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Abstract:
This paper studies a nonlinear one-factor term structure model in discrete time.
The single factor is the short-term interest rate, which is modeled as a self-exciting
threshold autoregressive (SETAR) process. Our speci�cation allows for shifts in
the intercept and the variance. The process is stationary but mimics the nearly
I(1) dynamics typically encountered with interest rates. In comparison with
a linear model, we �nd empirical evidence in favor of the threshold model for
Germany and the US. Based on the estimated short-rate dynamics we derive the
implied arbitrage-free term structure of interest rates. Since analytical solutions
are not feasible, bond prices are computed by means of Monte Carlo integration.
The resulting term structure exhibits properties that are qualitatively similar to
those observed in the data and which cannot be captured by the linear Gaussian
one-factor model. In particular, our model captures the nonlinear relation between
long rates and the short rate found in the data.
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Non-technical summary

Dynamic models of the term structure of interest rates capture the joint dynamics
of bond yields of di�erent maturities. In the �nance literature, the absence of
arbitrage opportunities constitutes the key assumption that ties the movements of
short-term and long-term interest rates together. Heuristically speaking, the no-
arbitrage assumption rules out investment strategies that allow for riskless pro�ts
with a net-capital input of zero. Among the arbitrage-free approaches, the class of
a�ne term structure models has become particularly prominent. In these models,
arbitrage-free bond yields result as a�ne (linear plus an intercept) functions of a set
of explanatory factors. This linear structure follows inter alia from the fact that the
evolution of the factors themselves is assumed to be a linear autoregressive process.
In the simplest example - the prototypical one-factor Vasiçek model - the short-term
interest rate, depending linearly on its own past only, is the single driving force of
the whole term structure.

However, the econometric literature provides evidence that the evolution of short-
term interest rates is better described by nonlinear models in which, e.g., the law
of motion depends on the level of the short rate itself. This paper estimates such
a nonlinear speci�cation of the short rate evolution for Germany and the US. The
model allows for regime-shifts in the equilibrium level and the volatility of the one-
month interest rate. Which regime prevails depends on whether the short rate has
exceeded certain thresholds in a previous period. Thus, in the simplest case with only
one threshold, the model distinguishes between high- and low-interest-rate regimes.
For both countries, the speci�cation with regime shifts turns out to be an adequate
representation of the empirical dynamics, and statistical tests prefer this nonlinear
formulation to linear models.

As a second contribution, the paper derives the arbitrage-free term structure
based on the considered threshold process of the short rate. In contrast to the afore-
mentioned a�ne models, analytical solutions for arbitrage-free bond prices do not
exist here. Hence, they are computed by means of simulation methods (Monte Carlo
integration). The resulting term structure exhibits properties that are qualitatively
similar to those observed in the data and which cannot be captured by a�ne one-
factor models. For instance, the threshold model delivers autocorrelations of interest
rates that increase with maturity, and contemporaneous correlations between bond
yields that decrease the more apart the maturities of the two yields, both features
being in line with the data. In contrast, one-factor a�ne models imply constant



autocorrelations across the maturity spectrum and contemporaneous correlations
which are equal to unity for all maturities. Moreover, the threshold models exhibit
a convex-concave relationship between the one-month rate and longer-term bond
yields. This feature is also prevalent in the data and cannot be replicated by the
a�ne Vasiçek model, which implies a linear relation for all maturities.



Nicht-technische Zusammenfassung

Dynamische Modelle der Zinsfristigkeitsstruktur erklären die gemeinsame zeitliche
Entwicklung von Anleiherenditen verschiedener Laufzeiten. Dabei stellt die aus der
�nanzwirtschaftlichen Literatur stammende Annahme der Arbitragefreiheit das zen-
trale Bindeglied zwischen kurz- und langfristigen Renditen dar. Vereinfacht gesagt
werden durch diese Bedingung solche dynamische Anlagestrategien ausgeschlossen,
die risikolose Gewinne mit einem Kapitaleinsatz von Null ermöglichen würden. Eine
wichtige Untergruppe der arbitragefreien Ansätze bilden die sogenannten a�nen
Modelle. Diese Zinsstrukturmodelle zeichnen sich dadurch aus, dass sich arbi-
tragefreie Renditen aller Laufzeiten als a�ne (linear plus Absolutglied) Funktionen
der Bestimmungsfaktoren ergeben. Diese lineare Struktur folgt unter anderem aus
der Annahme, dass die Bestimmungsfaktoren selbst einem linearen autoregressiven
Prozess folgen. Im einfachsten Beispiel - dem prototypischen Einfaktormodell von
Vasiçek - stellt der kurzfristige Zinssatz, der wiederum ausschlieÿlich (linear) von
seiner eigenen Vergangenheit abhängt, die einzige Erklärungsgröÿe der gesamten
Zinsstruktur dar.

Allerdings liefert die ökonometrische Literatur zahlreiche Hinweise darauf,
dass die Entwicklung kurzfristiger Zinsen adäquater durch nichtlineare Modelle
beschrieben werden kann, bei denen sich zum Beispiel das Entwicklungsgesetz des
Zinses mit dessen Niveau verändert. Im vorliegenden Papier wird eine solche nicht-
lineare Spezi�kation für die Entwicklung des kurzfristigen Zinses für Deutschland
und die USA geschätzt. Das zugrundeliegende Modell sieht vor, dass das mittlere
Niveau sowie die Volatilität des Einmonatszinses zwischen verschiedenen 'Regimen'
hin- und herspringen können. Welches Regime zu einem bestimmten Zeitpunkt vor-
liegt, hängt davon ab, ob der Kurzfristzins im vorherigen Monat einen bestimmten
Schwellenwert überschritten hat. Im einfachsten Fall, bei dem nur ein Schwellen-
wert berücksichtigt wird, unterscheidet der Modellierungsansatz zwischen Hoch- und
Niedrigzinsphasen. Für beide untersuchten Länder stellt sich heraus, dass das Mo-
dell mit Regimewechseln eine adäquate Beschreibung der empirischen Zinsdynamik
darstellt. In statistischen Tests wird dieses nichtlineare Modell der linearen Variante
vorgezogen.

Basierend auf dem Schwellenwertprozess des Kurzfristzinses wird - als zweiter
Beitrag des Papiers - die arbitragefreie Zinsstruktur abgeleitet. Im Gegensatz zu
den oben angesprochenen a�nen Modellen ergeben sich in diesem Fall keine ana-
lytischen Lösungen für Anleihepreise als Funktion des Kurzfristzinses. Sie werden



deshalb mit Hilfe von Simulationsmethoden (sog. Monte-Carlo-Integration) berech-
net. Die Charakteristika der resultierenden Zinsstruktur entsprechen qualitativ den
in den Daten beobachteten, wobei es a�nen Einfaktormodellen nicht gelingt, diese
Eigenschaften abzubilden. So impliziert das Schwellenwertmodell zum Beispiel, dass
Autokorrelationen von Zinsen mit der Laufzeit ansteigen und dass Korrelationen
zwischen Zinsen verschiedener Laufzeiten umso kleiner werden, je gröÿer die Dif-
ferenz zwischen diesen Laufzeiten ist. Beide Ergebnisse stehen im Einklang mit
den Eigenschaften der empirischen Daten. Im Gegensatz dazu implizieren a�ne
Modelle Autokorrelationen, die über das Laufzeitenspektrum hinweg konstant sind,
und kontemporäre Korrelationen, die für alle Paare von Laufzeiten den Wert eins
annehmen. Darüber hinaus ergibt sich bei den Schwellenwertmodellen eine konvex-
konkave Beziehung zwischen dem Einmonatszins und Renditen längerfristiger An-
leihen. Dieses Muster �ndet sich ebenfalls in den Daten, es kann aber nicht mit dem
a�nen Vasiçek-Modell generiert werden; letzteres liefert vielmehr einen linearen
Zusammenhang für alle Laufzeiten.
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Threshold Dynamics of Short-Term Interest Rates:

