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Abstract:

In this paper, we investigate the implications of the two concepts of asymmetry defined
by Sichel (1993) - deepness and steepness - for first-order autoregressive processes with
a Markov-switching intercept. In order to do so, we derive the two required formu-
las determining the coefficient of skewness of first-order autoregressive processes with a
Markov-switching intercept and the coefficient of skewness of the first differences of these
processes. For the special case of two states, we present the parameter restrictions lead-
ing to non-deepness and non-steepness. We show that these restrictions imply that the
conclusions of Clements & Krolzig (2003) with respect to asymmetries of processes with
a Markov-switching intercept are not correct. Finally, we apply the results to U.S. GDP
which is found to exhibit strongly significant deepness and steepness.
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Non Technical Summary

The notion that business cycles exhibit asymmetries has a long history in economics. The

existence of different types of asymmetric business cycle behavior has been conjectured,

inter alia that recessions tend to be more pronounced and of a shorter duration than

expansions, and that recoveries appear to take a more moderate course than contractions.

If such asymmetries exist, their presence has important consequences for the setup of

business cycle models and for our understanding of the effects of economic policy.

Most models developed for the analysis of business cycle phenomena are based on the

assumption that business cycles are generated by shocks hitting a propagation mechanism.

According to this concept, the economy acts as the propagation mechanism, causing single

shocks to affect macroeconomic variables over a longer period. The bulk of business cycle

models relies on a linear (or linearized) specification and symmetric shocks. This setup

has a direct impact on the symmetry properties of business cycles generated by these

models. Due to the linear specification, all variables of such models inherit the symmetry

property of the shocks. Therefore, the existence of pronounced asymmetries would cast

doubt on the appropriateness of this class of business cycle models. In this paper, we

develop a parametric test for asymmetry.

Addressing the question of asymmetry empirically is not a trivial task. Most tests for

asymmetries belong to the class of non-parametric tests. However, unless the samples of

the variables under study are large, these tests often fail to detect asymmetries. In contrast

to that, parametric tests typically work well also in smaller samples, but require the

more restrictive assumption of a specific data generating process. Recently, Clements &

Krolzig (2003) have proposed parametric tests for asymmetries based on Markov-switching

processes which are widely regarded as suitable for the investigation of variables subject to

business cycle fluctuations. In this work, we derive the necessary formulas for parametric

tests based on a specific form of Markov-switching processes. We thereby find that certain

results of Clements & Krolzig (2003) are not correct, so that wrong conclusions concerning

the existence and the type of asymmetries can emerge.

Finally, we apply the tests for asymmetries to HP-filtered U.S. real gross domestic prod-



uct. This variable is a good candidate for our test, since it decreases during recessions

and increases during expansions. While non-parametric tests have usually failed to detect

asymmetries for this variable, our test clearly indicates the presence of asymmetries. This

result implies that either the shocks hitting the U.S. economy have been asymmetric or

that linear business cycle models miss important features of the U.S. economy. These fea-

tures could, for example, be given by capacity constraints, credit constraints or downward

rigid wages.



Nicht technische Zusammenfassung

Die Vorstellung, dass Konjunkturzyklen Asymmetrien aufweisen, hat eine lange Tradi-

tion in den Wirtschaftswissenschaften. Es wurde die Existenz verschiedener Arten von

Asymmetrien vermutet, unter anderem dass Rezessionen ausgeprägter und kürzer als

Expansionen ausfallen und dass Aufschwünge einen moderateren Verlauf nehmen als Ab-

schwünge. Falls solche Asymmetrien vorliegen, hat dies bedeutende Auswirkungen auf

den Aufbau von Konjunkturmodellen und auch auf unser Verständnis der Wirkungsweise

von Wirtschaftspolitik.

Die meisten für die Analyse von Konjunkturphänomenen entwickelten Modelle basieren

auf der Annahme, dass Konjunkturzyklen durch Schocks ausgelöst werden, die auf einen

Mechanismus treffen, der zu einer Fortpflanzung der Schocks führt. Dieser Mechanismus

ist durch die Ökonomie selbst gegeben, deren dynamische Struktur dafür sorgt, dass ein

einmaliger Schock über einen längeren Zeitraum wirkt. Ein Großteil der Konjunktur-

modelle beruht auf einer linearen (oder linearisierten) Spezifikation und symmetrischen

Schocks. Dieser Aufbau hat direkte Konsequenzen für die Symmetrie-Eigenschaften der

Konjunkturzyklen, die von diesen Modellen erzeugt werden. Aufgrund der linearen Spezi-

fikation dieser Modelle überträgt sich die Symmetrie-Eigenschaft der Schocks direkt auf

alle Variablen der Modelle. Daher würde das Vorliegen bedeutsamer Asymmetrien die

Angemessenheit dieses Modellaufbaus in Frage stellen. Im vorliegenden Papier wird ein

parametrischer Test auf Asymmetrie entwickelt.

Die empirische Überprüfung des Vorliegens von Asymmetrien ist eine anspruchsvolle Auf-

gabe. Die meisten Tests auf Asymmetrie gehören zur Gruppe der nicht-parametrischen

Tests. Diese Tests haben jedoch oft Schwierigkeiten, Asymmetrien zu erkennen, wenn die

zur Verfügung stehenden Zeitreihen nicht lang genug sind. Im Gegensatz dazu funktio-

nieren parametrische Tests üblicherweise auch für kürzere Zeitreihen gut, aber sie er-

fordern die restriktivere Annahme einer konkreten Form des datengenerierenden Prozesses.

Kürzlich haben Clements & Krolzig (2003) parametrische Tests auf Asymmetrien vorge-

schlagen, die auf Markov-Switching-Prozessen beruhen, welche für die Untersuchung von

Variablen, die konjunkturelle Schwankungen durchlaufen, weithin als geeignet angesehen



werden. In dieser Arbeit leiten wir die Formeln her, die im Falle einer bestimmten Form

dieser Markov-Switching-Prozesse für die Tests benötigt werden. Dabei erweist sich, dass

einige Ergebnisse von Clements & Krolzig (2003) nicht korrekt sind, was zu falschen

Schlüssen hinsichtlich der Existenz und der Art der Asymmetrie führen kann.

Schließlich wenden wir die Tests auf Asymmetrie auf das HP-gefilterte US-amerikanische

reale Bruttoinlandsprodukt an. Diese Variable bietet sich für unseren Test an, da sie im

Laufe einer Rezession sinkt und im Laufe einer Expansion steigt. Während bei dieser

Variable mit nicht-parametrischen Tests im Regelfall keine Asymmetrien nachgewiesen

werden konnten, zeigt sich bei unserem Test, dass diese Variable eindeutig Asymmetrien

aufweist. Aus diesem Ergebnis ergibt sich die Schlussfolgerung, dass die US-amerikanische

Ökonomie von asymmetrischen Schocks getroffen wurde oder dass lineare Konjunktur-

modelle wichtige Eigenschaften der US-amerikanischen Ökonomie nicht berücksichtigen.

