\mu_{2} \tag{29}\\
0 \\
0 \\
\mu_{2}-\mu_{1}
\end{array}\right] \quad \text { and } \quad \mathbf{P}_{\Delta}=\left[\begin{array}{cccc}
0 & 0 & 1-p_{22} & 1-p_{22} \\
p_{11} & p_{11} & 0 & 0 \\
0 & 0 & p_{22} & p_{22} \\
1-p_{11} & 1-p_{11} & 0 & 0
\end{array}\right]
$$

The formulas presented for deepness can now be applied to the process for ΔZ_{t} described by (18) in order to derive the moments of the first-order differences of two-state MSIprocesses. If one does not want to define new states, one can use the formulas (20) and (21) for the same purpose.

Using either of the proposed methods yields

$$
\begin{equation*}
E\left[\left(\Delta Z_{t}\right)^{2}\right]=\left(\mu_{2}-\mu_{1}\right)^{2} \frac{2\left(1-p_{11}\right)\left(1-p_{22}\right)}{\left(2-p_{11}-p_{22}\right)\left(1-\left(p_{22}+p_{11}-1\right) \theta\right)(\theta+1)}+\sigma_{\frac{1}{1-\theta L}}^{2} \Upsilon(L) \Delta \varepsilon \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[\left(\Delta Z_{t}\right)^{3}\right]=\left(\mu_{2}-\mu_{1}\right)^{3} \frac{3 \theta\left(1-p_{11}\right)\left(1-p_{22}\right)\left(p_{11}-p_{22}\right)}{\left(\theta^{2}+\theta+1\right)\left(2-p_{11}-p_{22}\right) \prod_{i=1}^{2}\left(\theta^{i}\left(1-p_{22}-p_{11}\right)+1\right)} . \tag{31}
\end{equation*}
$$

For $p_{11}, p_{22} \in[0,1)$ the term (31) equals zero if and only if $p_{11}=p_{22}$. Hence, in contrast to two-state MSM-processes, a two-state MSI-process can display steepness. Moreover, testing for deepness of MSM-processes is equivalent to testing for steepness of MSI-processes for every $\theta \neq 0$ and not only if the absolute value of θ is close to 1 or -1 as claimed by

CK. ${ }^{12}$
Using (30) and (31) it can be easily verified that the coefficient of steepness without Gaussian white noise is calculated as

$$
\tau_{\Delta Z}=\operatorname{sign}\left(\mu_{2}-\mu_{1}\right) \frac{3}{4} \frac{\sqrt{2\left(2-p_{11}-p_{22}\right)}}{\theta^{2}+\theta+1} \frac{\sqrt{1-\left(p_{22}+p_{11}-1\right) \theta}}{1-\left(p_{22}+p_{11}-1\right) \theta^{2}} \frac{\theta\left(p_{11}-p_{22}\right)(\sqrt{(\theta+1)})^{3}}{\sqrt{\left(1-p_{11}\right)} \sqrt{\left(1-p_{22}\right)}} .
$$

If one again supposes that μ_{1} is larger than μ_{2} and that $\theta>0$ holds, negative steepness occurs if and only if p_{11} is larger than p_{22}. Thus, if $p_{11}+p_{22}$ is larger than $-1+\sqrt{3}$ and θ is larger than zero, deepness implies negative steepness, and tallness implies positive steepness. With θ again larger than zero but $p_{11}+p_{22}$ smaller than $-1+\sqrt{3}$, the relation between deepness and steepness is ambiguous and depends on the value of θ.

5 Application

In this section we apply the results derived for the deepness and steepness of MSI-processes with two states to U.S. real GDP. In order to render U.S. GDP stationary, we employ the widely-used filter proposed by Hodrick \& Prescott (1997) (henceforth HP-filter). ${ }^{13}$ HP-filtered output series are especially well-suited for the application of MSI-processes because they decrease during contractions and increase during expansions. Different nonparametric tests for deepness of HP-filtered U.S. output with ambiguous results have been conducted before by Sichel (1993), Canova (1998) and Razzak (2001). Sichel (1993) and Canova (1998) find no evidence for deepness of postwar U.S. real GNP. Razzak (2001) splits a postwar sample of U.S. real GDP into the exchange rate regimes of Bretton Woods and free floating, and he discovers significant deepness in the latter, but not in the former regime. To the best of our knowledge, steepness of HP-filtered U.S. output has not been tested yet.

Our raw data covers the period from the first quarter of 1955 through the fourth quarter of 2002. After taking logarithms, HP-filtering and multiplying by 100, we drop

[^8]the first and last twelve observations of the filtered series as suggested by Baxter \& King (1999), so that the series investigated starts from the first quarter of 1958 and ends by the fourth quarter of 1999. The resulting series of HP-filtered U.S. real GDP is displayed in the left panel of Figure 5.

Figure 5: HP-filtered U.S. GDP (left panel) and smoothed probabilities of being in the expansionary regime (right panel). Shaded areas indicate recessions as dated by the NBER.

As emphasized by CK, the results of parametric tests depend strongly on the assumptions about the stochastic process one intends to study. Thus, the appropriateness of the specification chosen has to be investigated extremely carefully. Applying specification tests to Markov-switching models is a challenging task, since many standard tests rely on the normality of the residuals under the null hypothesis. For Markov-switching models, however, normality of the residuals is not a valid assumption as noted by Krolzig (1997, pp. 132-133). In this paper, we employ the Newey-Tauchen-White tests for dynamic misspecification proposed by Hamilton (1996). These tests tend to overreject in small samples so that we can have some confidence in the appropriateness of our specification if the tests do not reject the null of correct specification.