Empirical Evidence and Implications for the Term

Structure1

1 Introduction

The speci�cation and estimation of time series models for the short-term interest
rate has been the subject of numerous studies in the empirical �nance literature.
Besides being of independent interest, the dynamics of the short rate is the central
input to models of the term structure of interest rates. In these models, the short
rate is mostly assumed to exhibit the property of mean reversion. In contrast, most
of the empirical work �nds it hard to reject the hypothesis that the short rate is an
integrated process.2 Other studies, however, argue that the observed random-walk-
like behavior may be attributed to omitted nonlinearity of the mean and volatility
function.3 Models with regime-switching are particularly prominent candidates for
capturing these nonlinearities parametrically.4

By contrast, arbitrage-free term structure models are usually based on linear,
mean-reverting processes of the short rate. In the popular class of a�ne multifac-
tor models, the short rate is driven by a small number of linear state processes.5

Generalizing the expectations hypothesis, arbitrage-free yields are risk-neutral ex-
pectations of average future short rates. Within the a�ne class, bond yields of all

1Authors: Theofanis Archontakis, Graduate Program �Finance &Monetary Economics�, Goethe
University Frankfurt, email: archontakis@�nance.uni-frankfurt.de, and Wolfgang Lemke, corre-
sponding author, Deutsche Bundesbank, email: wolfgang.lemke@bundesbank.de. This paper rep-
resents the authors' personal opinions and does not necessarily re�ect the views of the Deutsche
Bundesbank or its sta�. We thank Joachim Grammig, Uwe Hassler, Peter Kugler, Markku Lanne,
Christian Schlag, and Anna Schurba for helpful comments. We also thank seminar participants at
the Deutsche Bundesbank, Brown Bag Finance Seminar (Goethe University Frankfurt), the �Work-
shop on Nonlinear and Nonstationary Time Series� (2005 NBER/NSF Time Series Conference) in
Heidelberg, the �Workshop on Nonlinear Dynamical Methods and Time Series Analysis� in Udine
2006, the Annual Meeting of the German Economic Association in Bayreuth 2006, and the 13th
Annual Meeting of the German Finance Association 2006 for discussion.

2In the econometrics literature it is generally agreed that interest rates and especially short-term
interest rates contain a unit root. See, e.g., Rose (1988), Stock and Watson (1988), Enders and
Siklos (2001), and Hansen and Seo (2002). See also Chan, Karolyi, Longsta� and Sanders (1992)
who have estimated eight popular linear time series models used to specify interest rate dynamics,
and have shown that there is only weak evidence for mean reversion.

3See, e.g., Lanne and Saikkonen (2002), Seo (2003), and Jones (2003).
4See, e.g., Gray (1996), Ang and Bekaert (2002a), Ang and Bekaert (2002b) and also the

references given therein.
5See Piazzesi (2005) for an overview.
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maturities are linear functions of the state or factor vector, where the `intercept' and
`slope' coe�cients depend on the parameters governing short rate dynamics and the
parameters governing the market prices of factor-innovation risk. If there is only
one factor in these models, it is the short-term interest rate itself as in the seminal
studies of Vasicek (1977) and Cox, Ingersoll and Ross (1985).

This paper is positioned between the two strands of the literature, i.e. empirically
motivated papers that provide evidence for nonlinear or nonstationary time series
behavior of interest rates on one side, and the no-arbitrage term structure approach
from the �nance literature on the other side. It has two objectives: �rst we explore
whether models from the class of self-exciting threshold autoregressive (SETAR)
models proposed by Lanne and Saikkonen (2002) are an adequate representation of
US and German interest rate behavior. The speci�cation allows for shifts in the
intercept and the variance. The process is stationary but due to stochastic level
shifts mimics the nearly I(1) dynamics typically encountered with interest rates.
Second, we analyze the implications for the term structure that arise when one
leaves the world of a�ne models and uses the estimated SETAR models as inputs
for constructing the arbitrage-free yield curve. For this, we take the estimated
parameters for the threshold process as given, we calibrate the market price of risk
and obtain arbitrage-free bond yields using Monte Carlo methods.

We �nd that tests tend to prefer the threshold models over their linear counter-
parts. Concerning the term-structure implications, SETAR dynamics of the short
rate imply that long-term bond yields are an S-shaped function of the short rate,
a pattern that also seems to prevail empirically for the US. Moreover, our nonlin-
ear one-factor term structure model is able to qualitatively capture certain stylized
facts in the cross-sectional and dynamical pattern of US bond yields that the linear
one-factor model is not able to generate.

Earlier related literature usually employed a version of the expectations hypoth-
esis when linking longer-term bond yields to regime-switching short-rate processes.
Examples are given by Hamilton (1988) and Kugler (1996) that employ a Markov-
switching framework, or Pfann, Schotman and Tschernig (1996) that also use a SE-
TAR model. An arbitrage-free approach is employed within the Markov-switching
models of Bansal and Zhou (2002) and Dai, Singleton and Yang (2003) that allow for
state-dependent transition probabilities. The no-arbitrage regime-switching model
by Ang, Bekaert and Wei (2006) simultaneously captures the nominal as well as the
real yield curve. The papers that are most closely related to our own study6 are

6See also the continuous-time SETAR model by Decamp, Goovaerts and Schoutens (2004).
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Gospodinov (2005) with a (possibly nonstationary) TAR-GARCH model, and Au-
drino and Giorgi (2005) who use discrete beta-distributed regime shifts constructed
on multiple thresholds.

The remainder of the paper is organized as follows. In section 2, we focus on the
time series behavior of interest rate dynamics, that is, we introduce the threshold
process and discuss a test for nonlinearity within our framework. Section 3 presents
the empirical results for US and German interest rate data. Section 4 discusses the
implications of the threshold process for the term structure within the no-arbitrage
framework. Finally, section 5 summarizes the results and provides an outlook to
possible extensions of our analysis.

2 A Threshold Model for the Short-Term Interest

Rate

2.1 Model Speci�cation

For the dynamics of the short-term interest rate xt, we consider the family of self-
exciting threshold autoregressive (SETAR) processes proposed by Lanne and Saikko-
nen (2002).7 which is given by

xt = ν +
m∑

k=1

βkI(xt−d ≥ ck) +

p∑
j=1

φjxt−j + σ(xt−d)εt, (1)

where

σ(xt−d) := σ +
m∑

k=1

ωkI(xt−d ≥ ck),

I(·) is the indicator function and εt is a serially independent innovation with Eεt = 0

and Eε2
t = 1. For the model parameters, we have βk ≥ 0 and 0 ≤ c1 < c2 < . . . <

cm. The values of σ and ω1, . . . , ωm are such that σ(xt−d) is always positive. The
roots of the polynomial φ(L) = 1 −

∑p
j=1 φjL

j are assumed to be outside the unit
circle to guarantee geometric ergodicity for xt. We will refer to the model as a
SETAR(m, p, d), where m indicates the number of level shifts or regimes, p the lag
order, and d the lag of the threshold variable. If we want to explicitly distinguish
between the model with ωk = 0 for all k and the model with ωk 6= 0 for at least
one k we will refer to the latter as the HSETAR (H standing for heteroskedasticity)
speci�cation.

7The following is based on the description in their paper to which the reader is referred for
technical details.
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When all βk and all ωk are zero, the model reduces to the standard linear and ho-
moscedastic AR(p) model. Otherwise, the intercept and/or the variance are regime-
dependent. There are m+1 di�erent regimes, where the regime prevailing in period
t depends on the value of the short rate at time t−d. For instance, for m = 1, there
are two regimes. If the threshold variable xt−d is below the threshold value c1, the
process is in the lowest regime and behaves like a simple AR(p) model with a condi-
tional long run mean of ν/(1−φ1−φ2−· · ·−φp). For xt−d ≥ c1 the process switches
to a higher intercept ν + β1 and evolves around (ν + β1)/(1 − φ1 − φ2 − · · · − φp).
The process switches back and forth between the di�erent regimes with the same
autoregressive parameters.