Diese Eigenschaften könnten beispielsweise durch Kapazitätsbeschränkungen, Kreditre-

striktionen oder nach unten starre Löhne begründet sein.
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1 Introduction

The question whether macroeconomic variables exhibit asymmetries over the business

cycle has a long history in macroeconomic research and at least dates back to Mitchell

(1927, p. 290) who stated that “Business contractions appear to be a briefer and more

violent process than business expansions”. The question might be considered interesting

in itself, but the answer also has important consequences for the assessment of business

cycle models. If asymmetries matter, linear models with symmetric shocks do not appear

to be appropriate tools for the investigation of business cycles.

Since the coefficient of skewness is a widely-used measure for the degree of asymmetry,

many studies have focussed on the estimation of this coefficient in order to assess the

probability that a time series is significantly asymmetric. However, as pointed out by

Bai & Ng (2002), non-parametric tests for skewness tend to suffer from low power in the

presence of serial correlation. Consequently, the fact that non-parametric tests fail to

reject the null of zero skewness for a large set of macroeconomic variables as, for instance,

documented in Bai & Ng (2002) and Psaradakis & Sola (2003) has to be regarded with

caution.

A possible way to address the problem of low power is the use of parametric tests whose

application, of course, requires stronger assumptions. Since Markov-switching models are

considered to be adequate tools for the estimation of variables that undergo fluctuations

associated with business cycles, it seems natural to investigate the implications of the pa-

rameter values of these models for asymmetries. Yet, although Markov-switching models

have become increasingly popular since the seminal work of Hamilton (1989), only re-

cently Clements & Krolzig (2003) (henceforth CK) have shown how different concepts of

asymmetries are related to Markov-switching models. More precisely, in their important

paper, CK derive the implications of deepness and steepness as defined by Sichel (1993)

and of sharpness as defined by McQueen & Thorley (1993) for the parameters of models

with a Markov-switching mean (henceforth MSM-models). Moreover, CK claim that their

test for deepness is also valid for models with a Markov-switching intercept (henceforth

MSI-models). However, noting that a problem appears if the linear autoregressive pro-
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cess has roots close to the unit circle, they state that in this case testing for deepness in

MSI-models might actually yield results for steepness.

In this paper, we show that the reason for this problem is given by the fact that tests

for deepness and steepness in MSI-models are not equivalent to tests for deepness and

steepness in MSM-models. In order to do so, we will proceed as follows. In Section 2,

we present the concepts of deepness and steepness, and in Section 3 we introduce the

notation used for Markov-switching models. In Section 4, we investigate the relation of

deepness and steepness with Markov-switching processes. We start by briefly summariz-

ing the results of CK for MSM processes. Then the formulas for the second and third

moments of first-order autoregressive MSI-processes with an arbitrary number of states

are derived. These formulas are applied to an MSI-process with two states. We investi-

gate the implications of non-deepness and non-steepness for the parameter values of such

a process and compare them to the results of CK for a corresponding MSM-process. In

order to illustrate that CK’s conclusion concerning the deepness of MSI-processes is not

correct, we show that even for the simple MSI-process considered, non-deepness can arise

with parameter values that lead to deepness of MSM-processes. In Section 5, we apply

the tests for deepness and steepness based on the moments derived in Section 4 to U.S.

GDP. Section 6 concludes.

2 Concepts of Asymmetries

Consider a strictly stationary univariate stochastic process {Zt} with mean µZ and stan-

dard deviation σZ. A straightforward way to think of asymmetry is given by the possible

distributional asymmetry of Zt. According to this concept, the stationary process {Zt} is

said to be unconditionally symmetric about the mean or by convention shortly symmetric,

if the condition on the marginal distribution of Zt

Pr (Zt < µZ − ε) = Pr (Zt > µZ + ε) (1)
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holds for all ε ∈ R. Otherwise, the process is said to be asymmetric. In order to measure

the degree of asymmetry, special interest is placed on the coefficient of skewness of Zt

which is the standardized third central moment and hence defined as

τZ =
E
[
(Zt − µZ)

3]
σ3Z

. (2)

Following the terminology of Sichel (1993), the type of asymmetry that prevails if τZ < 0

is called deepness, while the type of asymmetry that prevails if τZ > 0 is called tallness.

Hence, deep distributions are skewed to the left, whereas tall distributions are skewed

to the right. If τZ = 0 holds, the distribution is said to exhibit non-deepness or to be

not skewed. If τZ �= 0 holds, but the sign of τZ is not of interest, we will simply speak

of deepness of Zt. It will always be clear from the context whether deepness refers to

τZ �= 0 or to τZ < 0. It should be emphasized that non-deepness is a necessary, but not

a sufficient condition for symmetry of Zt.

A related concept of asymmetry deals with the change of Zt over time, so that the

variable of interest is not Zt itself, but rather its first-order difference Zt−Zt−1 which will

henceforth be denoted ∆Zt. Note that these first-order differences are not used to render

the stochastic process stationary, since {Zt} is stationary by assumption. The stationarity

of {Zt} implies µ∆Z = 0, where µ∆Z denotes the mean of ∆Zt. If ∆Zt is symmetric we

have that

Pr (∆Zt < −ε) = Pr (∆Zt > ε) for ε ∈ R (3)

and the degree of asymmetry of ∆Zt can again be measured by its coefficient of skewness

τ∆Z =
E
[
(∆Zt)

3]
σ3∆Z

. (4)

If τ∆Z = 0 holds, Zt is said to be non-steep. Otherwise the type of asymmetry present

in Zt is called negative steepness if τ∆Z < 0 and positive steepness if τ∆Z > 0. Again,

the terminology is mainly due to Sichel (1993). Exactly as in the case of non-deepness,
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non-steepness of Zt is a necessary, but not a sufficient condition for symmetry of ∆Zt.

It is also worth noting that neither does deepness imply or prevent steepness nor does

steepness imply or prevent deepness. These two concepts of asymmetry are mutually

independent. In order to clarify the presented concepts of asymmetry, we present examples

of a deep but non-steep process and a negatively steep but non-deep process in Figure 1.
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Figure 1: Deep non-steep process (left panel), and non-deep negatively steep process
(right panel)

3 Markov-Switching Processes

Markov Chains Consider a univariate stochastic process {st} , where its state variables
st adopt integer values i with i ∈ {1, 2, ...,m} . Suppose further that for this process it

holds that Pr (st+1 = i |st = j, st−1 = k, ...) equals Pr (st+1 = i |st = j ) for all t, i and j.

Then, the process {st} is said to be an m-state first-order Markov chain, where for fixed t

the variable st describes the state of the process in period t.1 The probability that state st

is succeeded by state st+1 is called transition probability. All m2 transition probabilities

pji := Pr (st+1 = i |st = j ) are collected in an (m×m) transition matrix P defined by

1Since in what follows only first-order Markov chains will be considered, we will henceforth not mention
the order unless it is necessary to avoid misunderstandings.
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P =

⎡
⎢⎢⎢⎢⎢⎢⎣

p11 p21 · · · pm1

p12 p22 · · · pm2

...
... · · · ...

p1m p2m · · · pmm

⎤
⎥⎥⎥⎥⎥⎥⎦

which is required to be irreducible and to have exactly one eigenvalue on the unit circle.