We choose to estimate a two state MSI-model with one moving-average parameter in order to model HP-filtered U.S. real GDP. The estimated parameters of this model and

Table 1: Estimation results for two-state MSI-models with one moving-average parameter

	unrestricted model	restriction $p_{11}=p_{22}$	restriction (25)
μ_{1}	0.208	0.215	0.306
	(0.076)	(0.083)	(0.603)
μ_{2}	-1.324	-1.201	-0.098
	(0.306)	(0.294)	(0.239)
σ_{ε}^{2}	0.462	0.473	0.613
	(0.060)	(0.067)	(0.103)
θ	0.769	0.763	0.808
	(0.048)	(0.051)	(0.049)
v	0.128	0.123	0.234
	(0.083)	(0.087)	(0.080)
p_{11}	0.956	0.935	0.071
	(0.024)	(0.033)	(0.542)
p_{22}	0.655	0.935	0.563
	(0.145)	-	-
\mathcal{L}	-193.976	-199.911	-199.232

Note: Standard errors are in parentheses and computed based on the Hessian. \mathcal{L} denotes the value of the \log-likelihood function.
the value of the log-likelihood function are presented in the first column Table 1. The corresponding results of the Newey-Tauchen-White tests are displayed in Table 2. Evidently, there are no signs of significant misspecification in the form of residual autocorrelation, autoregressive conditional heteroskedasticity (denoted ARCH effects), violation of the first-order Markov specification or varying transition probabilities. ${ }^{14}$ Moreover, the estimated probabilities of being in a certain state are found to match the business cycle pattern published by the National Bureau of Economic Research (henceforth NBER) very well. This can be verified simply by looking at the smoothed probabilities of being in the expansionary state and the recessionary periods as dated by the NBER which are displayed in the right panel of Figure 5.

Having found a well-specified Markov-switching model, we proceed by estimating re-

[^9]Table 2: Newey-Tauchen-White tests for dynamic misspecification

H_{0}	p-value
no residual autocorrelation	0.198
no ARCH effects	0.215
appropriateness of first-order Markov specification	0.835
constant transition probabilities	0.212

Table 3: LR tests for deepness and steepness

restriction	LR-statistic	p-value
non-deepness, i.e. (25)	10.512	0.0012
non-steepness, i.e. $p_{11}=p_{22}$	11.870	0.0006

stricted MSI-models in order to perform subsequent likelihood-ratio tests (henceforth LR tests) for deepness and steepness. As shown above, the test for deepness requires the estimation of two restricted models, where one model is restricted by equality of the transition probabilities p_{11} and p_{22} and the other is restricted by equation (25). Since testing for steepness only requires an estimation with the restriction $p_{11}=p_{22}$, no additional models have to be estimated for this test. The validity of the second condition for nonsteepness $\theta=0$ will be assessed using a Wald test. The parameter values and the values of the log-likelihood functions are displayed in the second and third column of Table 1. Evidently, the value of the log-likelihood function for the model with restriction (25) is larger than for the model with restriction $p_{11}=p_{22}$, so that the test for deepness requires a restriction that is different from the restriction of the test for steepness.

As can be inferred from Table 1, Wald tests reject the null of $\theta=0$ at a significance level of virtually zero. The results of the LR tests are displayed in Table 3. Evidently, both null hypotheses are rejected at all common significance levels, since the p-values are decisively lower than one percent in both cases. Non-steepness would even be rejected at a significance level of 0.1 percent, whereas the p-value of the test for deepness exceeds this value by a small amount.

6 Summary and Concluding Remarks

In this paper, we have derived the formulas for the coefficient of skewness of first-order autoregressive processes with a Markov-switching intercept (MSI-processes), where the underlying Markov chain has an arbitrary number of states. We have also shown how to determine the coefficient of skewness of the first-order differences of MSI-processes. For the special case of two states, we have presented the parameter restrictions for nondeepness and non-steepness.

Our results imply that there are two different combinations of parameter values leading to non-deepness of two-state MSI-processes, where only one of these combinations is identical to the restriction for non-deepness of autoregressive processes with a two-state Markov-switching mean (MSM-processes). Hence, our results show that the conclusions of Clements \& Krolzig (2003) with respect to MSI-processes are not correct, since they claim that testing for deepness of MSI-processes is equivalent to testing for deepness of MSM-processes. Moreover, we find that, in contrast to two-state MSM-processes, twostate MSI-processes in general exhibit steepness, and that the restriction for non-steepness of a two-state MSI-process is equivalent to the restriction for non-deepness of a two-state MSM-process. Thus, applying the parameter restriction for non-deepness of two-state MSM-processes to two-state MSI-processes always results in testing for steepness, and not only if the autoregressive process has roots close to the unit circle, as claimed by Clements \& Krolzig (2003).

Finally, we have applied our results to postwar U.S. real GDP which was detrended by means of the HP-filter. Specification tests indicate that a two-state MSI-model with one moving-average term provides an appropriate description of the data. Estimating two corresponding restricted models that imply non-deepness and non-steepness, we find that the null hypotheses of non-deepness and non-steepness are rejected unambiguously by likelihood-ratio tests. It should be noted that this result calls into question the appropriateness of linear business cycle models with non-deep and non-steep shocks, as e.g. normal shocks. Such models cannot replicate the asymmetries found in the data which might indicate the lack of an important feature of the propagation mechanism if shocks
are assumed to be non-deep and non-steep. Possible modifications for these models in order to generate deepness are given-by non-linear mechanisms that dampen the effects of positive shocks (e.g. capacity constraints) or amplify the effects of negative shocks (e.g. credit constraints). Steepness could be caused by non-linear mechanisms affecting the changes of variables, as for example downward rigid wages which might give rise to negative steepness of labor input, thereby causing negative steepness of GDP.

An evident direction for future research is given by the extension of the formulas presented for second and third moments to processes with a Markov-switching intercept and an arbitrary order of the autoregressive process.

References

Bai, J. \& Ng, S. (2002), Tests of skewness, kurtosis, and normality in time series data. Forthcoming in Journal of Business and Economic Statistics.

Baxter, M. \& King, R. G. (1999), 'Measuring business cycles: Approximate band-pass filters for macroeconomic time series', Review of Economics and Statistics 81(4), 57593.

Canova, F. (1998), 'Detrending and business cycle facts', Journal of Monetary Economics 41, 475-512.

Clements, M. P. \& Krolzig, H.-M. (1998), 'A comparison of the forecast performance of markov-switching and threshold autoregressive models of US GNP', Econometrics Journal 1, C47-C75. Conference Issue.

Clements, M. P. \& Krolzig, H.-M. (2003), 'Business cycle asymmetries: Characterisation and testing based on markov-switching autoregressions', Journal of Business and Economic Statistics 21, 196-211.

