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Abstract

Multiple structural change tests by Bei and Perron (1998) are applied to

the regression by Demetrescu, Kuzin and Hassler (2008) in order to de-

tect breaks in the order of fractional integration. With this instrument

we tackle time-varying inflation persistence as an important issue for

monetary policy. We determine not only the location and significance

of breaks in persistence, but also the number of breaks. Only one signif-

icant break in U.S. inflation persistence (measured by the long-memory

parameter) is found to have taken place in 1973, while a second break

in 1980 is not significant.

Keywords: Fractional integration; break in persistence; unknown break

point; inflation dynamics

JEL classification: C22; E31



Non-technical summary

Our paper contributes to the existing literature by introducing and applying

a new test for determining the timing, number and significance of breaks in

the persistence of time series. Here, persistence is modeled by the length of

the time series’ memory, measured by the degree of fractional integration.

To the best of our knowledge, there exists no other method which allows to

test for multiple unknown break points in the degree of fractional integration.

One advantage of our method is its robustness against variations in volatility.

Furthermore, the test may find breaks relatively close to the boarder of the

observed sample. In a sample of 500 observations, for example, the test only

needs 150 observations before or after the break in order to reliably determine

the break if the difference in persistence is large enough.

Knowledge about the (change of) persistence of economic time series is

important in many policy and research areas. In the context of inflation, the

degree of persistence provides information on the effectiveness of monetary

policy. The better inflation expectations are anchored, the shorter the effect

of a price shock will last less time a price shock will influence inflation and the

lower inflation persistence will be. A break point test can thus, in retrospect,

indicate if and how a change in monetary policy affects inflation persistence.

In the literature, there is still disagreement about whether and when the

U.S. inflation persistence has changed over the past five decades. Opposing

empirical results can in part be attributed to differences in the measurement of

inflation persistence. Based on the results of the test proposed in this paper, we

come to the conclusion that there has been a break towards higher persistence

in 1973. The break date roughly coincides with the collapse of the Bretton

Woods system, the beginning of a period of high inflation and some oil price

shocks. By contrast, the test does not confirm that a break took place in the

1980s as suggested by some previous studies.



Nichttechnische Zusammenfassung

Unser Papier trägt zur vorhandenen Literatur durch die Einführung und An-

wendung eines neuen Tests zur Bestimmung des Zeitpunkts, der Anzahl und

der Signifikanz von Brüchen in der Persistenz von Zeitreihen bei. Persistenz

wird hier durch die Länge des Gedächtnisses, gemessen durch den fraktionalen

Integrationsgrad, modelliert. Unseres Wissens gibt es kein anderes Verfahren,

das auf mehrere unbekannte Bruchpunkte im fraktionalen Integrationsgrad

zu testen erlaubt. Ein Vorteil des Verfahrens ist seine Robustheit gegenüber

Volatilitätsschwankungen. Desweiteren kann der Test Brüche relativ nahe am

Beobachtungsrand finden. In einer Stichprobe mit 500 Beobachtungen reichen

z. B. 150 Beobachtungen vor bzw. nach einem Bruch aus, um diesen verlässlich

bestimmen zu können, falls der Persistenzunterschied groß genug ist.

Kenntnisse über die (Veränderung der) Persistenz ökonomischer Zeitreihen

sind in vielen wissenschaftlichen und politischen Bereichen wichtig. In diesem

Papier untersuchen wir die Persistenz von Inflation. In diesem Zusammen-

hang kann der Persistenzgrad Auskunft zur Wirksamkeit der Geldpolitik ge-

ben. Je gefestigter die Erwartungen zur Preisstabilität sind, umso kürzer wird

ein Preisschock nachhallen und umso niedriger ist die Inflationspersistenz. Ein

Bruchpunkttest kann somit, im Nachhinein, anzeigen, ob und welchen Effekt

ein geldpolitischer Strategiewechsel auf die Inflationspersistenz hat.