Although the process is stable, the stochastic level shifts generate nearly I(1)
dynamics typically encountered with interest rate behavior.8 Heuristically, if the
data are in fact from such a Data Generating Process (DGP), an econometrician who
falsely ignores the level shift, would tend to overestimate the sum of autoregressive
parameters and would tend to reject stationarity.

2.2 Estimation and Testing Approach

The estimation of the threshold process (1) is a straightforward application of Condi-
tional Least Squares (CLS). In the case of the homoscedastic SETAR(m, p, d) model
it consists of two steps. For givenm, p, d and given threshold values c̄′ = (c̄1, . . . , c̄m),
the parameter vector θ′ = (θ0′, σ) = (ν, β′, φ′, σ) with β′ = (β1, . . . , βm) and
φ′ = (φ1, . . . , φp) can be estimated by ordinary least squares (OLS). We have

θ̂0(c̄) = argmin
θ0

ST (θ0, c̄), with ST (θ0, c̄) =
T∑

t=t0

(xt − F (xt−1, . . . , xt−p, xt−d; θ
0))2,

where t0 = max{p, d}+1, the function F (xt−1, . . . , xt−p, xt−d; θ
0) is the skeleton, i.e.

the deterministic part of the model, and T indicates the sample size. The estimate
σ̂(c̄) is obtained from the sum of squared residuals as usual. Thus, in the �rst step
one obtains θ̂(c̄)′ =

(
θ̂0(c̄)′, σ̂(c̄)

)
.

In the second step, the vector c′ = (c1, . . . , cm) of threshold values is determined
by conducting a direct search over points in C, the set of allowable vectors c. Form =

1, one considers the grid Xg = {x(0), . . . , x(T−d)} consisting of the order statistics of
the observed data. The estimate of c1 is obtained as

ĉ1 = argmin
c1∈Xg

ST (θ̂(c1), c1). (2)

8Another approach to discriminate regimes is to use an exogenous threshold variable or lagged
di�erences as in Gospodinov (2005) or in Gonzalo and Montesinos (2002).
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For the grid search, it has to be provided that each regime contains a pre-speci�ed
minimum fraction π∗ of observations to produce reliable estimates, a popular choice
is π∗ = 0.15. For m > 1, an m-dimensional grid search has to be conducted. Finally,
the CLS estimates of the parameters are given by θ̂ = θ̂(ĉ).

The estimation of (1) with a regime-dependent error variance proceeds in the
same manner. The di�erence is that the OLS estimator θ̂ in step one has to be
replaced by a two-step weighted LS estimator with a heteroskedastic covariance
matrix.

So far we have assumed that the order p of the lag-polynomial, the lag d of the
threshold variable, and the number of thresholds m are known. In practice, the
parameters p, d and m have to be determined on the basis of observed data as well.
When we estimate models from the (H)SETAR family below, we follow Lanne and
Saikkonen (2002) and consider lag lengths of p = 1 and 2, only. With respect to m,
we use only values below or equal to 2 since this number is su�cient to remove the
underlying level-shifting behavior from the data. For the delay parameter d of the
threshold variable, we restrict ourselves to values between 1 and 3.9

Statistical inference for regime switching models su�ers from the problem of
unidenti�ed nuisance parameters under the null hypothesis of no threshold, i.e. the
linear model. The main consequence is that conventional statistical theory cannot
be applied and analytical expressions of the limiting distribution of the test statis-
tic do not exist. Critical values have to be determined by means of simulations.
Furthermore, in our context, the high autocorrelation of the short rate dynamics
implies that the process is I(1) or nearly I(1) under the null hypothesis. The unit
root tests of Gonzalo and Gonzalez (1998) and Caner and Hansen (2001) for TAR
models do not apply here, since their threshold variable is a stationary time series
that di�ers from the regressand, whereas in our framework it is the lagged time
series itself and possibly nonstationary under the null of β1 = · · · = βm = 0. The
approach by Lanne and Saikkonen (2002) circumvents this problem by putting the
proposed model in the null hypothesis and conducting a stationarity test along the
lines of Kwiatkowski, Phillips, Schmidt and Shin (1992). The following sketches this
approach.

For the derivation of the test statistic, equation (1) is rewritten as follows:

xt = µ+
m∑

k=1

φ(L)−1βkI(xt−d ≥ ck) + zt, (3)

9Alternatively, the consistent estimation technique of the delay parameter d provided by Chan
(1993) may be used.
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where µ = ν/φ(L) and φ(L)zt = σ(xt−d)εt. This can be done since xt is assumed
to be a stationary process with stable roots in each regime and φ(L) is therefore
invertible.

The null hypothesis of the test is �The DGP of xt is a (H)SETAR model�, i.e.
β1, . . . , βm and ω1, . . . , ωm in the HSETAR are nonzero. It can be shown that under
H0, the series zt is a stationary AR(p), whereas under the alternative it is assumed
to be an unstable I(1). Since zt is unobservable, it is replaced by its empirical
counterpart from a regression under the null hypothesis for constructing the test
statistic.

The stationarity test is formulated in the framework of Leybourne and McCabe
(1994) (L-M) and is based on a modi�ed Lagrange-multiplier (LM) test statistic. Af-
ter running the CLS regression of the (H)SETAR model and obtaining the residuals
ε̂t, we compute

ût =

p∑
j=1

φ̂jût−j + ε̂t, t = 1, . . . , T (4)

starting with ût = 0 for all t ≤ 0. The ût correspond to the standardized z-series,
i.e. ut = zt/σ or accordingly ut = zt/σ(xt−d) using the regime-dependent residual
variances in case of the heteroskedastic model. Since the LS estimates θ̂ lead to
an inconsistent test, the following auxiliary ARMA(p,1) model has to be estimated
using (quasi) Maximum Likelihood:10

φ(L)∆ût = (1− ψL)at, at ∼ N(0, 1) (5)

to achieve proper estimates. In the next step, the sequence of ε̂t is transformed back
from ût by using φ∗, the ML estimates of φ in equation (5):

ê∗t = ût −
p∑

j=1

φ∗j ût−j.

The test statistic would employ a demeaned version of the residuals ê∗t . Since such
a statistic leads to a serious over-rejection when applied to strongly autocorrelated
but stationary time series data Caner and Killian (2001), among others, proposed a
modi�ed version, which is also used in this paper. Consider therefore the following
regression:

ê∗t = κ− γ(L)φ(L)∆ût−1 + wt + γ(L)wt−1, t = 2p+ 1, . . . , T (6)

with γ(L) =
∑p

j=1 γjL
j−1 =

∑p
j=1 φ(1)−1(φ∗j − φj)L

j−1, φ(L) =
∑p−1

j=0 φjL
j with

φj =
∑p

i=j+1 φi, wt =
∑t

j=1 ηj + εt and ηt ∼ iid(0, σ2
η). When the null hypothesis

10Note that ψ = 1 under the null hypothesis.
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holds, wt = εt and (6) becomes a constrained regression model with a moving
average error component. For the (H)SETAR(1,1,1) we get γ(L) = γ1, φ(L) = φ0,
and γ(L)φ(L) = γ1φ0 and equation (6) shrinks to

ê∗t = κ− γ1φ0∆ût−1 + wt + γ1wt−1.

For the (H)SETAR(1,2,1) model, equation (6) can be written as

ê∗t = κ− γ1φ0∆ût−1 − (γ1φ1 + γ2φ0)∆ût−2 − γ2∆ût−3 + wt + γ1wt−1 + γ2wt−2.