Hamilton, J. D. (1989), 'A new approach to the economic analysis of nonstationary time series and the business cycle', Econometrica 57, 357-384.

Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press, Princeton, New Jersey.

Hamilton, J. D. (1996), 'Specification testing in markov-switching time series models', Journal of Econometrics 70, 127-157.

Hodrick, R. \& Prescott, E. C. (1997), 'Postwar u.s. business cycles: An empirical investigation', Journal of Money, Credit and Banking 29(1), 1-16.

Krolzig, H.-M. (1997), Markov-Switching Vector Autoregressions, Springer.
McQueen, G. \& Thorley, S. (1993), 'Asymmetric business cycle turning points', Journal of Monetary Economics 31, 341-362.

Mitchell, W. C. (1927), Business Cycles: The Problem and its Setting, National Bureau of Economic Research, New York.

Psaradakis, Z. \& Sola, M. (2003), 'On detrending and cyclical asymmetry', Journal of Applied Econometrics 18(3), 271-289.

Razzak, W. A. (2001), 'Business cycle asymmetries: International evidence', Review of Economic Dynamics 4(1), 230-243.

Sichel, D. E. (1993), 'Business cycle asymmetry: A deeper look', Economic Inquiry XXXI, 224-236.

A Appendix

A. 1 Deepness of MSI-processes

Suppose that $Z_{t}=\frac{1}{1-\theta L} \mu_{s_{t}}$, that the process started in period 0 and that the last period is period T.

Second noncentral moment: Start by rewriting $E\left[Z_{t}^{2}\right]$ as

$$
\begin{gathered}
E\left[Z_{t}^{2}\right]=E\left[\left(\sum_{i=0}^{T} \theta \mu_{s_{t-i}}\right)^{2}\right] \\
=E\left[\begin{array}{ccccc}
\theta^{0} \theta^{0} \mu_{s_{t}} \mu_{s_{t}}+ & \theta^{1} \theta^{0} \mu_{s_{t-1}} \mu_{s_{t}}+ & \theta^{2} \theta^{0} \mu_{s_{t-2}} \mu_{s_{t}}+ & \ldots+ & \theta^{T} \theta^{0} \mu_{s_{t-T}} \mu_{s_{t}}+ \\
\theta^{0} \theta^{1} \mu_{s_{t}} \mu_{s_{t-1}}+ & \theta^{1} \theta^{1} \mu_{s_{t-1}} \mu_{s_{t-1}}+ & \theta^{2} \theta^{1} \mu_{s_{t-2}} \mu_{s_{t-1}}+ & \ldots+ & \theta^{T} \theta^{1} \mu_{s_{t-T}} \mu_{s_{t-1}}+ \\
\theta^{0} \theta^{2} \mu_{s_{t}} \mu_{s_{t-2}}+ & \theta^{1} \theta^{2} \mu_{s_{t-1}} \mu_{s_{t-2}}+ & \theta^{2} \theta^{2} \mu_{s_{t-2}} \mu_{s_{t-2}}+ & \ldots+ & \theta^{T} \theta^{2} \mu_{s_{t-T}} \mu_{s_{t-2}}+ \\
\vdots \\
\theta^{0} \theta^{T} \mu_{s_{t}} \mu_{s_{t-T}}+ & \theta^{1} \theta^{T} \mu_{s_{t-1}} \mu_{s_{t-T}}+ & \theta^{2} \theta^{T} \mu_{s_{t-2}} \mu_{s_{t-T}}+ & \ldots+ & \theta^{T} \theta^{T} \mu_{s_{t-T}} \mu_{s_{t-T}}
\end{array}\right] .
\end{gathered}
$$

Assume that in period 0 , the state is determined according to the unconditional probabilities, so that

$$
\operatorname{Pr}\left(\mu_{s_{t-i}} \mu_{s_{t-(i+k)}}\right)=\operatorname{Pr}\left(s_{t-i} \mid s_{t-(i+k)}\right) \operatorname{Pr}\left(s_{t-(i+k)}\right)
$$

holds for all integers i. Hence, we can set $i=0$ and write

$$
\operatorname{Pr}\left(\mu_{s_{t-i}} \mu_{s_{t-(i+k)}}\right)=\operatorname{Pr}\left(s_{t} \mid s_{t-k}\right) \operatorname{Pr}\left(s_{t-k}\right)
$$

and

$$
E\left[\mu_{s_{t-i}} \mu_{s_{t-(i+k)}}\right]=E\left[\mu_{s_{t}} \mu_{s_{t-k}}\right] .
$$

It follows that

$$
E\left[Z_{t}^{2}\right]=\left(\sum_{i=0}^{T} \theta^{2 i}\right) E\left[\mu_{s_{t}} \mu_{s_{t}}\right]+\sum_{k=1}^{T}\left(2 \sum_{i=0}^{T-k} \theta^{2 i+k} E\left[\mu_{s_{t}} \mu_{s_{t-k}}\right]\right)
$$