It is useful to define a random vector ξt as an (m× 1) vector whose ith element is equal to

unity if st = i and whose other elements all equal zero, so that the conditional expectation

of ξt+q given ξt can be expressed as

E
[
ξt+q |ξt

]
= Pqξt. (5)

Let 1m denote an (m× 1) vector of ones and normalize γ so that 1′mγ = 1 holds. Then

it can be shown (see, e.g. Hamilton (1994, ch. 22)) that γ contains the unconditional

probabilities of each state. Stated formally, this means that

E [ξt] = γ

holds.

Markov-Switching Processes Since the observations of most macroeconomic time

series are not realizations of discrete-valued random variables, Markov chains cannot be

applied directly to these observations. Instead, one must augment the Markov chain with

a continuous-valued random variable, where one commonly assumes that the Markov

chain governs the state variable of an otherwise standard linear stochastic process with

Gaussian white noise.

Equation (5) implies that the state equation can be expressed as

ξt+1 = Pξt + ut+1 (6)
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where the error vector ut+1 is defined by

ut+1 = ξt+1 −E
[
ξt+1 |ξt

]
.

Given the state equation, a linear measurement equation can be specified by

(1−θL)Zt − (1−φL)µst
= Υ(L) εt εt ∼ N (

0, σ2ε
)

(7)

where Υ (L) is a lag polynomial given by Υ (L) =
∑q

i=0 (υiL
i), L is the lag operator and

θ and φ are scalars.2 Furthermore, the processes of the states {st} and the normally

distributed error terms {εt} are assumed to be independent. The term µst
denotes the

value of µ in regime st. For instance, if in period t state two occurs, µst
adopts the

value µ2 in period t. For the following calculations, it is useful to define the vector

µ =(µ1, µ2, µ3, . . . µm)
′
, so that

µst
= ξ

′

tµ

holds. The process of Zt described by (7) is required to be stable and will be referred to

as a Markov-switching process.

If θ = φ holds, the Markov-switching process contains a Markov-switching mean as in

the well-known model set up by Hamilton (1989). We will refer to this specification as

MSM-process. A different process evolves when φ is set to zero. This specification which

can be found, for instance, in Clements & Krolzig (1998) will be referred to as MSI-

process. Obviously, MSI-processes and MSM-processes would be identical in the special

case of θ = φ = 0. Therefore, in order to avoid misunderstandings, we require that for

MSI-processes θ �= 0 holds.

In order to give an intuition of how MSM- and MSI-processes behave, we plot an

MSM-process with θ = φ = 0.9 and an MSI-process with θ = 0.9 in Figure 2. For both

2We restrict the presentation to first-order autoregressive processes, since only for these processes the
formulas for their third-order moments are derived.
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processes, the number of states equals two, σ2ε is set equal to zero, and both processes

follow the same state equation. Evidently, the MSI-process slowly approaches a certain

value after a state change, whereas the MSM-process immediately jumps to its new level.3

Moreover, the value of φ does not matter for the dynamics of the MSM-process if σ2ε equals

zero, whereas the value of θ determines the speed of approaching a new value of Zt for

the MSI-process. A large value of θ implies slow approaching.
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Figure 2: An MSI- and an MSM-process

3In this example, the processes are constructed such that the MSI-process would attain the same value
as the MSM-process if no regime change occurs and t goes to infinity.
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4 Relation of Asymmetries and Markov-Switching

Processes

4.1 Introductory Remarks

Before we proceed, it is useful to investigate the properties of the convolution of two

random variables under certain conditions. Consider two independent stationary random

variables Zt and εt, where εt has zero mean, is symmetric and hence disposes of odd central

moments equal to zero.4 Then the variance and the odd central moments of the sum of

Zt and εt are given by

E
[
(Zt + εt − µZ)

2] = E
[
(Zt − µZ)

2]+ E
[
ε2t
]

and

E
[
(Zt + εt − µZ)

k
]
= E

[
(Zt − µZ)

k
]

for k = 1, 3, 5, . . . , (8)

respectively. From these results, it follows that εt has no influence on the symmetry and

the sign of skewness of Zt, but only on the magnitude of the coefficient of skewness due

to its influence on the variance of Zt. Note that the normal random variables εt and ∆εt,

which are part of the Markov-switching process (7), as well as any linear transformation

of εt and ∆εt have zero mean and are symmetric. Thus, when symmetry and the signs

of deepness and steepness of Markov-switching processes are investigated, added normal

error terms can be ignored during the analysis.

In order to analyze the properties with respect to symmetry and deepness of Zt when

Zt is determined by (7), it is useful to rewrite (7) as

Zt =
1− φL

1− θL
µst

+
1

1− θL
Υ(L) εt (9)

4We assume that all odd moments exist.
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and thus as the sum of two independent processes. Because of the mentioned zero mean

and zero skewness of εt and its independence of the Markov chain, only the term 1−φL
1−θL

µst

can cause asymmetry of Zt. Equivalently, for ∆Zt one obtains

∆Zt =
1− φL

1− θL
∆µst

+
1

1− θL
Υ(L)∆εt (10)

where in analogy to (9) because of the symmetry, zero mean and zero skewness of ∆εt

and its independence of the Markov chain, only the term 1−φL
1−θL

∆µst
can cause asymmetry

of ∆Zt.

4.2 MSM-processes

4.2.1 An Arbitrary Number of States

The study of MSM-processes is especially easy, since for these processes the term 1−φL
1−θL

appearing in (9) and (10) simply equals one. CK show that for MSM-processes with an

arbitrary number of states, the condition for non-deepness can be stated as

E
[
(Zt − µZ)

3] = γ ′ (µ− (γ ′µ) 1m)
3
= 0

where taking the power of a vector means taking the power of each element of that vector.

Note that the conditional probabilities, i.e. the elements of the transition matrix do not

enter this formula directly.5 According to CK, in contrast to that, non-steepness requires

m−1∑
i=0

m∑
j=i+1

(
γipij − γjpji

) (
µj − µi

)3
= 0 (11)

to hold, so that for this concept of asymmetry also the conditional probabilities matter

directly.6

5Of course, the unconditional probabilities are determined by the conditional probabilities.
6It should be noted that both formulas are also valid for an order of the autoregressive process different

from one. In this work, however, we exclusively focus on the first-order autoregressive case.
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4.2.2 Two States

In the case of two states, the third central moment of an MSM-process can be expressed

as

E
[
(Zt − µZ)

3] = (µ2 − µ1)
3 (2γ1 − 1) (1− γ1) γ1

so that, since in this case the unconditional probabilities are determined by

γ1 =
1− p22

2− p11 − p22

and

γ2 =
1− p11

2− p11 − p22
= 1− γ1,

non-deepness of Zt occurs when the transition matrix of the states is symmetric, i.e. if

p11 = p22 holds. Furthermore, considering the unconditional density of an MSM-process,

which can, for instance, be found in Hamilton (1994, ch. 22), it is evident that non-

deepness also implies symmetry. Applying (11) to the case of two states yields

E
[
(∆Zt − µ∆Z)

3] = 0

which implies that MSM-processes with two states are non-steep regardless of their pa-

rameter values.