It should be noted that if we take the restriction for γ2 into account, we have to
estimate �ve instead of six parameters by performing a constrained optimization.11

Finally, under the null, the ML-estimated residuals of (6), say ε̂∗, can be used to
calculate the modi�ed L-M statistic of our stability test:

Z(p) =
ε̂∗

′
V ε̂∗

(T − 2p)ε̂∗′ ε̂∗
, (7)

where ε̂∗ = (ε̂∗2p+1 . . . ε̂
∗
T )′ and V is a matrix with ijth element equal to the minimum

of i and j. Under the null hypothesis

Z(p)
d→
∫ 1

0

[W (r)− rW (1)]2dr (8)

whereW (r) is a standard Brownian motion and thereforeW (r)−rW (1) is a standard
Brownian bridge. The same critical values apply as in the Kwiatkowski, Phillips,
Schmidt and Shin (1992) unit root test. Since zt contains no stochastic level shifts
any more, its visual inspection together with xt can be used to check the station-
arity of zt compared to xt in addition to the formal test. Finally, model selection
among estimated models with already stationary zt series and di�erent lag orders is
conducting using the AIC and BIC information criteria adapted for the presence of
the threshold e�ects.

In addition, we check whether the HSETAR speci�cation (vs. the homoscedastic
case) is required by testing for equality of the error variances across the di�erent
regimes. That is, we employ the LM-test for multiplicative heteroskedasticity within
a standard linear model framework with stationary regressors along the lines of Har-
vey (1990), p. 170-172. This can be done since the threshold estimates are asymp-
totically independent of other estimates and we can treat them as true parameters
values. Under the null hypothesis of H0 : ω1 = · · · = ωm = 0, the LM-statistic

LMH =
T (w′v)′(w′w)−1w′v

v′v
,

11To estimate the parameters of the auxiliary regression of the model (for p = 2) involving
multiplicative constraints, we cast it into a state space form and estimate it by Maximum Likelihood
using the Kalman Filter algorithm.
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where wt = (1 I(xt−d ≥ c1) . . . I(xt−d ≥ cm))′ and vt = ε̂2
t/σ̃

2
0 − 1 is asymptotically

χ2
m distributed. The parameter σ̃2

0 is the ML estimate of σ2(xt−d) in equation (1).12

3 Estimation Results for US and German Interest

Rates

For the following investigation we use short-term interest rates at monthly frequency
for Germany and the US for the period January 1960 to December 2002. The
German data are one-month (monthly average) money market rates reported by
Frankfurt banks, whereas the US data are end-of-month estimates of continuously
compounded zero-coupon government bond yields with a maturity of one month.
We use average data for Germany since historical end-of-month data are available
only as of January 1970.13 For the analysis of term structure implications in the next
section, the US data series is used together with yields for the maturities of 3, 6, 12,
24, 36, 48, 60, and 120 months. All government bond yields are smoothed Fama-
Bliss data except of the ten-year yield which is taken from FRED (Federal Reserve
Economics Data) and is a treasury constant maturity rate.14 Figure 1 displays the
US and German short-term interest rates.

A �rst glance con�rms the high persistence of the short rate (see also Table
4) and indeed the augmented Dickey-Fuller (ADF) test does not reject the null
of a unit root. As Rose (1988) argued, adding a deterministic linear trend to the
Dickey-Fuller regression is not relevant for nominal interest rates, whereas adding an
intercept retains the generality of the test. Since US and German short-term interest
rates do not seem to follow a speci�c drift, we report here also the test statistics
without intercept. Using an intercept (no intercept) and three lags to adjust for
serial correlation, the value of the test statistic for the US is -2.423 (-1.124), whereas
the 5% critical value is -2.868 (-1.940). For Germany, the statistic is -1.406 when
no intercept is included in the ADF regression vs. -3.241 using an intercept. For
both time series, the null hypothesis of an I(1) process without intercept cannot be

12Note that σ is not restricted under the null.
13Monthly averages of interest rate data for Germany have been used, among others, by Cassola

and Luis (2003). At the beginning of the sample, the data exhibit seasonal December spikes
which are especially pronounced during 1960-1973. In order to avoid misleading results we have
substituted those values, a total of 26, using interpolation.

14We thank Monika Piazzesi for making the data set (1 month to 60 months) for the US available
on her website. The German data are obtained from the publicly available time series database at
www.bundesbank.de.
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rejected even at the 10% level.15

The estimation results of di�erent speci�cations of the (H)SETAR model are
presented in Table 1 for the US and in Table 2 for Germany. For both data sets, we
present the results of two linear speci�cations, namely AR(1) and AR(2), the most
simple threshold model, SETAR(1,1,1), and three additional threshold models. As
mentioned in section 2.2, the additional models are chosen on the basis of information
criteria, stationarity outcomes of the resulting z-series after removing the stochastic
level shifts, and tests for heteroskedasticity. The estimated autoregressive parameter
of the AR(1) and the sum of the parameters of the AR(2) are larger than 0.96 for
the US and above 0.98 for Germany indicating (near) unit root behavior. The
corresponding parameter values for the (H)SETAR models are considerably lower,
e.g., 0.9176 in the case of the SETAR(2,2,1) for the US data set and 0.9322 for the
HSETAR(2,2,1) for Germany. The sum of squared residuals (SSR) falls from 264.16
in the AR(1) and AR(2) models to less than 260 in several threshold speci�cations for
the US sample denoting evidence for the level-shifting model, where the lowest value
occurs for the HSETAR(2,2,3). The decline in the SSR-statistics for the German
data is substantial only for the models with p = 2. Again, the lowest value belongs
to the heteroskedastic model with m = p = 2. The stability test strongly suggests
that removed level shifts account for nonstationarity. For the US, we obtain a value
of 2.8578 for the AR(1) model, which is signi�cant at the 1% level and much lower
values for all threshold models. The Z(p)-statistics of the models with m = 2

indicate that adjusting for stochastic level shifts generates a stationary zt-process
since the null cannot be rejected at the 5% level (US) and 10% level (Germany),
respectively.16 The values of AIC and BIC tend to con�rm these results as they are
lowest for heteroskedastic speci�cations with two level shifts, i.e. HSETAR(2,2,3)
for the US and HSETAR(2,2,1) for Germany.17

The parameters of the HSETAR models are highly signi�cant in both data sets
and the estimated σ-coe�cients vary across the regimes. As found in the data, we get
higher volatility values when the interest rates are high and smaller volatility values
at lower levels of interest rates. Figures 2 and 3 plot the absolute changes of the

15See also the notes for tables 1 and 2.
16Our results are qualitatively similar to those obtained by Lanne and Saikkonen (2002) for the

Swiss Franc three-month Eurorate during the period 01/1978 to 09/1997 and for UK Treasury Bill
rates during the period 01/1964 to 09/1997.

17The information criteria for the threshold models are computed following Franses and van Dijk
(2000), i.e. AIC(p,m) =

∑m+1
k=1 Tk ln σ̂2

k + 2(p + m + 1) and BIC(p,m) =
∑m+1

k=1 Tk ln σ̂2
k + (p +

1) lnT1 +
∑m+1

k=2 lnTk, where Tk indicates the number of observations in each regime.
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US and German data, respectively as a proxy for the underlying volatility together
with the estimated σ-coe�cients. The heteroskedastic speci�cations capture the
changing volatility for the analyzed period quite well.

As outlined above, the visual inspection of the z-series in comparison with the
original time series provides additional evidence that the nonstationarity is due to
the estimated level shifts. The z-series of the threshold models show less trend
behavior than the original time series or the z-series of the AR-processes. In partic-
ular, the z-series of the AR(2) in �gure 4 reveals a potentially remaining trend or
level-shifting behavior that is removed in the HSETAR(2,2,3) model. Again, similar
results for the z-series apply to Germany, if we take a look at �gure 5. The range of
the HSETAR(2,2,1) is narrower than of the AR(2) or SETAR(1,1,1) speci�cation.