holds. Since we have that

$$
E\left[\mu_{s_{t}} \mu_{s_{t}}\right]=\gamma^{\prime} \boldsymbol{\mu}^{2}
$$

and

$$
\begin{aligned}
& E\left[\mu_{s_{t}} \mu_{s_{t-k}}\right]=\sum_{i}^{m} \sum_{i=j}^{m} \operatorname{Pr}\left(s_{t}=i, s_{t-k}=j\right) \mu_{i} \mu_{j} \\
&= \sum_{i}^{m} \sum_{j}^{m} \operatorname{Pr}\left(s_{t}=i\right) \operatorname{Pr}\left(s_{t-k}=j \mid s_{t}=i\right) \mu_{i} \mu_{j} \\
&= \gamma_{1} \operatorname{Pr}\left(s_{t-k}=1 \mid s_{t}=1\right) \mu_{1} \mu_{1}+\gamma_{2} \operatorname{Pr}\left(s_{t-k}=1 \mid s_{t}=2\right) \mu_{2} \mu_{1}+\ldots+\gamma_{m} \operatorname{Pr}\left(s_{t-k}=1 \mid s_{t}=m\right) \mu_{m} \mu_{1}+ \\
& \gamma_{1} \operatorname{Pr}\left(s_{t-k}=2 \mid s_{t}=1\right) \mu_{1} \mu_{2}+\gamma_{2} \operatorname{Pr}\left(s_{t-k}=2 \mid s_{t}=2\right) \mu_{2} \mu_{2}+\ldots+\gamma_{m} \operatorname{Pr}\left(s_{t-k}=2 \mid s_{t}=m\right) \mu_{m} \mu_{2}+ \\
& \vdots \\
& \gamma_{1} \operatorname{Pr}\left(s_{t-k}=m \mid s_{t}=1\right) \mu_{1} \mu_{m}+\gamma_{2} \operatorname{Pr}\left(s_{t-k}=m \mid s_{t}=2\right) \mu_{2} \mu_{m}+\ldots+\gamma_{m} \operatorname{Pr}\left(s_{t-k}=m \mid s_{t}=m\right) \mu_{m} \mu_{m} \\
&=\left(\gamma^{\prime} \odot\left(\boldsymbol{\mu}^{\prime} \mathbf{P}^{k}\right)\right) \boldsymbol{\mu} \\
&= \boldsymbol{\mu}^{\prime} \mathbf{P}^{k}(\boldsymbol{\gamma} \odot \boldsymbol{\mu})
\end{aligned}
$$

and

$$
\sum_{i=0}^{T} \theta^{2 i}=\frac{1-\theta^{2(T+1)}}{1-\theta^{2}}
$$

as well as

$$
\sum_{i=0}^{T-k} \theta^{2 i+k}=\frac{\theta^{k}-\theta^{2(T+1)-k}}{1-\theta^{2}}
$$

the formula simplifies to

$$
E\left[Z_{t}^{2}\right]=\frac{1-\theta^{2(T+1)}}{1-\theta^{2}} \gamma^{\prime} \boldsymbol{\mu}^{2}+2 \sum_{k=1}^{T}\left(\frac{\theta^{k}-\theta^{2(T+1)-k}}{1-\theta^{2}} \boldsymbol{\mu}^{\prime} \mathbf{P}^{k}(\boldsymbol{\gamma} \odot \boldsymbol{\mu})\right)
$$

If T approaches infinity, one obtains the final formula

$$
\begin{aligned}
E\left[Z_{t}^{2}\right] & =\frac{1}{1-\theta^{2}} \boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}^{2}+2 \sum_{k=1}^{\infty}\left(\frac{1}{1-\theta^{2}} \boldsymbol{\mu}^{\prime}(\theta \mathbf{P})^{k}(\boldsymbol{\gamma} \odot \boldsymbol{\mu})\right) \\
& =\frac{1}{1-\theta^{2}} \boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}^{2}+\frac{2}{1-\theta^{2}}\left(\boldsymbol{\mu}^{\prime} \theta \mathbf{P}(\mathbf{I}-\theta \mathbf{P})^{-1}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu})
\end{aligned}
$$

where \mathbf{I} is the identity matrix.

Third noncentral moment: Start by rewriting $E\left[Z_{T}^{3}\right]$ as

$$
\left.E\left[Z_{T}^{3}\right]=E\left[\begin{array}{c}
\sum_{i=0}^{T} \theta^{i} \theta^{i} \theta^{i} \mu_{s_{t-i}} \mu_{s_{t-i}} \mu_{s_{t-i}} \tag{32}\\
+\sum_{j=1}^{T}\binom{3 \sum_{i=0}^{T-j} \theta^{i} \theta^{i} \theta^{i+j} \mu_{s_{t-i}} \mu_{s_{t-i}} \mu_{s_{t-(i+j)}}}{+3 \sum_{i=0}^{T-j} \theta^{i} \theta^{i+j} \theta^{i+j} \mu_{s_{t-i}} \mu_{s_{t-(i+j)}} \mu_{s_{t-(i+j)}}} \\
+\sum_{k=1}^{T} \sum_{j=k+1}^{T}\left(6 \sum_{i=0}^{T-j} \theta^{i} \theta^{i+k} \theta^{i+j} \mu_{s_{t-i}} \mu_{s_{t-(i+k)}} \mu_{s_{t-(i+j)}}\right.
\end{array}\right)\right]
$$

where obviously we have that $i<i+k<i+j$. Assume that in period 0 , the state is determined according to the unconditional probabilities, so that

$$
\operatorname{Pr}\left(\mu_{s_{t-i}} \mu_{s_{t-(i+k)}} \mu_{s_{t-(i+j)}}\right)=\operatorname{Pr}\left(s_{t-i} \mid s_{t-(i+k)}\right) \operatorname{Pr}\left(s_{t-(i+k)} \mid s_{t-(i+j)}\right) \operatorname{Pr}\left(s_{t-(i+j)}\right)
$$

holds for all integers i. Hence, we can set $i=0$ and write

$$
\operatorname{Pr}\left(\mu_{s_{t-i}} \mu_{s_{t-(i+k)}} \mu_{s_{t-(i+j)}}\right)=\operatorname{Pr}\left(s_{t} \mid s_{t-k}\right) \operatorname{Pr}\left(s_{t-k} \mid s_{t-j}\right) \operatorname{Pr}\left(s_{t-j}\right)
$$

and

$$
E\left[\mu_{s_{t-i}} \mu_{s_{t-(i+k)}} \mu_{s_{t-(i+j)}}\right]=E\left[\mu_{s_{t}} \mu_{s_{t-k}} \mu_{s_{t-j}}\right]
$$

We will now determine the summation terms of (32) separately. The first term can be rewritten as

$$
E\left[\sum_{i=0}^{T} \theta^{i} \theta^{i} \theta^{i} \mu_{s_{t}} \mu_{s_{t}} \mu_{s_{t}}\right]=\gamma^{\prime} \boldsymbol{\mu}^{3} \frac{1-\theta^{3(T+1)}}{1-\theta^{3}} .
$$

The second term is equivalent to

$$
E\left[\sum_{j=1}^{T}\left(3 \sum_{i=0}^{T-j} \theta^{i} \theta^{i} \theta^{i+j} \mu_{s_{t}} \mu_{s_{t}} \mu_{s_{t-j}}\right)\right]=\sum_{j=1}^{T} E\left[\mu_{s_{t}}^{2} \mu_{s_{t-j}}\right]\left(3 \sum_{i=0}^{T-j} \theta^{3 i+j}\right)
$$