4.3 MSI-Processes

4.3.1 An Arbitrary Number of States

Concerning the skewness of MSI-processes, to the best of our knowledge no formulas

are documented in the literature, presumably because the derivation of the third central

moment is extremely cumbersome. In order to inspect the relation of the parameters and

the deepness and steepness of MSI-processes, we hence first have to derive the formulas
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for the third central moments of these processes.

A formula for the second central moments of MSI-processes can be found in Krolzig

(1997). Since the formula presented there, however, is based on Markov-switching pro-

cesses in their unrestricted form, we also present a formula that is more convenient if the

Markov-switching process is given in its restricted form.7

Deepness:

Proposition 1 The second noncentral moment of an MSI-process with σ2ε = 0 is given

by

E
[
Z2
t

]
=

1

1− θ2
γ ′µ2 +

2

1− θ2
(
µ′θP (I− θP)−1

)
(γ � µ) (12)

where the operator � denotes the Schur product.

Proof. See Appendix A.1.

Proposition 2 The third noncentral moment of an MSI-process is given by

E
[
Z3
t

]
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1−θ3

γ ′µ3

+ 3
1−θ3

(µ2)
′ (
θP (I− θP)−1

)
(γ �µ)

+ 3
1−θ3

µ′
(
θ2P

(
I− θ2P

)−1)
(γ � µ2)

+ 6
1−θ3

1′m

(
A1 �

(
θ2P

) (
I− θ2P

)−1) (
A2 �A1� (θP) (I− θP)−1

)
1m

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(13)

where the matrices A1 and A2 are defined by

A1 : = µ⊗ 1′m (14)

A2 : = (µ� γ)′ ⊗ 1m

7In the restricted form, the elements of the columns of P as well as the elements of γ sum up to one. In
the unrestricted form, this restriction is eliminated. In the literature, the restricted form is encountered
far more frequently than the unrestricted form.
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where the operator ⊗ denotes the Kronecker product.

Proof. See Appendix A.1.

With the mean of an MSI-process given by

µZ =
1

1− θ
γ ′µ, (15)

the central second and third moment of Zt can be calculated easily by using

E
[
(Zt − µZ)

2] = E
[
Z2
t

]− µ2Z + σ2 1
1−θL

Υ(L)ε
, (16)

where σ2 1
1−θL

Υ(L)ε
denotes the variance of 1

1−θL
Υ(L) εt, and

E
[
(Zt − µZ)

3] = E
[
Z3
t

]− 3E
[
Z2
t

]
µZ + 2µ3Z , (17)

which in turn allow the determination of the deepness of Zt.

Steepness: To check for non-steepness of a two-state MSI-process, one needs to consider

the equation

∆Zt = (1− θL)−1∆µst
=

∞∑
i=0

(θL)i∆µst
(18)

or equivalently

∆Zt = µst
+ (θ − 1)

∞∑
i=0

(θL)i µst−1
. (19)

While with (19) one can operate directly on the variables related to Zt in order to study the

coefficient of skewness of ∆Zt, an investigation of (18) requires the definition of new states

related to ∆Zt in order to obtain a first-order Markov chain. Nevertheless, operating on

(18) can turn out to be a more elegant solution, since all that is needed for the investigation

of the sign of steepness is the redefinition mentioned and the insertion of the obtained

12



intercept vector µ∆ and transition matrix P∆ into (13) . Since the expectation of ∆Zt is

zero, this procedure directly yields the third central moment of ∆Zt. If one is interested

in the coefficient of skewness of ∆Zt, one calculates the variance by inserting µ∆ and

P∆ into (12), where one in addition has to add the variance of 1
1−θL

Υ(L)∆εt which will

henceforth be denoted σ2 1
1−θL

Υ(L)∆ε
.

Equivalent formulas for the second and third moment of ∆Zt based on the states of

the process of Zt, i.e. on the intercept vector µ and the transition matrix P, are presented

below.

Proposition 3 If Zt is described by an MSI-process, the second central moment of ∆Zt

is given by

E
[
(∆Zt)

2] = γ ′µ2 + 2 (θ − 1)µ′ (I− θP)−1P (γ�µ) + (θ − 1)2E
[
Z2
t

]
+ σ2 1

1−θL
Υ(L)∆ε

(20)

Proof. See Appendix A.2.

Proposition 4 If Zt is described by an MSI-process, the third central moment of ∆Zt is

given by

E
[
(∆Zt)

3]

= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ ′µ3

+3 (θ − 1) (µ2)
′
(I− θP)−1P (γ � µ)

+3 (θ − 1)2

⎡
⎣ µ′

(
I− θ2P

)−1
P (γ �µ2)

+2 · 1′m
(
A1 �

(
I− θ2P

)−1
P
) (

A2 �A1� (θP) (I− θP)−1
)
1m

⎤
⎦

+(θ − 1)3E [Z3
t ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(21)

where again, A1 and A2 are defined by (14).

Proof. See Appendix A.2.
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Evidently, the coefficient of skewness of ∆Zt can be calculated easily from (20) and

(21). The application of these formulas might be more convenient if the definition of µ∆

and P∆ appears difficult.

4.3.2 Two States

According to CK, testing for deepness of MSI-processes is equivalent to testing for deep-

ness of MSM-processes, unless the roots of the autoregressive process are close to the unit

circle. In the latter case, CK state that using the restrictions for non-deepness of MSM-

processes implies non-steepness of MSI-processes instead of non-deepness. This means

that for two-state MSI-processes, p11 = p22 would be the only restriction for non-deepness

if θ is not too large in absolute value. However, if θ is large in absolute value, p11 = p22

would be the restriction for non-steepness.

In what follows, we will show that MSI-processes can be non-deep if p11 �= p22. More-

over,we will show that p11 = p22 is the restriction for non-steepness for all θ �= 0.

Deepness: For the special case of two states, application of (12) and (13) shows that

the second central moment simplifies to

E
[
(Zt − µ)2

]
= (µ2 − µ1)

2 (1−p22)(1−p11)(1+θ(p11+p22−1))

(1−θ2)(1−θ(p11+p22−1))(2−p11−p22)
2 + σ2 1

1−θL
Υ(L)ε

(22)

and the third central moment becomes

E
[
(Zt − µ)3

]
= (µ2 − µ1)

3 (1−p22)(1−p11)(p11−p22)((p11+p22−1)
2θ3+2(p11+p22−1)(θ2+θ)+1)

(1−θ)(θ2(1−p11−p22)+1)(θ(1−p11−p22)+1)(2−p11−p22)3(θ2+θ+1)
. (23)

Thus, in contrast to the MSM-processes, it is not possible to determine the third central

moment using only the unconditional probabilities.8

In order to generate non-deepness for an MSI-process with two states, (23) must equal

8Actually, the same holds for the second central moments which equal E
[
(Zt − µ

Z
)
2
]

=

γ
′ (µ− (γ′µ)1m)

2
in the case of MSM-processes.
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zero. Since we are not considering cases where either p11 or p22 equal one,
9 it follows that

only the solutions

p11 = p22 (24)

and

p11 = 1− p22 − 1

θ

(
1

θ
+ 1

)
+

1

θ2

√
θ2 + θ + 1 (25)

are feasible. While the non-deepness condition stated in (24) is identical for MSM-

processes and identical to the condition for symmetry of two-state MSM- and MSI-

processes which is given by p11 = p22,
10 condition (25) has no counterpart in the case

of MSM-processes, is unrelated to symmetry and therefore emerges unexpectedly. This

second possibility contradicts CK’s claim that testing for non-deepness of MSI-processes

is directly related to testing for non-deepness of MSM-processes.