4 Term Structure Implications

As is well known, arbitrage-free term structure models that are based on linear Gaus-
sian short-rate processes imply a linear relationship between the short-term interest
rate and longer-term bond yields. Thus, they belong to the popular class of a�ne
factor models of Du�e and Kan (1996).18 This section explores the implications
for the term structure that arise from using the estimated nonlinear (H)SETAR
model as the underlying state process. As common in the literature, we employ a
stochastic discount factor approach which renders the resulting yield dynamics to
be arbitrage-free.

We will �rst show how to map the short rate into bond prices and yields. The
actual computations will employ Monte Carlo techniques, since the pricing equation
is not given in closed form. After that we collect some stylized facts derived from our
US term structure data. The last subsection derives the corresponding properties
of the (H)SETAR models, and compares them to the features found in the data as
well as to those implied by a linear one-factor model.

4.1 Methodology

We use a discrete-time framework as expounded in, e.g., Backus, Foresi and Telmer
(1998). Consider a zero-coupon bond at time t with price P n

t that has n periods
left until maturity, where one period corresponds to one month. In the next period,
this bond has only n − 1 periods left until maturity and a price of P n−1

t+1 . It can

18See also Dai and Singleton (2000).
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be shown that in an arbitrage-free bond market there exists a process {Mt} with
E|MtP

n
t | <∞ and Mt > 0 for all t, such that the following pricing equation holds

P n
t = Et(Mt+1P

n−1
t+1 ), (9)

where Et represents the conditional expectations given information at time t. This
fundamental pricing relation (9) is the core of a no-arbitrage term structure model.
The random variable Mt is referred to as the stochastic discount factor (SDF) or
pricing kernel. The pricing equation (9) can be iterated forward and the bond price
can be written as the expected product of future pricing kernels,

P n
t = Et (Mt+1Mt+2 . . .Mt+n) , (10)

which uses the fact that P 0
t = 1, i.e. the bond pays one unit of account at maturity.

Apart from equation (9), every arbitrage-free term structure model consists of two
additional components, a function g, Mt+1 = g(xt, εt+1), that speci�es the depen-
dence of the SDF on a state variable x and an innovation ε, and a law of motion of
that state variable. Under continuous compounding, the yield yn

t of a bond with n
periods until maturity is obtained from the bond price as

yn
t = − lnP n

t

n
. (11)

For the following analysis, the linear Gaussian one-factor model - that is, the
discrete-time version of the prominent Vasicek (1977) model - will serve as a refer-
ence point for comparison. In this model, the short rate xt is assumed to follow a
stationary AR(1) process

xt = ν + φxt−1 + σεt, (12)

with εt ∼ i.i.d.N(0, 1). In addition to that, we assume that the SDF satis�es

Mt+1 = exp{−δ − xt − λσεt+1}, (13)

where −λ is the market price of risk and δ = λ2σ2/2. Using (12) and (13), the
pricing equation (9) can be solved, that is, bond prices can be written as an explicit
function of the state variable xt. The solution is of the exponentially a�ne form,

P n
t = exp{−An −Bnxt}. (14)

The coe�cients An and Bn depend on time to maturity but not on t. They satisfy
the di�erence equations

Bn =
n−1∑
i=0

φi =
1− φn

1− φ
, (15)

An =
n−1∑
i=0

G(Bi), (16)
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with
G(Bi) = δ +Bi θ(1− φ)− 1

2
(λ+Bi)

2σ2

and initial condition A0 = B0 = 0. Using (11), bond yields are given as a�ne
functions of the state variable

yn
t =

An

n
+
Bn

n
xt. (17)

For n = 1, this solution delivers the short-term interest rate itself, y1
t = xt.

Based on our threshold models, we consider two types of speci�cations for the
corresponding term structure models. The �rst version is based on the short-rate
process (1) with homoscedastic innovations, that is with σ(xt−d) = σ. The functional
form of the SDF is given by (13) with regime-independent market price of risk
parameter λ. The second version allows for heteroskedasticity. For this variant, we
follow Bansal and Zhou (2002) and allow for regime-dependent market prices of risk.
The appropriate SDF of this heteroskedastic version is given by

Mt+1 = exp{−δ(xt−d+1)− xt − λ(xt−d+1)σ(xt−d+1)εt+1}, (18)

where λ(xt−d) = λ+
∑m

k=1 I(xt−d ≥ ck)rk for real constants r1, . . . , rm.
For a given speci�cation of the short rate evolution (and corresponding SDF

formulation), we de�ne the `yield function' fn as the mapping from the history of
observed short rates (xt, xt−1, xt−2, . . .) into the arbitrage-free yield yn

t . We write

yn
t = fn(Xt; ζ). (19)

where the vector ζ collects the parameters governing the time series process of the
short rate θ as well as the parameter(s) λ (and rm) controlling the market price
of risk, and Xt denotes those past observations of the short rate, on which the
conditional expectation (10) depends. For instance, if the underlying short-rate
process is a linear AR(1), a SETAR(1,1,1) or a HSETAR(1,1,1), the conditional
expectation in (10) - and thus any bond yield - will only depend on xt and not
on any past xt−i , i > 0.19 For the case of of a general HSETAR(m, p, d) with
corresponding pricing kernel (18), the conditional expectation will be a function of
Xt = (xt, xt−1, . . . , xt−max{p,d}+1).

For the term structure model based on the homoscedastic SETAR(1,1,1), an
analytical expression for the yield function has been derived in Lemke and Archon-
takis (2006). It turns out that unlike with a linear short rate model, this function

19Hence, for the AR(1), fn(Xt, ζ) = fn(xt; λ, σ, ν, φ) = An

n + Bn

n xt.
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is not a�ne anymore as the intercept does now depend on the current short rate in
a nonlinear fashion,

yn
t =

An(xt)

n
+
Bn

n
xt, (20)

whereas Bn is the same as in equation (15), and again y1
t = xt. For other processes

from the HSETAR(m, p, d) family, an analytical solution will be more complicated,
if it exists at all. Moreover, even for the simple SETAR(1,1,1), actually computing
the yield function (20) su�ers from a curse-of-dimensionality problem as explained
in more detail in Lemke and Archontakis (2006). Hence, here we will make use of
Monte-Carlo techniques to evaluate bond yields numerically.

For that, the conditional expectation on the right-hand side of (10), which is
required to obtain the bond price P n

t , is computed as follows. Conditional on the
actual value xt of the short rate and the respective lags xt−1, . . . , xt−max{d,p}+1 corre-
sponding to the (H)SETAR model under consideration, one generates a realization
of the sequence {xt+1, . . . , xt+n} using the (H)SETAR(m, p, d) model as the DGP.
One then computes the corresponding sequence of pricing kernels {Mt+1, . . . ,Mt+n}
using (13) or (18), respectively. Then the product on the right hand side of (10)
is computed and saved. The latter steps are repeated a large number of times, the
average of the respective products is an estimate of the conditional expectation and
thus of the bond price. This in turn can then be converted into a yield via (11).
The yield function approximated in this manner will be denoted by f̂n(Xt; ζ).

It turns out that in order to obtain su�ciently precise estimates of yn
t (that are

within a maximum error range of ±0.01 percentage points for all times to maturity
n) a large number of N = 1, 000, 000 simulated random paths of the SDFs is re-
quired. As can be derived from (11), the bond price P n

t must not deviate from its
theoretical value by more than -/+ n/1200 % if yields should be approximated with
the desired precision.20 The MC simulation is performed using antithetic variates to
reduce the variance of the estimates. Essentially, when drawing innovations εt for
the (H)SETAR processes, we generate a sample of M/2 i.i.d. normally distributed
random variates and raise the sample size to a total of M variates by using the
negative values of the realizations as well.