An investigation of the expectation $E\left[\mu_{s_{t}}^{2} \mu_{s_{t-j}}\right]$ for any integer j yields

$$
\begin{aligned}
& E\left[\mu_{s_{t}}^{2} \mu_{s_{t-j}}\right]=E\left[\mu_{s_{t+j}}^{2} \mu_{s_{t}}\right]=\sum_{i=1}^{m} \sum_{k=1}^{m} \operatorname{Pr}\left(s_{t+j}=i, s_{t}=k\right) \mu_{i}^{2} \mu_{k} \\
& =\sum_{i=1}^{m} \sum_{k=1}^{m} \operatorname{Pr}\left(s_{t}=k\right) \operatorname{Pr}\left(s_{t+j}=i \mid s_{t}=k\right) \mu_{i}^{2} \mu_{k} \\
& =\gamma_{1} \operatorname{Pr}\left(s_{t+j}=1 \mid s_{t}=1\right) \mu_{1} \mu_{1}^{2}+\gamma_{2} \operatorname{Pr}\left(s_{t+j}=1 \mid s_{t}=2\right) \mu_{2} \mu_{1}^{2}+\ldots+\gamma_{m} \operatorname{Pr}\left(s_{t+j}=1 \mid s_{t}=m\right) \mu_{m} \mu_{1}^{2}+ \\
& \gamma_{1} \operatorname{Pr}\left(s_{t+j}=2 \mid s_{t}=1\right) \mu_{1} \mu_{2}^{2}+\gamma_{2} \operatorname{Pr}\left(s_{t+j}=2 \mid s_{t}=2\right) \mu_{2} \mu_{2}^{2}+\ldots+\gamma_{m} \operatorname{Pr}\left(s_{t+j}=2 \mid s_{t}=m\right) \mu_{m} \mu_{2}^{2}+ \\
& \vdots \\
& = \\
& \gamma_{1} \operatorname{Pr}\left(s_{t+j}=m \mid s_{t}=1\right) \mu_{1} \mu_{m}^{2}+\gamma_{2} \operatorname{Pr}\left(s_{t+j}=m \mid s_{t}=2\right) \mu_{2} \mu_{m}^{2}+\ldots+\gamma_{m} \operatorname{Pr}\left(s_{t+j}=m \mid s_{t}=m\right) \mu_{m} \mu_{m}^{2} \\
& \left.\boldsymbol{\mu}^{2} \mathbf{P}^{j}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) .
\end{aligned}
$$

Thus, we have that

$$
\begin{align*}
& E\left[\sum_{j=1}^{T}\left(3 \sum_{i=0}^{T-j} \theta^{i} \theta^{i} \theta^{i+j} \mu_{s_{t}} \mu_{s_{t}} \mu_{s_{t-j}}\right)\right] \\
& \quad=\frac{3}{1-\theta^{3}}\left(\boldsymbol{\mu}^{2}\right)^{\prime}\left(\sum_{j=1}^{T}\left(\theta^{j}-\theta^{3(T+1)-2 j}\right) \mathbf{P}^{j}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) . \tag{33}
\end{align*}
$$

On the same lines, one finds that the third term can be expressed as

$$
\begin{align*}
& E\left[\sum_{j=1}^{T}\left(3 \sum_{i=0}^{T-j} \theta^{i} \theta^{i+j} \theta^{i+j} \mu_{s_{t}} \mu_{s_{t-j}} \mu_{s_{t-j}}\right)\right] \tag{34}\\
& \quad=\frac{3}{1-\theta^{3}} \boldsymbol{\mu}^{\prime}\left(\sum_{j=1}^{T}\left(\theta^{2 j}-\theta^{3(T+1)-j}\right) \mathbf{P}^{j}\right)\left(\boldsymbol{\gamma} \odot \boldsymbol{\mu}^{2}\right) .
\end{align*}
$$

Finally, the last term has the representation

$$
\begin{aligned}
& E\left[6 \sum_{k=1}^{T} \sum_{j=k+1}^{T} \sum_{i=0}^{T-j} \theta^{i} \theta^{i+k} \theta^{i+j} \mu_{s_{t}} \mu_{s_{t-k}} \mu_{s_{t-j}}\right] \\
& \quad=\frac{6}{1-\theta^{3}}\left(\sum_{k=1}^{T} \theta^{k} \sum_{j=k+1}^{T}\left(\theta^{j}-\theta^{3(T+1)-2 j}\right) E\left[\mu_{s_{t}} \mu_{s_{t-k}} \mu_{s_{t-j}}\right]\right)
\end{aligned}
$$

where the expectation term is given by

$$
E\left[\mu_{s_{t}} \mu_{s_{t-k}} \mu_{s_{t-j}}\right]=\sum_{a=1}^{m} \sum_{b=1}^{m} \sum_{c=1}^{m} \operatorname{Pr}\left(s_{t+j}=c \mid s_{t+j-k}=b\right) \operatorname{Pr}\left(s_{t+j-k}=b \mid s_{t}=a\right) \gamma_{a} \mu_{c} \mu_{b} \mu_{a} .
$$

It turns out that this expectation term can be written in matrix form as

$$
E\left[\mu_{s_{t}} \mu_{s_{t-k}} \mu_{s_{t-j}}\right]=\mathbf{1}_{m}^{\prime}\left(\mathbf{A}_{1} \odot \mathbf{P}^{k}\right)\left(\mathbf{A}_{2} \odot \mathbf{A}_{1} \odot \mathbf{P}^{j-k}\right) \mathbf{1}_{m}
$$

with \mathbf{A}_{1} and \mathbf{A}_{2} defined by $\mathbf{A}_{1}:=\boldsymbol{\mu} \otimes \mathbf{1}_{m}^{\prime}$ and $\mathbf{A}_{2}:=(\boldsymbol{\mu} \odot \boldsymbol{\gamma})^{\prime} \otimes \mathbf{1}_{m}$.