In der Literatur besteht bislang Uneinigkeit darüber, ob und wann sich

die U.S.-Inflationspersistenz in den vergangenen fünf Jahrzehnten geändert

hat. Widersprüchliche empirische Ergebnissen können zum Teil auf die un-

terschiedliche Messung von Inflationspersistenz zurückgeführt werden. Basie-

rend auf den Ergebnissen des im Papier vorgeschlagenen Tests kommen wir

zu dem Schluss, dass es im Jahr 1973 einen Bruch hin zu höherer Persistenz

gegeben hat. Dieser Zeitpunkt fällt mit dem Zusammenbruch des Bretton-

Woods-Systems, dem Anfang einer Hochinflationsphase sowie Ölpreisschüben

zusammen. Dagegen kann der Test nicht den von einigen anderen Studien ge-

fundenen Bruchpunkt in den 1980er Jahren bestätigen.





Contents

1 Introduction 1

2 Breaks in long memory 4

3 Tests with known break points 8

3.1 Under iid assumptions . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Tests with unknown break points 16

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Monte Carlo evidence . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Case of one break . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Case of two breaks . . . . . . . . . . . . . . . . . . . . . 22

5 U.S. inflation 23

5.1 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Testing against changes in inflation persistence . . . . . . . . . . 28

6 Concluding remarks 32



List of Figures

1 Rejection rates from (14) plotted against δ . . . . . . . . . . . . 13

2 Rejection rates from (16) plotted against δ . . . . . . . . . . . . 13

3 supF (1) plotted against θ, m = 1 . . . . . . . . . . . . . . . . . 19

4 supF (1): different break fractions and MA(1), nominal level of

5 % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 supF (1): different sample sizes, nominal level of 5 % . . . . . . 21

6 supF (2) plotted against θ, m = 1 . . . . . . . . . . . . . . . . . 22

7 supF (1|0) and supF (2|1) plotted against θ, m = 1 . . . . . . . . 23

8 supF (1|0) and supF (2|1) plotted against θ, m = 2 . . . . . . . . 24

9 supF (2) plotted against θ, m = 2 . . . . . . . . . . . . . . . . . 24

10 Monthly U.S. inflation πt - seasonally demeaned and adjusted

for a mean shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11 Rolling standard deviations for πt (window of 5 years) . . . . . . 29

12 F (λ1) (usual and Eicker-White standard errors) with critical

values for a search in the interval 15%-85% of the observations . 30

13 F1(1) and F2(1) (OLS and Eicker-White standard errors) with

critical values in search for a second break . . . . . . . . . . . . 31

List of Tables

1 Rejection of the null hypothesis of supF (1) for different values

of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Estimation of the order of integration . . . . . . . . . . . . . . . 27



Detecting Multiple Breaks in Long Memory
The case of U.S. inflation1

1 Introduction

Inflation persistence is an important issue for economists and especially for

central bankers. This is because the degree of inflation persistence influences

the extent to which central banks can control inflation. If inflation persistence

is high, a shock to the price level increases inflation for a long period. In a

worst case szenario, inflation might even follow the path of a random walk,

making it impossible for central banks to bring it under control. In the best

case, inflation is integrated of order zero. This implies that it reverts back to

its initial level soon after a shock has occurred.

Not only the level of inflation persistence is important in economic analysis

but also the question of whether and when it has changed. If the occurrence

and/or timing of a break are not accounted for properly, then inflation forecasts

and policy decisions might be misguided. Despite its importance, there is

still no agreement on the significance and dating of past changes in inflation

persistence in the U.S. and elsewhere. The diverse findings could be due to the

fact that many studies ignore the fractionally integrated nature of inflation.

1Earlier versions of this paper were presented at the 15th International Conference on
Computing in Economics and Finance (July 2009, Sydney) and the European Society Econo-
metric Meeting (August 2009, Barcelona). In particular, we thank Dieter Nautz for his
valuable comments. Financial support by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) through HA-3306/2-1 and by the Frankfurt Graduate Pro-
gram in Finance and Monetary Economics is gratefully acknowledged.
Uwe Hassler: Goethe-Universität Frankfurt, Grüneburgplatz 1, 60323 Frankfurt am Main,
Germany, Email: hassler@wiwi.uni-frankfurt.de
Barbara Meller: Deutsche Bundesbank, Wilhelm-Epstein-Str. 14, 60431 Frankfurt am Main,
Germany, Email: barbara.meller@bundesbank.de.
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This may lead to misspecification and incorrect test results. The early results