With the exception of the market price of risk λ, all parameters required for the
computation of bond yields have already been estimated from time series data on
the short rate in the previous section. We follow Backus, Foresi and Telmer (1998)
and calibrate λ such that the actual average ten-year yield of the analyzed sample

20For instance, in order to have an n = 12-month yield of 3% p.a. within the interval [2.99,
3.01], the simulated bond price has to be within the narrow interval [0.97035,0.97045].
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is matched exactly while the estimated parameters of the state process from section
3 are taken as given. In the case of regime-dependent risk parameters, we calibrate
the m distinct λ-parameters in a similar fashion, using a higher-dimensional grid
search. Since the model implies that y1

t = xt, we have two exactly matched points
in the average yield curve, the short rate and the ten-year yield.21 The values of
the λ-parameters resulting from the matching procedure are reported in Table 3,
whereas the corresponding sample mean yield curves are not displayed here.

4.2 Stylized Facts

Before presenting the results from the simulation study, we focus on some important
stylized facts regarding US bond yields for the period 01/1960 to 12/2002. Yields of
all maturities are constructed using the same method (smoothed Fama-Bliss). Since
such long time series are not readily available for Germany, we con�ne ourselves to
the US data set.

Summary statistics of yields in levels for this period are reported in Table 4. Two
important facts can be derived from this table. First, the data reveal the typical
concave and upward sloping behavior in the sample mean yield curve. The average
spread between the one-year and the one-month yield is 0.84 percentage points, the
�ve-year-one-year spread amounts to 0.57, and the ten-year-�ve-year spread is 0.29.
Second, the sample autocorrelation is very high, above 0.95 for all maturities and
increasing with maturity. The same statistics for �rst di�erences are reported in
Table 5.

The standard deviations of yield changes, sometimes referred to as the term
structure of volatility, display a downward-sloping behavior with a sharper decline
in volatility from the one-month bond to the three-month bond than in the remaining
consecutive bonds. From six- to twelve-month bonds the volatility is even increas-
ing.22 Another characteristic feature of the relationship of di�erent bond yields is
that the contemporaneous correlation is high across the maturity spectrum, and

21Another possibility to obtain values for λ would be via an estimation of the complete parameter
vector (ν, β1, . . . , βm, c1, . . . , ck, σ, ω1, . . . , ωm, φ1, . . . , φp, λ) using additional cross-sectional infor-
mation of the yield curve and simulation-based estimation methods, such as Simulated Maximum
Likelihood (SML), or Simulated Method of Moments (SMM). In this paper, we restrict ourselves
to the calibration method since it is su�cient for our objective to show the basic implications of a
threshold e�ect for the term structure.

22This characteristic behavior of the curve is more pronounced, e.g., during the Greenspan era
(08/1987 to 12/2005). Piazzesi (2005) describes the curve for that period as `snake-shaped': high
for short maturities (< six months), low at six months, then increasing with a peak at two to three
years, and then again decreasing.
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decreases with the di�erence between maturities, see Table 6.
The last fact that needs to be pointed out for the subsequent analysis character-

izes the relationship between long- and short-term yields and is displayed in �gure
6. The graphs show plots of di�erent n-period bond yields and the one-month short
rate. A second-order penalized spline (P-spline) with 30 equidistant knots is �tted
through the respective scatter plots.23

In general, the dispersion around the spline curve tends to increase with time to
maturity. Moreover, the degree of nonlinearity exhibited by the bivariate relation
between long-term yields and the short rate also seems to become more distinct for
longer maturities. In the upper left plot, the functional form can be approximated
with a simple upward sloping linear function. The 36- to 120-month yield plots
exhibit a form that is convex when the short rate is low and concave at higher levels
of the short rate.24 This convex/concave shape seems to amplify for longer times to
maturity. Moreover, the concavity is stronger emphasized indicating that long-term
yields are less sensitive to the short rate at higher levels.

4.3 Simulation Results

In this section, we study the term structure properties that arise when the short-
rate process is from the considered (H)SETAR family. We will consider the SE-
TAR(1,1,1), the HSETAR(1,1,1) and the HSETAR(2,2,3). The SETAR(1,1,1) can
be interpreted as that threshold process from the (H)SETAR family which is `closest'
to the linear AR(1) model, i.e. the discrete-time counterpart of the Vasiçek model.
Thus, it is interesting to explore what di�erences it implies for the properties of the
term structure, when the only di�erence compared to the linear AR(1) is the en-
dogenously switching intercept. By including the HSETAR(1,1,1) into our synopsis,
we will be able to explore what impact the additionally shifting volatility exerts on
the joint behavior of bond yields. Finally, the HSETAR(2,2,3) is chosen since it

23In P-spline smoothing the unknown functional form is approximated by a large number (30-
200) of knots and basis functions respectively, which is then �tted to the data imposing a penalty
against over�tting (see, e.g., (?)). This guarantees a smooth �t while retaining the basic structure
of the functional relationship. An application to interest rates can be found, e.g., in Krivobokova,
Kauermann and Archontakis (2006).

24A cubic polynomial re�ects the same behavior in an even more pronounced way. The
t−statistics of the corresponding third order parameters are in absolute values larger than 2 for all
maturities and around 4 for n = 48, 60, and 120. Here, we choose the spline to let the procedure
choose a functional form that is not predetermined by itself. As a robustness check, we consider
also smoothing splines with di�erent smoothing parameters. The basic convex/concave functional
form is con�rmed by all nonparametric methods.
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turned out to be the most adequate representation of the time series properties of
the short rate, as discussed above in section 3. The parameter values for the three
models are our estimates for the US.

Before presenting the results, the important disclaimer is in order that all term
structure models based on our SETAR short rate processes are one-factor models.
That is, as the linear Vasicek model, the whole continuum of bond yields is driven by
one innovation process only. As such, the SETAR-based models cannot be expected
to �t the complete dynamics of the term structure. Thus, we do not at all claim
that the one-factor SETAR models are true competitors to the now established two-
or three-factor models from the a�ne class of Du�e and Kan (1996). It is rather
the objective to explore how the implied term structure properties di�er from those
implied by the benchmark linear Vasicek model: we assess whether the supposed
form of nonlinearity of the driving process can help to capture certain features of
yield curve dynamics, which would require an additional factor if one was staying
within the class of linear models.

In particular, the analysis will focus on the following aspects. We will consider
the mean yield curve, the term structure of volatility as well as the contemporane-
ous correlations and the autocorrelations of bond yields corresponding to the three
threshold models. Moreover, it will be explored what the threshold models imply
for the short-rate dependence of money-market and longer-term bond yields. Par-
allel to that, we will also consider the consequences of erroneously using the linear
one-factor (Vasicek) model, when the data are in fact generated by one of the three
indicated threshold models.

Mean yield curve and term structure of volatility First, consider the ex-
pected yield curve and the term structure of volatility implied by the threshold
models. They are de�ned as the expectation of yields, Eyn

t , and the standard devi-
ation of yield changes,

√
Var(∆yn

t ), respectively, each viewed as a function of time
to maturity n. These quantities are functions of the parameters of the underlying
(H)SETAR process of the short rate and the market price of risk parameters. For
a�ne term structure models based on linear short-rate processes, they can be com-
puted analytically. For our processes from the (H)SETAR family, however, we have
to rely on Monte Carlo techniques. Given the estimated parameters, ζ̂, the expected
yield curve is given by

Eyn
t = Efn(Xt; ζ̂), (21)
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where fn is the yield function de�ned in (19). The second expectation in (21) is taken
with respect to the unconditional distribution of Xt. This will be approximated as

Efn(Xt; ζ̂) ≈
1

M

M∑
i=1

f̂n(Xi; ζ̂) (22)

where M = 1, 000 and Xi are draws from the unconditional distribution of
Xt = (xt, xt−1, . . . , xt−max{d,p}+1). Hence, Xt = xt for the SETAR(1,1,1) and
HSETAR(1,1,1), whereas Xt = (xt, xt−1, xt−2) for the HSETAR(2,2,3). One draw of
the unconditional distribution of Xt is obtained by generating 1,000 realizations of
the respective (H)SETAR process and discarding the �rst 999 (or 997, respectively)
of that.25 Similarly, the term structure of volatility is approximated as

√
Var(∆yn

t ) =

√
Var

(
∆fn(Xt; ζ̂)

)
≈

√√√√ 1

M

M∑
i=1

(
∆f̂n(Xi; ζ̂)−

1

M

M∑
i=1

∆f̂n(Xi; ζ̂)

)2

.