Once T goes to infinity, $E\left[Z_{T}^{3}\right]$ thus simplifies to

$$
E\left[Z_{T}^{3}\right]=E\left[\begin{array}{c}
\frac{1}{1-\theta^{3}} \gamma^{\prime} \boldsymbol{\mu}^{3} \\
+\frac{3}{1-\theta^{3}}\left(\boldsymbol{\mu}^{2}\right)^{\prime}\left(\sum_{j=1}^{\infty}(\theta \mathbf{P})^{j}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) \\
+\frac{3}{1-\theta^{3}} \boldsymbol{\mu}^{\prime}\left(\sum_{j=1}^{\infty}\left(\theta^{2} \mathbf{P}\right)^{j}\right)\left(\boldsymbol{\gamma} \odot \boldsymbol{\mu}^{2}\right) \\
+\frac{6}{1-\theta^{3}} \sum_{k=1}^{\infty} \mathbf{1}_{m}^{\prime}\left(\mathbf{A}_{1} \odot(\theta \mathbf{P})^{k}\right)\left(\mathbf{A}_{2} \odot \mathbf{A}_{1} \odot \sum_{j=k+1}^{\infty} \theta^{j} \mathbf{P}^{j-k}\right) \mathbf{1}_{m}
\end{array}\right] .
$$

Using the fact that for any positive integer i, it holds that

$$
\sum_{j=1}^{\infty}\left(\theta^{i} \mathbf{P}\right)^{j}=\left(\theta^{i} \mathbf{P}\right)\left(\mathbf{I}-\theta^{i} \mathbf{P}\right)^{-1}
$$

where \mathbf{I} is the identity matrix, and rearranging

$$
\sum_{j=k+1}^{\infty} \theta^{j} \mathbf{P}^{j-k}=\theta^{k} \sum_{j=1}^{\infty}\left(\theta^{j} \mathbf{P}^{j}\right)
$$

yields the final formula

$$
E\left[Z_{T}^{3}\right]=E\left[\begin{array}{c}
\frac{1}{1-\theta^{3}} \boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}^{3} \tag{35}\\
+\frac{3}{1-\theta^{3}}\left(\boldsymbol{\mu}^{2}\right)^{\prime}\left(\theta \mathbf{P}(\mathbf{I}-\theta \mathbf{P})^{-1}\right)(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) \\
+\frac{3}{1-\theta^{3}} \boldsymbol{\mu}^{\prime}\left(\theta^{2} \mathbf{P}\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1}\right)\left(\boldsymbol{\gamma} \odot \boldsymbol{\mu}^{2}\right) \\
+\frac{6}{1-\theta^{3}} \mathbf{1}_{m}^{\prime}\left(\mathbf{A}_{1} \odot\left(\theta^{2} \mathbf{P}\right)\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1}\right)\left(\mathbf{A}_{2} \odot \mathbf{A}_{1} \odot(\theta \mathbf{P})(\mathbf{I}-\theta \mathbf{P})^{-1}\right) \mathbf{1}_{m}
\end{array}\right] .
$$

A. 2 Steepness of MSI-processes

As stated in the text, disregarding normal errors, the process for ΔZ_{t} can be written as

$$
\Delta Z_{t}=\mu_{s_{t}}+(\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}} .
$$

Since ΔZ_{t} has an expectation of zero, the variance of ΔZ_{t} is equal to

$$
E\left[\left(\Delta Z_{t}\right)^{2}\right]=E\left[\mu_{s_{t}}^{2}+2 \mu_{s_{t}}(\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}}+\left((\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}}\right)^{2}\right]
$$

by means of tedious algebra and the results of Appendix A.1, it follows that this variance can be calculated as

$$
E\left[\left(\Delta Z_{t}\right)^{2}\right]=\boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}^{2}+2(\theta-1) \boldsymbol{\mu}^{\prime}(\mathbf{I}-\theta \mathbf{P})^{-1} \mathbf{P}(\boldsymbol{\gamma} \odot \boldsymbol{\mu})+(\theta-1)^{2} E\left[Z_{t}^{2}\right]
$$

where the term $E\left[Z_{t}^{2}\right]$ is given by (12). The third moment of ΔZ_{t} is determined by

$$
E\left[\left(\Delta Z_{t}\right)^{3}\right]=E\left[\begin{array}{c}
\mu_{s_{t}}^{3}+3 \mu_{s_{t}}^{2}(\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}} \\
+3 \mu_{s_{t}}\left((\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}}\right)^{2}+\left((\theta-1) \sum_{i=0}^{\infty}(\theta L)^{i} \mu_{s_{t-1}}\right)^{3}
\end{array}\right] .
$$

Again by using the results of Appendix A.1, one obtains that this expression is equivalent to

$$
\begin{aligned}
& E\left[\left(\Delta Z_{t}\right)^{3}\right] \\
& =E\left[\begin{array}{c}
\gamma^{\prime} \boldsymbol{\mu}^{3} \\
+3(\theta-1)\left(\boldsymbol{\mu}^{2}\right)^{\prime}(\mathbf{I}-\theta \mathbf{P})^{-1} \mathbf{P}(\boldsymbol{\gamma} \odot \boldsymbol{\mu}) \\
\boldsymbol{\mu}^{\prime}\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1} \mathbf{P}\left(\boldsymbol{\gamma} \odot \boldsymbol{\mu}^{2}\right) \\
+3(\theta-1)^{2}\left[\begin{array}{c}
\\
+2 \cdot \mathbf{1}_{m}^{\prime}\left(\mathbf{A}_{1} \odot\left(\mathbf{I}-\theta^{2} \mathbf{P}\right)^{-1} \mathbf{P}\right)\left(\mathbf{A}_{2} \odot \mathbf{A}_{1} \odot(\theta \mathbf{P})(\mathbf{I}-\theta \mathbf{P})^{-1}\right) \mathbf{1}_{m} \\
+(\theta-1)^{3} E\left[Z_{t}^{3}\right]
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

where $E\left[Z_{t}^{3}\right]$ is given by (35) and \mathbf{A}_{1} and \mathbf{A}_{2} are again defined by $\mathbf{A}_{1}:=\boldsymbol{\mu} \otimes \mathbf{1}_{m}^{\prime}$ and $\mathbf{A}_{2}:=(\boldsymbol{\mu} \odot \gamma)^{\prime} \otimes \mathbf{1}_{m}$.