Taking into account stability restrictions of the process and the restrictions placed on

P, one obtains that for

θ ∈ (0.382, 1)

condition (25) yields admissible combinations of p11 and p22. Inserting this restriction for

θ into (25), it turns out that

p11 + p22 ∈ (0, 0.732) . (26)

has to be fulfilled if (25) holds.11 Equation (25) can also be illustrated graphically as

done in Figure 3. The line represents all combinations of θ and p11 + p22 generating zero

deepness. It is easy to show that combinations on opposite sides of that line give rise to

9This follows from the conditions imposed on the transition matrix.
10In Appendix A.3 we show that γ

1
= γ

2
and hence p11 = p22 is the condition for symmetry for

two-state MSI-processes.
11The precise intervals for θ and p11+ p22 are given by θ ∈ (

3

2
− 1

2

√
5, 1

)
and p11+ p22 ∈

(
0,−1 +√

3
)
.
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opposite signs of the third central moment when the signs of µ2 − µ1 and p11 − p22 are

identical for these combinations. Thus, the sign of the third central moment depends on

the sign of the expression

(p11 + p22 − 1)2 θ3 + 2 (p11 + p22 − 1)
(
θ2 + θ

)
+ 1. (27)

Suppose that µ1 and p11 are larger than their respective counterpart of state 2. Then

formula (23) implies that, if expression (27) is positive, the third central moment is

negative and vice versa. The values that expression (27) can take multiplied by −1

are depicted in Figure 4. In the left panel, only values smaller than zero which thus

cause negative third central moments are plotted, whereas in the right panel only positive

values are displayed. Note that for most combinations of θ and p11+p22, the third central

moment adopts negative values under the mentioned conditions on the signs of µ1 − µ2

and p11− p22. Nevertheless, in contrast to MSM-processes, it is not sufficient to know the

signs of µ1− µ2 and p11− p22 in order to determine the sign of the coefficient of skewness

of an MSI-process.

0

0.5

1

1.5

2

p11+p22

-1 -0.5 0.5 1theta

Figure 3: A condition for non-deepness in MSI(1)-models

For the purpose of hypotheses tests dealing with macroeconomic data, it is evidently

very important to know that non-deepness of MSI-processes with two states can actually

arise without a symmetric transition matrix. Suppose that a likelihood-ratio test for
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Figure 4: Expression determining the sign of E
[
(Zt − µ)3

]

non-deepness is to be performed. Then, two restricted models have to be estimated,

one restricted by (24) and the other one restricted by (25). Only the model with the

larger value of the log-likelihood function then has to be tested against the unrestricted

model. Considering only restriction (24) as proposed by CK can therefore lead to wrong

conclusions.

Finally, note that the skewness of a two-state MSI-process without Gaussian white

noise can be determined by means of (22) and (23) and is hence given by

τZ = sign (µ2 − µ1)
(1+θ)

√
(1−θ2)

√
1−θ(p11+p22−1)(p11−p22)((p11+p22−1)

2θ3+2(p22+p11−1)(θ2+θ)+1)√
(1−p22)

√
(1−p11)

(√
1+θ(p11+p22−1)

)3
(θ2+θ+1)(1−(p11+p22−1)θ

2)

(28)

where sign (z) is defined by

sign (z) =

⎧⎪⎨
⎪⎩

z

|z| if z �= 0

0 if z = 0
.

Steepness: As mentioned above, there are two possibilities to calculate the moments

of ∆Zt. If one is interested in a first-order Markov process for ∆µst
, one needs to define

17



four new states

{s̃t = 1} : = {st = 1} ∩ {st−1 = 2}
{s̃t = 2} : = {st = 1} ∩ {st−1 = 1}
{s̃t = 3} : = {st = 2} ∩ {st−1 = 2}
{s̃t = 4} : = {st = 2} ∩ {st−1 = 1}

with associated mean vector µ∆ and transition matrix P∆ given by

µ∆ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

µ1 − µ2

0

0

µ2 − µ1

⎤
⎥⎥⎥⎥⎥⎥⎦

and P∆ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1− p22 1− p22

p11 p11 0 0

0 0 p22 p22

1− p11 1− p11 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (29)

The formulas presented for deepness can now be applied to the process for ∆Zt described

by (18) in order to derive the moments of the first-order differences of two-state MSI-

processes. If one does not want to define new states, one can use the formulas (20) and

(21) for the same purpose.

Using either of the proposed methods yields

E
[
(∆Zt)

2] = (µ2 − µ1)
2 2(1−p11)(1−p22)
(2−p11−p22)(1−(p22+p11−1)θ)(θ+1)

+ σ2 1
1−θL

Υ(L)∆ε
(30)

and

E
[
(∆Zt)

3] = (µ2 − µ1)
3 3θ(1−p11)(1−p22)(p11−p22)

(θ2+θ+1)(2−p11−p22)
∏2

i=1(θi(1−p22−p11)+1)
. (31)

For p11, p22 ∈ [0, 1) the term (31) equals zero if and only if p11 = p22. Hence, in contrast to

two-state MSM-processes, a two-state MSI-process can display steepness. Moreover, test-

ing for deepness of MSM-processes is equivalent to testing for steepness of MSI-processes

for every θ �= 0 and not only if the absolute value of θ is close to 1 or −1 as claimed by

18



CK.12

Using (30) and (31) it can be easily verified that the coefficient of steepness without

Gaussian white noise is calculated as

τ∆Z = sign (µ2 − µ1)
3
4

√
2(2−p11−p22)

θ2+θ+1

√
1−(p22+p11−1)θ

1−(p22+p11−1)θ
2

θ(p11−p22)
(√

(θ+1)
)3

√
(1−p11)

√
(1−p22)

.

If one again supposes that µ1 is larger than µ2 and that θ > 0 holds, negative steepness

occurs if and only if p11 is larger than p22. Thus, if p11 + p22 is larger than −1 +
√
3 and

θ is larger than zero, deepness implies negative steepness, and tallness implies positive

steepness. With θ again larger than zero but p11+ p22 smaller than −1+
√
3, the relation

between deepness and steepness is ambiguous and depends on the value of θ.

5 Application

In this section we apply the results derived for the deepness and steepness of MSI-processes

with two states to U.S. real GDP. In order to render U.S. GDP stationary, we employ

the widely-used filter proposed by Hodrick & Prescott (1997) (henceforth HP-filter).13

HP-filtered output series are especially well-suited for the application of MSI-processes

because they decrease during contractions and increase during expansions. Different non-

parametric tests for deepness of HP-filtered U.S. output with ambiguous results have been

conducted before by Sichel (1993), Canova (1998) and Razzak (2001). Sichel (1993) and

Canova (1998) find no evidence for deepness of postwar U.S. real GNP. Razzak (2001)

splits a postwar sample of U.S. real GDP into the exchange rate regimes of Bretton Woods

and free floating, and he discovers significant deepness in the latter, but not in the former

regime. To the best of our knowledge, steepness of HP-filtered U.S. output has not been

tested yet.