(23)
The model-implied autocorrelations, Corr(yn

t , y
n
t−j), and the contemporaneous corre-

lations between bond yields, Corr(yn
t , y

m
t ), will be approximated in a similar fashion.

Figure 7 presents points on the expected yield curves (left column of panels)
and volatility curves (right column of panels) for maturities n = 1, 3, 6, 12, 24, 36,
48, 60, 84 and 120 months as stars. Based on our estimated parameters, the mean
yield curves look similar, whereas the range (Ey120

t − Ey1
t ) and also the `degree of

concavity'26 di�ers across models. If one falsely assumes the state process to be a
linear Gaussian one (solid lines), the econometrician's estimates will nevertheless
imply a mean yield curve which is similar, although for the HSETAR models as true
DGPs, the misspeci�cation will incur a slight over-estimation of concavity.

The volatility curves of linear and nonlinear models are similar only for the SE-
TAR(1,1,1). By adding the heteroskedastic component, the threshold model starts
to di�er from the AR(1). This di�erence becomes more distinct for the heteroskedas-
tic model with two level shifts. In contrast to the AR(1), the HSETAR(2,2,3) gen-
erates a higher curvature for lower maturities, which is also a feature that has been
found in characterizing the stylized facts in the data.

Autocorrelations and contemporaneous correlations Table 7 contains the
autocorrelations of bond yields for the threshold models. The autocorrelation in-

25The computation of the expectation in (22) is in fact a Monte Carlo within Monte Carlo since
for each of the M = 1, 000 draws of Xi, the yield function f̂n(Xi; ζ̂) has to be computed using
N = 1, 000, 000 simulation steps as explained above.

26For instance, the ratio of Ey120
t −Ey60

t to Ey60
t −Ey6

t would serve as a rough measure for that.
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creases with maturity. This result is due to the nonlinearity of the underlying factor
and resembles the autocorrelation structure of a multifactor term structure model
qualitatively. Clearly, the model does not produce as sharply increasing autocorre-
lations as observed in the data, but this depends on the estimated parameters. Note
that in contrast, all linear one-factor models produce the same autocorrelation for all
maturities. The range of the autocorrelation between 1- and 120-month yields rises
by adding the heteroskedastic term to the SETAR(1,1,1) model. Compared to the
models with a single shift in the intercept, the HSETAR(2,2,3) has a considerably
larger range and also a higher level of autocorrelation for all maturities.

With our threshold models, we also obtain a contemporaneous correlation that
decreases with maturity (Table 8). Again, the HSETAR(1,1,1) produces a stronger
decline in correlations than the SETAR(1,1,1). In the HSETAR(2,2,3) model this
e�ect is even more pronounced. For the linear one-factor Vasicek model, in contrast,
all contemporaneous correlations are unity, which is a direct consequence of the fact
that the model is linear and contains one source of innovation only. Our threshold
speci�cations also feature one source of randomness only, but their nonlinearities
give rise to a correlation and autocorrelation pattern that a model from the a�ne
class could only achieve with more than one innovation, i.e. in that class it could
only be generated by a multifactor speci�cation.

Bivariate relations between short rate and yn
t Figure 8 compares the yield

functions � the relationships between short rate and longer-term bond yields � of
the linear Gaussian AR(1) model to that of our simplest threshold term structure
model based on the SETAR(1,1,1). Maturities of n = 2, 12, 60, and 120 months are
presented.

Both models display a positive relationship between the short and long-term
rates that is declining for higher maturities. Although the only di�erence compared
to the linear model is the change in the intercept, the implied di�erences for the
yield function are considerable. First consider the upper-left panel, which contains
the model-implied relationship between the one-month and the two-month yield.
Both yield functions seem to be virtually identical as they lie upon each other.
However, the yield function of the SETAR(1,1,1) is a stepwise linear function with
a discontinuity in the form of a jump from 5.5 to 5.7 per cent at ĉ1. To make
this behavior more visible we take a `zoom' around the threshold point ĉ1, which is
presented in the �rst panel of �gure 9. The yield function of the Gaussian model
goes exactly through this jump, exhibiting a slightly higher slope to adjust for the
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jumping e�ect.
The `degree of nonlinearity' increases with time to maturity. The yield functions

in �gure 8 show a convex shape to the left of the threshold value and a concave
shape to the right of it. As found in the data (compare with �gure 6) and can be
seen from the second panel of �gure 9, the concavity is more emphasized for the
longer maturity. Surprisingly, the model produces di�erent types of nonlinearity
with just the same autoregressive parameter in each prevailing regime and is able to
qualitatively capture the functional form observed in the data. Pfann, Schotman and
Tschernig (1996) and Gospodinov (2005), for instance, have shown similar e�ects,
but they use more complex models that additionally allow for regime-dependent
autoregressive parameters.27.

Figure 10 plots the nonparametric spline estimate of the data-implied yield func-
tion together with the linear and nonlinear parametric yield functions of the di�erent
models. The HSETAR(1,1,1) is omitted from the graph since it is very similar to the
SETAR(1,1,1) speci�cation. For the three-month yield, all models match the data-
implied yield function quite well. Moving to higher maturities, the results change
signi�cantly. Both AR(1) and SETAR(1,1,1) cannot �t the data. A model gener-
ating a higher slope is needed in order to match the pattern exhibited in the data.
The HSETAR(2,2,3) model with two shifts in the intercept comes very close to the
observed yield function and winds itself around the data-implied yield function.

It is noteworthy that apart from the calibrated values of the market-price-of-risk
parameters λ, the parameters leading to the documented behavior of longer-term
yields are estimated solely from time series information on the short rate. Never-
theless, the correlation and autocorrelation pattern of bond yields, the form of the
mean yield and volatility curve and the relationship between long and short-term
yields are captured surprisingly well with the nonlinear one-factor model. This re-
�ects that the particular nonlinearity incorporated in the time-series behavior of the
short rate translates (via the no-arbitrage condition) into a cross-sectional behavior
of yields with di�erent maturities that does match the corresponding features in the
data better than the linear model. However, in order to improve upon the quan-
titative �t to empirical data, one would presumably have to include an additional
factor, or enrich the dynamic speci�cation of the short rate further.

27Allowing for regime dependent autoregressive parameters within our framework leads to a
similar yield function to the right of the threshold compared to a model where only the intercept
switches. To the left of the threshold, surprisingly, the yield function remains linear.

19



5 Concluding Remarks

The aim of this paper was to estimate and analyze certain threshold dynamics of
short-term interest rates and to explore the implications of these dynamics for the
term structure of bond yields. For Germany and the US, we estimated (H)SETAR
models as proposed by Lanne and Saikkonen (2002). Using the estimated models,
we derived the arbitrage-free term structure based on a stochastic-discount-factor
approach. Unlike with models from the popular a�ne class, bond yields could not
be computed analytically for higher maturities, so we had to rely on simulation
techniques.

Two insights have been obtained. First, the near-I(1) dynamics of US and Ger-
man one-month interest rates can be well captured by SETAR models with endoge-
nously switching intercepts and their extension with regime-dependent volatility
(HSETAR). Tests against the linear alternative yield results in favor of the nonlin-
ear threshold models.