A. 3 Symmetry of MSI-processes with Two States

As claimed in the text, the possible asymmetry of $Z_{t}=\frac{1}{1-\theta L} \mu_{s_{t}}+\Upsilon(L) \frac{1}{1-\theta L} \varepsilon_{t}$ only depends on $\frac{1}{1-\theta L} \mu_{s_{t}}$. So suppose for a moment that $Z_{t}=\frac{1}{1-\theta L} \mu_{s_{t}}$ holds, that the process started in period 1, that the last period is period T and that T approaches infinity. Since for every sequence $\left\{\mu_{s_{t}}^{(l)}\right\}_{t=1}^{T}=\left\{\mu_{s_{1}=i}, \mu_{s_{2}=j}, \ldots, \mu_{s_{T}=k}\right\}_{t=1}^{T}$ there is a complementary sequence $\left\{\mu_{c, s_{t}}^{(l)}\right\}_{t=1}^{T}=\left\{\mu_{s_{1} \neq i}, \mu_{s_{2} \neq j}, \ldots, \mu_{s_{T} \neq k}\right\}_{t=1}^{T}$ for $l=1,2,3, \ldots, 2^{T-1}$, in order to guarantee symmetry around the mean, a sufficient condition is given by the requirement that both sequences have the same probability, which means that

$$
\operatorname{Pr}\left(\left\{\mu_{s_{t}}^{(l)}\right\}_{t=1}^{T}\right)=\operatorname{Pr}\left(\left\{\mu_{c, s_{t}}^{(l)}\right\}_{t=1}^{T}\right)
$$

or equivalently

$$
\operatorname{Pr}\left(s_{1}=i, s_{2}=j, \ldots, s_{T}=k\right)=\operatorname{Pr}\left(s_{1} \neq i, s_{2} \neq j, \ldots, s_{T} \neq k\right)
$$

holds, where i, j and k equal either one or two, since we are considering a two-state process. Let $Z_{T}^{(l)}$ denote the value of Z_{T} associated with $\left\{\mu_{s_{t}}^{(l)}\right\}_{t=1}^{T}$ and $Z_{c, T}^{(l)}$ denote the value of Z_{T} associated with $\left\{\mu_{c, s_{t}}^{(l)}\right\}_{t=1}^{T}$. Then, independently of the associated probabilities, it is true for all l that $Z_{T}^{(l)}+Z_{c, T}^{(l)}$ is constant, namely equal to

$$
Z_{T}^{(l)}+Z_{c, T}^{(l)}=\frac{1}{1-\theta L}\left(\mu_{1}+\mu_{2}\right)
$$

The mean of Z_{T} is thus given by

$$
\begin{equation*}
E\left[Z_{T}\right]=\sum_{l=1}^{2^{T-1}} \operatorname{Pr}\left(\left\{\mu_{s_{t}}^{(l)}\right\}_{t=1}^{T}\right)\left(Z_{T}^{(l)}+Z_{c, T}^{(l)}\right)=\frac{1}{2} \frac{1}{1-\theta L}\left(\mu_{1}+\mu_{2}\right) \tag{36}
\end{equation*}
$$

Since the mean of Z_{T} can also be calculated by

$$
\begin{equation*}
E\left[Z_{T}\right]=E\left[\frac{1}{1-\theta L} \mu_{s_{T}}\right]=\frac{1}{1-\theta L}\left(\gamma_{1} \mu_{1}+\gamma_{2} \mu_{2}\right) \tag{37}
\end{equation*}
$$

symmetry requires equality of (36) and (37) which leads to the familiar symmetry condition

$$
\gamma_{1}=\gamma_{2}=\frac{1}{2}
$$

that is equivalent to

$$
p_{11}=p_{22} .
$$

The following Discussion Papers have been published since 2003:

		Studies of the Economic R	
January	2003	Testing mean-variance efficiency in CAPM with possibly non-gaussian errors: an exact simulation-based approach	Marie-Claude Beaul Jean-Marie Dufour Lynda Khalaf
January	2003	Finite-sample distributions of self-normalized sums	Jeong-Ryeol Kim
January	2003	The stock return-inflation puzzle and the asymmetric causality in stock returns, inflation and real activity	Jeong-Ryeol Kim
February	2003	Multiple equilibrium overnight rates in a dynamic interbank market game	Jens Tapking
February	2003	A comparison of dynamic panel data estimators: Monte Carlo evidence and an application to the investment function	Andreas Behr
March	2003	A Vectorautoregressive Investment Model (VIM) And Monetary Policy Transmission: Panel Evidence From German Firms	Joerg Breitung Robert S. Chirinko Ulf von Kalckreuth
March	2003	The international integration of money markets in the central and east European accession countries: deviations from covered interest parity, capital controls and inefficiencies in the financial sector	Sabine Herrmann Axel Jochem
March	2003	The international integration of foreign exchange markets in the central and east European accession countries: speculative efficiency, transaction costs and exchange rate premiums	Sabine Herrmann Axel Jochem

March 2003	Determinants of German FDI: New Evidence from Micro-Data	Claudia Buch Jörn Kleinert
March 2003	On the Stability of Different Financial Systems	Farid Toubal
April 2003	Determinants of German Foreign Direct Investment in Latin American and Asian Emerging Markets in the 1990s	Falko Fecht

Giovanni Lombardo

Claudia M. Buch
Alexander Lipponer

Claudia M. Buch Alexander Lipponer

Christoph Fischer

Real-time data and business cycle analysis in Germany

Business Cycle Transmission from the US to Germany - a Structural Factor Approach

Claudia Kurz
Johannes Hoffmann

Thomas A. Knetsch

Thomas A. Knetsch Using Data from the Ifo Business Survey Jörg Döpke

Sandra Eickmeier

2004

2004

2004

Real-Time Estimation of the Output Gap in Japan and its Usefulness for Inflation Forecasting and Policymaking

Koichiro Kamada

2004 Welfare Implications of the Design of a Currency Union in Case of Member Countries of Different Sizes and Output Persistence

Rainer Frey

2004 On the decision to go public:
Evidence from privately-held firms

2004 Who do you trust while bubbles grow and blow?
A comparative analysis of the explanatory power of accounting and patent information for the market values of German firms

Fred Ramb
Markus Reitzig

The Economic Impact of Venture Capital

2004 The Determinants of Venture Capital:
Additional Evidence OECD countries

Michael Scharnagl
Karl-Heinz Tödter
Consumption Smoothing Across States and Time: George M. International Insurance vs. Foreign Loans
von Furstenberg

Ekkehart Boehmer
Alexander Ljungqvist

Astrid Romain, Bruno van Pottelsberghe

Astrid Romain, Bruno
van Pottelsberghe

Financial constraints for investors and the speed of adaption: Are innovators special?