Our raw data covers the period from the first quarter of 1955 through the fourth

quarter of 2002. After taking logarithms, HP-filtering and multiplying by 100, we drop

12To be precise, “being equivalent” means that both tests imply the identical restrcition p11 = p22.
13We use the common value of 1600 for the smoothing parameter.
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the first and last twelve observations of the filtered series as suggested by Baxter & King

(1999), so that the series investigated starts from the first quarter of 1958 and ends by

the fourth quarter of 1999. The resulting series of HP-filtered U.S. real GDP is displayed

in the left panel of Figure 5.
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4

55 60 65 70 75 80 85 90 95 00
0.0

0.2

0.4

0.6

0.8

1.0

55 60 65 70 75 80 85 90 95 00
t t

Z(t) Pr(s(t)=1)

Figure 5: HP-filtered U.S. GDP (left panel) and smoothed probabilities of being in the
expansionary regime (right panel). Shaded areas indicate recessions as dated by the
NBER.

As emphasized by CK, the results of parametric tests depend strongly on the assump-

tions about the stochastic process one intends to study. Thus, the appropriateness of

the specification chosen has to be investigated extremely carefully. Applying specification

tests to Markov-switching models is a challenging task, since many standard tests rely on

the normality of the residuals under the null hypothesis. For Markov-switching models,

however, normality of the residuals is not a valid assumption as noted by Krolzig (1997,

pp. 132-133). In this paper, we employ the Newey-Tauchen-White tests for dynamic

misspecification proposed by Hamilton (1996). These tests tend to overreject in small

samples so that we can have some confidence in the appropriateness of our specification

if the tests do not reject the null of correct specification.

We choose to estimate a two state MSI-model with one moving-average parameter in

order to model HP-filtered U.S. real GDP. The estimated parameters of this model and
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Table 1: Estimation results for two-state MSI-models with one moving-average parameter

unrestricted model restriction p11 = p22 restriction (25)

µ1 0.208 0.215 0.306
(0.076) (0.083) (0.603)

µ2 -1.324 -1.201 -0.098
(0.306) (0.294) (0.239)

σ2ε 0.462 0.473 0.613
(0.060) (0.067) (0.103)

θ 0.769 0.763 0.808
(0.048) (0.051) (0.049)

υ 0.128 0.123 0.234
(0.083) (0.087) (0.080)

p11 0.956 0.935 0.071
(0.024) (0.033) (0.542)

p22 0.655 0.935 0.563
(0.145) - -

L -193.976 -199.911 -199.232

Note: Standard errors are in parentheses and computed based on the Hessian. L denotes the

value of the log-likelihood function.

the value of the log-likelihood function are presented in the first column Table 1. The

corresponding results of the Newey-Tauchen-White tests are displayed in Table 2. Evi-

dently, there are no signs of significant misspecification in the form of residual autocorre-

lation, autoregressive conditional heteroskedasticity (denoted ARCH effects), violation of

the first-order Markov specification or varying transition probabilities.14 Moreover, the

estimated probabilities of being in a certain state are found to match the business cy-

cle pattern published by the National Bureau of Economic Research (henceforth NBER)

very well. This can be verified simply by looking at the smoothed probabilities of being

in the expansionary state and the recessionary periods as dated by the NBER which are

displayed in the right panel of Figure 5.

Having found a well-specified Markov-switching model, we proceed by estimating re-

14The test for violation of the first-order Markov specification basically tests whether the equality
Pr (st |st−1 ) = Pr (st |st−1, st−2 ) holds. Similarly, the test for varying transition probabilities tests
whether the assumption of Pr (st |st−1 ) = Pr (st |st−1, εt−1 ) is correct. More details concerning the
specification tests performed are available upon request.
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Table 2: Newey-Tauchen-White tests for dynamic misspecification

H0 p-value
no residual autocorrelation 0.198
no ARCH effects 0.215
appropriateness of first-order Markov specification 0.835
constant transition probabilities 0.212

Table 3: LR tests for deepness and steepness

restriction LR-statistic p-value
non-deepness, i.e. (25) 10.512 0.0012
non-steepness, i.e. p11 = p22 11.870 0.0006

stricted MSI-models in order to perform subsequent likelihood-ratio tests (henceforth LR

tests) for deepness and steepness. As shown above, the test for deepness requires the

estimation of two restricted models, where one model is restricted by equality of the tran-

sition probabilities p11 and p22 and the other is restricted by equation (25). Since testing

for steepness only requires an estimation with the restriction p11 = p22, no additional

models have to be estimated for this test. The validity of the second condition for non-

steepness θ = 0 will be assessed using a Wald test. The parameter values and the values

of the log-likelihood functions are displayed in the second and third column of Table 1.

Evidently, the value of the log-likelihood function for the model with restriction (25) is

larger than for the model with restriction p11 = p22, so that the test for deepness requires

a restriction that is different from the restriction of the test for steepness.

As can be inferred from Table 1, Wald tests reject the null of θ = 0 at a significance

level of virtually zero. The results of the LR tests are displayed in Table 3. Evidently,

both null hypotheses are rejected at all common significance levels, since the p-values are

decisively lower than one percent in both cases. Non-steepness would even be rejected

at a significance level of 0.1 percent, whereas the p-value of the test for deepness exceeds

this value by a small amount.
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6 Summary and Concluding Remarks

In this paper, we have derived the formulas for the coefficient of skewness of first-order

autoregressive processes with a Markov-switching intercept (MSI-processes), where the

underlying Markov chain has an arbitrary number of states. We have also shown how

to determine the coefficient of skewness of the first-order differences of MSI-processes.

For the special case of two states, we have presented the parameter restrictions for non-

deepness and non-steepness.

Our results imply that there are two different combinations of parameter values leading

to non-deepness of two-state MSI-processes, where only one of these combinations is

identical to the restriction for non-deepness of autoregressive processes with a two-state

Markov-switching mean (MSM-processes). Hence, our results show that the conclusions

of Clements & Krolzig (2003) with respect to MSI-processes are not correct, since they

claim that testing for deepness of MSI-processes is equivalent to testing for deepness of

MSM-processes. Moreover, we find that, in contrast to two-state MSM-processes, two-

state MSI-processes in general exhibit steepness, and that the restriction for non-steepness

of a two-state MSI-process is equivalent to the restriction for non-deepness of a two-state

MSM-process. Thus, applying the parameter restriction for non-deepness of two-state

MSM-processes to two-state MSI-processes always results in testing for steepness, and

not only if the autoregressive process has roots close to the unit circle, as claimed by

Clements & Krolzig (2003).