Second, term structure models based on the one-factor SETAR process can gen-
erate certain stylized facts of yield curve behavior which linear one-factor models
cannot match. Rather, in the class of linear models one would have to add an addi-
tional factor to obtain these features. The threshold models deliver autocorrelations
that rise with maturity, and contemporaneous correlations that decrease the more
apart the maturities of the two yields, both features being in line with the data.
In contrast, linear Gaussian models imply constant autocorrelations across the ma-
turity spectrum and contemporaneous correlations which are equal to unity for all
maturities. Moreover, the heteroskedastic speci�cation allows for a more �exible
shape of the term structure of volatility compared to the Vasicek model. Finally,
our nonlinear models exhibit a convex-concave relationship for the yield function,
i.e. the bivariate mapping from the one-month rate into longer-term bond yields.
This feature is also prevalent in the data and cannot be replicated by the Vasicek
model, which implies a linear relation for all maturities. Our favorite speci�cation,
the HSETAR(2,2,3) model with two level shifts, regime-dependent volatility and
regime-dependent market price of risk, �ts the form of the empirical yield function
quite well.

Summing up, the main message is that the particular SETAR dynamics of the
short rate translate - via the no arbitrage condition - `correctly' into the dynamic and
cross-sectional properties of the whole yield curve: important stylized facts in term
structure data are captured at least qualitatively, and the linear one-factor model
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is improved upon. However, as the SETAR model is still driven by one stochastic
innovation only, it cannot be expected to be a true competitor to multifactor models.

Future research may consist of one of the three following extensions. First,
instead of using the two-step approach (estimating the dynamics, then calibrat-
ing market prices of risk), simultaneous estimation of the complete term structure
model may be conducted using simulation based methods such as Simulated Maxi-
mum Likelihood (SML), or the Simulated Method of Moments (SMM). The second
suggestion alludes to the threshold process itself: it may be worthwhile to explore
richer parameterized models that allow, e.g., for regime-dependent autoregressive
coe�cients. Finally, the one-factor nonlinear model could be extended to a multi-
factor term structure model which may then be compared to workhorse multifactor
models from the a�ne class.
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Table 3: Calibrated market price of risk parameters for the term structure models.

AR(1) SETAR(1,1,1) HSETAR(1,1,1) HSETAR(2,2,3)
λ -210 -155
λ1 -260 -110
λ2 -180 -180
λ3 -100

Table 4: Summary statistics of monthly yields.

Mat n Mean St Dev Skewness Auto
1 5.496 2.586 1.223 0.9576
3 5.906 2.721 1.183 0.9772
6 6.108 2.749 1.133 0.9779
12 6.335 2.689 0.9916 0.9766
24 6.546 2.624 0.9557 0.9806
36 6.714 2.544 0.9619 0.9820
48 6.841 2.509 0.9467 0.9827
60 6.908 2.483 0.9156 0.9847
120 7.200 2.526 0.9506 0.9881

For each time to maturity (Mat) measured in
months, the table contains mean, standard deviation,
skewness, and �rst autocorrelation of the respective
yields (continuously compounded) in percent p.a.

Table 5: Summary statistics of monthly yields in �rst di�erences.

Mat n Mean St Dev Skewness Auto
1 -0.0044 0.7233 -1.031 -0.1036
3 -0.0055 0.5370 -1.416 0.1308
6 -0.0065 0.5310 -1.573 0.1565
12 -0.0067 0.5316 -1.056 0.1211
24 -0.0059 0.4607 -0.7030 0.1647
36 -0.0052 0.4278 -0.1095 0.1220
48 -0.0043 0.4148 -0.1382 0.0701
60 -0.0036 0.3833 -0.2474 0.0847
120 -0.0013 0.3000 -0.4176 0.3185

Same as table 4 but for �rst di�erence of yields.
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Table 6: Contemporaneous correlation of monthly yields.

Mat n 1 3 6 12 24 36 48 60 120

1 1.00

3 0.987 1.00

6 0.973 0.990 1.00

12 0.966 0.986 0.987 1.00

24 0.942 0.966 0.969 0.991 1.00

36 0.920 0.946 0.950 0.977 0.996 1.00

48 0.902 0.929 0.933 0.963 0.989 0.997 1.00

60 0.888 0.916 0.920 0.951 0.982 0.994 0.998 1.00

120 0.861 0.888 0.892 0.924 0.963 0.979 0.988 0.992 1.00

Table 7: Autocorrelation of yields in the threshold term structure models.

Mat n SETAR(1,1,1) HSETAR(1,1,1) HSETAR(2,2,3)
1 0.96651 0.96998 0.97974
3 0.96797 0.97121 0.98254
6 0.96882 0.97197 0.98332
12 0.96953 0.97238 0.98593
24 0.97006 0.97240 0.98705
36 0.97025 0.97275 0.98877
48 0.97029 0.97288 0.98930
60 0.97034 0.97298 0.98932
84 0.97053 0.97297 0.98924
120 0.97042 0.97298 0.98933
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Table 8: Correlation of yields in the threshold term structure models.

Mat n 1 3 6 12 24 36 48 60 84 120
SETAR(1,1,1)

1 1.000
3 0.9997 1.000
6 0.9988 0.9997 1.000
12 0.9966 0.9982 0.9994 1.000
24 0.9931 0.9955 0.9975 0.9993 1.000
36 0.9911 0.9938 0.9962 0.9985 0.9998 1.000
48 0.9899 0.9927 0.9953 0.9980 0.9996 0.9999 1.000
60 0.9892 0.9921 0.9948 0.9976 0.9994 0.9999 0.9999 1.000
84 0.9885 0.9915 0.9943 0.9973 0.9992 0.9998 0.9999 0.9999 1.000
120 0.9881 0.9911 0.9940 0.9970 0.9991 0.9997 0.9998 0.9999 0.9999 1.000

HSETAR(1,1,1)
1 1.000
3 0.9996 1.000
6 0.9984 0.9995 1.000
12 0.9958 0.9977 0.9992 1.000
24 0.9918 0.9945 0.9970 0.9992 1.000
36 0.9895 0.9925 0.9955 0.9982 0.9997 1.000
48 0.9882 0.9914 0.9945 0.9976 0.9994 0.9999 1.000
60 0.9874 0.9906 0.9939 0.9971 0.9992 0.9997 0.9999 1.000
84 0.9864 0.9897 0.9931 0.9966 0.9989 0.9995 0.9997 0.9998 1.000
120 0.9855 0.9889 0.9924 0.9959 0.9984 0.9991 0.9994 0.9995 0.9996 1.000

HSETAR(2,2,3)
1 1.000
3 0.9996 1.000
6 0.9986 0.9996 1.000
12 0.9961 0.9979 0.9992 1.000
24 0.9911 0.9937 0.9962 0.9988 1.000
36 0.9872 0.9903 0.9934 0.9970 0.9996 1.000
48 0.9845 0.9878 0.9913 0.9954 0.9988 0.9998 1.000
60 0.9825 0.9860 0.9897 0.9942 0.9981 0.9995 0.9999 1.000
84 0.9801 0.9837 0.9877 0.9926 0.9971 0.9988 0.9996 0.9999 1.000
120 0.9786 0.9823 0.9864 0.9915 0.9963 0.9983 0.9992 0.9996 0.9999 1.000
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B Figures

Figure 1: One-month interest rates for Germany and the US.
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Figure 2: Absolute changes of US short rate.

Figure 3: Absolute changes of German short rate.
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Figure 4: Estimated z-series of US short rate.

Figure 5: Estimated z-series of German short rate.
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Figure 6: Plot of US long-term yields against the one-month short rate. The functional
form of the underlying yield function is estimated via a nonparametric P-Spline.
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Figure 7: Mean yield curves and term structure of volatility for threshold and
linear Gaussian model. The mean and volatility curves of the threshold models (SETAR(1,1,1),
HSETAR(1,1,1) and HSETAR(2,2,3)) are based on sampled data. The Gaussian model is estimated
using data generated from the corresponding threshold models, which are treated as the `true'
models.
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Figure 8: Implied n-period yields as functions of the short rate.

Figure 9: Implied 2- and 120-period yield as function of the short rate. Note the
`zoom' on the horizontal axis of the left panel.
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Figure 10: Data- and model-implied yield functions.
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