Ulf von Kalckreuth

How effective are automatic stabilisers?
Theory and results for Germany and other

Asset Prices in Taylor Rules: Specification, Estimation, and Policy Implications for the ECB

Pierre L. Siklos
Thomas Werner
Martin T. Bohl

Evidence from panel data analysis Karsten Ruth forward-looking monetary policy: The Swiss case

Carlos Lenz
Marcel R. Savioz

2004 Estimating Equilibrium Real Interest Rates in Real Time

Interest rate reaction functions for the euro area
Thomas J. Jordan

Todd E. Clark
Sharon Kozicki

Lúcio Vinhas
de Souza

Ralf Fendel

Christina Gerberding
Andreas Worms
Franz Seitz
T. Bernhardsen, Ø. Eitrheim, A.S. Jore, Ø. Røisland

2004 Do Consumer Confidence Indexes Help Forecast Consumer Spending in Real Time? Dean Croushore

The use of real time information in
Maritta Paloviita Phillips curve relationships for the euro area

David Mayes

2004
The reliability of Canadian output gap estimates

Jean-Philippe Cayen
Simon van Norden

2004
Forecast quality and simple instrument rules -
Heinz Glück a real-time data approach

Stefan P. Schleicher

2004
Measurement errors in GDP and
Peter Kugler

George M. von Furstenbergeuro area

Claus Greiber

Taylor rules for the euro area: the issue of real-time data

Dieter Gerdesmeier Barbara Roffia

What do deficits tell us about debt? Empirical evidence on creative accounting with fiscal rules in the EU

Jürgen von Hagen
Guntram B. Wolff

Optimal lender of last resort policy
Falko Fecht in different financial systems

Marcel Tyrell

Expected budget deficits and interest rate swap Kirsten Heppke-Falk spreads - Evidence for France, Germany and Italy Felix Hüfner

Testing for business cycle asymmetries
based on autoregressions with a
Markov-switching intercept
Malte Knüppel

Series 2: Banking and Financial Supervision

1

German bank lending during emerging market crises:
A bank level analysis

How will Basel II affect bank lending to emerging markets? An analysis based on German bank level data

Estimating probabilities of default for
German savings banks and credit cooperatives Daniel Porath

Visiting researcher at the Deutsche Bundesbank

The Deutsche Bundesbank in Frankfurt is looking for a visiting researcher. Visitors should prepare a research project during their stay at the Bundesbank. Candidates must hold a Ph D and be engaged in the field of either macroeconomics and monetary economics, financial markets or international economics. Proposed research projects should be from these fields. The visiting term will be from 3 to 6 months. Salary is commensurate with experience.

Applicants are requested to send a CV, copies of recent papers, letters of reference and a proposal for a research project to:

Deutsche Bundesbank
Personalabteilung
Wilhelm-Epstein-Str. 14

D - 60431 Frankfurt
GERMANY

[^0]: ${ }^{1}$ Since in what follows only first-order Markov chains will be considered, we will henceforth not mention the order unless it is necessary to avoid misunderstandings.

[^1]: ${ }^{2}$ We restrict the presentation to first-order autoregressive processes, since only for these processes the formulas for their third-order moments are derived.

[^2]: ${ }^{3}$ In this example, the processes are constructed such that the MSI-process would attain the same value as the MSM-process if no regime change occurs and t goes to infinity.

[^3]: ${ }^{4} \mathrm{We}$ assume that all odd moments exist.

[^4]: ${ }^{5}$ Of course, the unconditional probabilities are determined by the conditional probabilities.
 ${ }^{6}$ It should be noted that both formulas are also valid for an order of the autoregressive process different from one. In this work, however, we exclusively focus on the first-order autoregressive case.

[^5]: ${ }^{7}$ In the restricted form, the elements of the columns of \mathbf{P} as well as the elements of $\boldsymbol{\gamma}$ sum up to one. In the unrestricted form, this restriction is eliminated. In the literature, the restricted form is encountered far more frequently than the unrestricted form.

[^6]: ${ }^{8}$ Actually, the same holds for the second central moments which equal $E\left[\left(Z_{t}-\mu_{Z}\right)^{2}\right]=$ $\gamma^{\prime}\left(\boldsymbol{\mu}-\left(\boldsymbol{\gamma}^{\prime} \boldsymbol{\mu}\right) \mathbf{1}_{m}\right)^{2}$ in the case of MSM-processes.

[^7]: ${ }^{9}$ This follows from the conditions imposed on the transition matrix.
 ${ }^{10}$ In Appendix A. 3 we show that $\gamma_{1}=\gamma_{2}$ and hence $p_{11}=p_{22}$ is the condition for symmetry for two-state MSI-processes.
 ${ }^{11}$ The precise intervals for θ and $p_{11}+p_{22}$ are given by $\theta \in\left(\frac{3}{2}-\frac{1}{2} \sqrt{5}, 1\right)$ and $p_{11}+p_{22} \in(0,-1+\sqrt{3})$.

[^8]: ${ }^{12}$ To be precise, "being equivalent" means that both tests imply the identical restrcition $p_{11}=p_{22}$.
 ${ }^{13}$ We use the common value of 1600 for the smoothing parameter.

[^9]: ${ }^{14}$ The test for violation of the first-order Markov specification basically tests whether the equality $\operatorname{Pr}\left(s_{t} \mid s_{t-1}\right)=\operatorname{Pr}\left(s_{t} \mid s_{t-1}, s_{t-2}\right)$ holds. Similarly, the test for varying transition probabilities tests whether the assumption of $\operatorname{Pr}\left(s_{t} \mid s_{t-1}\right)=\operatorname{Pr}\left(s_{t} \mid s_{t-1}, \varepsilon_{t-1}\right)$ is correct. More details concerning the specification tests performed are available upon request.