Finally, we have applied our results to postwar U.S. real GDP which was detrended

by means of the HP-filter. Specification tests indicate that a two-state MSI-model with

one moving-average term provides an appropriate description of the data. Estimating

two corresponding restricted models that imply non-deepness and non-steepness, we find

that the null hypotheses of non-deepness and non-steepness are rejected unambiguously

by likelihood-ratio tests. It should be noted that this result calls into question the ap-

propriateness of linear business cycle models with non-deep and non-steep shocks, as e.g.

normal shocks. Such models cannot replicate the asymmetries found in the data which

might indicate the lack of an important feature of the propagation mechanism if shocks
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are assumed to be non-deep and non-steep. Possible modifications for these models in

order to generate deepness are given-by non-linear mechanisms that dampen the effects

of positive shocks (e.g. capacity constraints) or amplify the effects of negative shocks

(e.g. credit constraints). Steepness could be caused by non-linear mechanisms affecting

the changes of variables, as for example downward rigid wages which might give rise to

negative steepness of labor input, thereby causing negative steepness of GDP.

An evident direction for future research is given by the extension of the formulas

presented for second and third moments to processes with a Markov-switching intercept

and an arbitrary order of the autoregressive process.
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A Appendix

A.1 Deepness of MSI-processes

Suppose that Zt =
1

1−θL
µst

, that the process started in period 0 and that the last period

is period T .

Second noncentral moment: Start by rewriting E [Z2
t ] as

E [Z2
t ] = E

[(∑T

i=0 θµst−i

)2]

= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ0θ0µst
µst

+ θ1θ0µst−1
µst

+ θ2θ0µst−2
µst

+ . . .+ θT θ0µst−T
µst

+

θ0θ1µst
µst−1

+ θ1θ1µst−1
µst−1

+ θ2θ1µst−2
µst−1

+ . . .+ θT θ1µst−T
µst−1

+

θ0θ2µst
µst−2

+ θ1θ2µst−1
µst−2

+ θ2θ2µst−2
µst−2

+ . . .+ θT θ2µst−T
µst−2

+
...

θ0θTµst
µst−T

+ θ1θTµst−1
µst−T

+ θ2θTµst−2
µst−T

+ . . .+ θT θTµst−T
µst−T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Assume that in period 0, the state is determined according to the unconditional prob-

abilities, so that

Pr
(
µst−i

µst−(i+k)

)
= Pr

(
st−i|st−(i+k)

)
Pr
(
st−(i+k)

)

holds for all integers i. Hence, we can set i = 0 and write

Pr
(
µst−i

µst−(i+k)

)
= Pr (st|st−k) Pr (st−k)

and

E
[
µst−i

µst−(i+k)

]
= E

[
µst

µst−k

]
.
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It follows that

E
[
Z2
t

]
=

(
T∑
i=0

θ2i

)
E
[
µst

µst

]
+

T∑
k=1

(
2

T−k∑
i=0

θ2i+kE
[
µst

µst−k

])

holds. Since we have that

E
[
µst

µst

]
= γ ′µ2

and

E
[
µst

µst−k

]
=

m∑
i

m∑
i=j

Pr (st = i, st−k = j)µiµj

=
m∑
i

m∑
j

Pr (st = i) Pr (st−k = j|st = i)µiµj

= γ1Pr (st−k=1|st=1)µ1µ1+γ2Pr (st−k=1|st=2)µ2µ1+...+ γm Pr (st−k=1|st=m)µmµ1+

γ1Pr (st−k=2|st=1)µ1µ2+ γ2Pr (st−k=2|st=2)µ2µ2+...+ γm Pr (st−k=2|st=m)µmµ2+
...

γ1Pr (st−k=m|st=1)µ1µm+γ2Pr (st−k=m|st=2)µ2µm+...+ γm Pr (st−k=m|st=m)µmµm

=
(
γ ′ � (µ′Pk

))
µ

= µ′Pk (γ � µ)

and

T∑
i=0

θ2i =
1− θ2(T+1)

1− θ2

as well as

T−k∑
i=0

θ2i+k =
θk − θ2(T+1)−k

1− θ2
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the formula simplifies to

E
[
Z2
t

]
=

1− θ2(T+1)

1− θ2
γ ′µ2 + 2

T∑
k=1

(
θk − θ2(T+1)−k

1− θ2
µ′Pk (γ � µ)

)
.

If T approaches infinity, one obtains the final formula

E
[
Z2
t

]
=

1

1− θ2
γ ′µ2 + 2

∞∑
k=1

(
1

1− θ2
µ′ (θP)k (γ � µ)

)

=
1

1− θ2
γ ′µ2 +

2

1− θ2
(
µ′θP (I− θP)−1

)
(γ �µ)

where I is the identity matrix.

Third noncentral moment: Start by rewriting E [Z3
T ] as

E
[
Z3
T

]
= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T∑
i=0

θiθiθiµst−i
µst−i

µst−i

+
T∑
j=1

⎛
⎜⎜⎝

3
T−j∑
i=0

θiθiθi+jµst−i
µst−i

µst−(i+j)

+3
T−j∑
i=0

θiθi+jθi+jµst−i
µst−(i+j)

µst−(i+j)

⎞
⎟⎟⎠

+
T∑

k=1

T∑
j=k+1

(
6
T−j∑
i=0

θiθi+kθi+jµst−i
µst−(i+k)

µst−(i+j)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

where obviously we have that i < i + k < i + j. Assume that in period 0, the state is

determined according to the unconditional probabilities, so that

Pr
(
µst−i

µst−(i+k)
µst−(i+j)

)
= Pr

(
st−i|st−(i+k)

)
Pr
(
st−(i+k)|st−(i+j)

)
Pr
(
st−(i+j)

)

holds for all integers i. Hence, we can set i = 0 and write

Pr
(
µst−i

µst−(i+k)
µst−(i+j)

)
= Pr (st|st−k) Pr (st−k|st−j) Pr (st−j)
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and

E
[
µst−i

µst−(i+k)
µst−(i+j)

]
= E

[
µst

µst−k
µst−j

]
.

We will now determine the summation terms of (32) separately. The first term can be

rewritten as

E

[
T∑
i=0

θiθiθiµst
µst

µst

]
= γ ′µ3 1−θ3(T+1)

1−θ3
.

The second term is equivalent to

E

[
T∑

j=1

(
3
T−j∑
i=0

θiθiθi+jµst
µst

µst−j

)]
=

T∑
j=1

E
[
µ2stµst−j

](
3
T−j∑
i=0

θ3i+j

)
.

An investigation of the expectation E
[
µ2stµst−j

]
for any integer j yields

E
[
µ2stµst−j

]
= E

[
µ2st+j

µst

]
=

m∑
i=1

m∑
k=1

Pr (st+j = i, st = k)µ2iµk

=
m∑
i=1

m∑
k=1

Pr (st = k) Pr (st+j = i|st = k)µ2iµk

= γ1Pr(st+j=1|st=1)µ1µ
2
1+γ2Pr(st+j=1|st=2)µ2µ21+ . . .+γmPr(st+j=1|st=m)µmµ

2
1+

γ1Pr(st+j=2|st=1)µ1µ
2
2+γ2Pr(st+j=2|st=2)µ2µ22+ . . .+γmPr(st+j=2|st=m)µmµ

2
2+

...

γ1Pr(st+j=m|st=1)µ1µ2m+γ2Pr(st+j=m|st=2)µ2µ
2
m+ . . .+γmPr(st+j=m|st=m)µmµ

2
m

=
(
(µ2)

′
Pj
)
(γ �µ) .

Thus, we have that
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E

[∑T

j=1

(
3
T−j∑
i=0

θiθiθi+jµst
µst

µst−j

)]

= 3
1−θ3

(µ2)
′

(
T∑

j=1

(
θj − θ3(T+1)−2j

)
Pj

)
(γ � µ) .

(33)

On the same lines, one finds that the third term can be expressed as

E
[∑T

j=1

(
3
∑T−j

i=0 θiθi+jθi+jµst
µst−j

µst−j

)]

= 3
1−θ3

µ′
(∑T

j=1

(
θ2j − θ3(T+1)−j

)
Pj
)
(γ �µ2) .

(34)

Finally, the last term has the representation

E

[
6

T∑
k=1

T∑
j=k+1

T−j∑
i=0

θiθi+kθi+jµst
µst−k

µst−j

]

= 6
1−θ3

(
T∑

k=1

θk
T∑

j=k+1

(
θj − θ3(T+1)−2j

)
E
[
µst

µst−k
µst−j

])

where the expectation term is given by

E
[
µst

µst−k
µst−j

]
=

m∑
a=1

m∑
b=1

m∑
c=1

Pr (st+j = c|st+j−k = b) Pr (st+j−k = b|st = a) γaµcµbµa .

It turns out that this expectation term can be written in matrix form as

E
[
µst

µst−k
µst−j

]
= 1′m

(
A1�Pk

) (
A2 �A1�Pj−k

)
1m

with A1and A2 defined by A1 := µ⊗ 1′m and A2 := (µ� γ)′ ⊗ 1m.
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Once T goes to infinity, E [Z3
T ] thus simplifies to

E
[
Z3
T

]
= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−θ3

γ′µ3

+ 3
1−θ3

(µ2)
′

(
∞∑
j=1

(θP)j
)
(γ � µ)

+ 3
1−θ3

µ′

(
∞∑
j=1

(
θ2P

)j)
(γ � µ2)

+ 6
1−θ3

∞∑
k=1

1′m

(
A1 � (θP)k

)(
A2 �A1�

∞∑
j=k+1

θjPj−k

)
1m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the fact that for any positive integer i, it holds that

∞∑
j=1

(
θiP
)j

=
(
θiP
) (

I− θiP
)−1

,

where I is the identity matrix, and rearranging

∞∑
j=k+1

θjPj−k = θk
∞∑
j=1

(
θjPj

)

yields the final formula

E
[
Z3
T

]
= E

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1−θ3

γ ′µ3

+ 3
1−θ3

(µ2)
′ (
θP (I− θP)−1

)
(γ � µ)

+ 3
1−θ3

µ′
(
θ2P

(
I− θ2P

)−1)
(γ �µ2)

+ 6
1−θ3

1′m

(
A1 �

(
θ2P

) (
I− θ2P

)−1) (
A2 �A1� (θP) (I− θP)−1

)
1m

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(35)

A.2 Steepness of MSI-processes

As stated in the text, disregarding normal errors, the process for ∆Zt can be written as

∆Zt = µst
+ (θ − 1)

∞∑
i=0

(θL)i µst−1
.
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Since ∆Zt has an expectation of zero, the variance of ∆Zt is equal to

E
[
(∆Zt)

2] = E

⎡
⎣µ2st + 2µst

(θ − 1)
∞∑
i=0

(θL)i µst−1
+

(
(θ − 1)

∞∑
i=0

(θL)i µst−1

)2
⎤
⎦ .

by means of tedious algebra and the results of Appendix A.1, it follows that this variance

can be calculated as

E
[
(∆Zt)

2] = γ ′µ2 + 2 (θ − 1)µ′ (I− θP)−1P (γ �µ) + (θ − 1)2E
[
Z2
t

]

where the term E [Z2
t ] is given by (12) . The third moment of ∆Zt is determined by

E
[
(∆Zt)

3] = E

⎡
⎢⎢⎣

µ3st + 3µ2st (θ − 1)
∞∑
i=0

(θL)i µst−1

+3µst

(
(θ − 1)

∞∑
i=0

(θL)i µst−1

)2

+

(
(θ − 1)

∞∑
i=0

(θL)i µst−1

)3

⎤
⎥⎥⎦ .

Again by using the results of Appendix A.1, one obtains that this expression is equivalent

to

E
[
(∆Zt)

3]

= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ ′µ3

+3 (θ − 1) (µ2)
′
(I− θP)−1P (γ �µ)

+3 (θ − 1)2

⎡
⎣ µ′

(
I− θ2P

)−1
P (γ � µ2)

+2 · 1′m
(
A1 �

(
I− θ2P

)−1
P
) (

A2 �A1� (θP) (I− θP)−1
)
1m

⎤
⎦

+(θ − 1)3E [Z3
t ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where E [Z3
t ] is given by (35) and A1 and A2 are again defined by A1 := µ ⊗ 1′m and

A2 := (µ� γ)′ ⊗ 1m.

33



A.3 Symmetry of MSI-processes with Two States

As claimed in the text, the possible asymmetry of Zt = 1
1−θL

µst
+ Υ(L) 1

1−θL
εt only

depends on 1
1−θL

µst
. So suppose for a moment that Zt =

1
1−θL

µst
holds, that the process

started in period 1, that the last period is period T and that T approaches infinity. Since

for every sequence
{
µ
(l)
st

}T

t=1
=
{
µs1=i, µs2=j, . . . , µsT=k

}T
t=1

there is a complementary

sequence
{
µ
(l)
c,st

}T

t=1
=
{
µs1 �=i, µs2 �=j, . . . , µsT �=k

}T
t=1

for l = 1, 2, 3, ..., 2T−1, in order to

guarantee symmetry around the mean, a sufficient condition is given by the requirement

that both sequences have the same probability, which means that

Pr
({

µ(l)st
}T
t=1

)
= Pr

({
µ(l)c,st

}T
t=1

)

or equivalently

Pr (s1 = i, s2 = j, . . . , sT = k) = Pr (s1 �= i, s2 �= j, . . . , sT �= k)

holds, where i, j and k equal either one or two, since we are considering a two-state process.

Let Z
(l)
T denote the value of ZT associated with

{
µ
(l)
st

}T

t=1
and Z

(l)
c,T denote the value of ZT

associated with
{
µ
(l)
c,st

}T

t=1
. Then, independently of the associated probabilities, it is true

for all l that Z
(l)
T + Z

(l)
c,T is constant, namely equal to

Z
(l)
T + Z

(l)
c,T =

1

1− θL
(µ1 + µ2)

The mean of ZT is thus given by

E [ZT ] =
2T−1∑
l=1

Pr
({

µ(l)st
}T
t=1

)(
Z
(l)
T + Z

(l)
c,T

)
=

1

2

1

1− θL
(µ1 + µ2) (36)

Since the mean of ZT can also be calculated by

E [ZT ] = E

[
1

1− θL
µsT

]
=

1

1− θL
(γ1µ1 + γ2µ2) (37)
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symmetry requires equality of (36) and (37) which leads to the familiar symmetry condi-

tion

γ1 = γ2 =
1

2

that is equivalent to

p11 = p22.
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