presented by Geweke and Porter-Hudak (1983) along with the international

evidence of Hassler and Wolters (1995) and Baillie, Chung, and Tieslau (1996),

have long since established that inflation exhibits long memory. In view of

this evidence, Kumar and Okimoto (2007) argue that tests for a change in

inflation persistence using unit root tests or autoregressive coefficients may lead

to incorrect conclusions. Their study is the first to use long memory techniques

to determine a change in inflation persistence. It applies a visual judgment

of rolling window estimates and analyzes two exogenously split subsamples.

We go beyond this approach and attempt not only to answer the question

of whether there has been a change in U.S. inflation persistence but also to

determine the data-driven timing and the number of breaks.

Our paper contributes to the existing literature by proposing and applying

a new procedure for determining the timing and the significance of breaks in the

degree of fractional integration. We are not aware of any other test allowing

for multiple breaks in long memory at unknown points in time. The test

builds on a modified version of the lag-augmented LM (Lagrange Multiplier)

test proposed by Demetrescu et al. (2008) where dummy variables account

for potential breaks. The F -type test statistic is computed from a regression

of differences under the null hypothesis. Therefore, only I(0) series enter the

test regression and estimators converge at the conventional
√
T rate, with T

denoting the sample size. Consequently, we can compare the maximum of a

sequence of F -statistics to critical values by Bai and Perron (1998, 2003b), see

also Andrews (1993) for the case of just one break. The test is able to detect

a break in the long memory parameter even relatively close to the boundaries

of the sample because it does not rely on a separate estimation of the long

memory parameter before and after potential breaks. Further, a sequence of

tests makes it possible to estimate the number of breaks.

Since Stock’s (2001) comment on the innovative study of Cogley and Sar-

gent (2001), his warning not to confuse a change in volatility with a change in
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persistence has been taken seriously. Fortunately, our test inherits the prop-

erties of the lag-augmented LM test developed by Demetrescu et al. (2008):

Using Eicker-White standard errors renders the test robust to unconditional

heteroskedasticity of a very general nature, see Kew and Harris (2009). In fact,

the variance process is essentially unrestricted, thus allowing for time-varying

volatility except for explosive and degenerate cases.

We apply our new tests to monthly U.S. inflation rates in the period 1966-

2008. While there is strong evidence for a break in long memory in October

1973, a second potential break in March 1980 turns out to be insignificant.

Prior to making the long memory analysis, a significant mean shift found in

1981 has been subtracted from the data. In addition, we observe a considerable

decline in volatility during the eighties.

The rest of the paper is organized as follows. In the section which follows,

we will discuss the model of fractional integration with a break in the order

of integration. Next, in section three, we obtain a new Chow-type test for

multiple breaks assuming the break dates are known a priori. Experimental

evidence is collected showing that the test works extremely well in finite sam-

ples even if the order of integration is misspecified under the null hypothesis

of no break. The fourth section is devoted to the case where the break points

are not known. We propose performing the test as a max-Chow test in line

with Andrews (1993) when testing against just one break, and generalizing

this approach for several breaks by adopting tests developed by Bai and Per-

ron (1998). The finite sample performance is studied through simulations. In

section five, we turn to the analysis of monthly U.S. inflation rates, allowing

for breaks in the mean as well as for breaks in the order of integration. Our

concluding remarks are made in the final section, while mathematical proofs

are contained in the Appendix.
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2 Breaks in long memory

As a starting point, let us recall how long memory is defined and interpreted

within a fractionally integrated framework. Under the null hypothesis of no

break the observed time series {yt} (t = 1, . . . , T ) is integrated of order d,

Δdyt = (1− L)dyt = et ∼ I(0) , (1)

where {et} is a stationary and invertible short memory process integrated of

order zero, I(0), and L denotes the conventional lag operator. Fractional

differences are defined through the usual binomial expansion,

(1− L)d =
∞∑
i=0

πi,dL
i , π0,d = 1, πi,d =

i− 1− d

i
πi−1,d , i ≥ 1 .

Similarly, one may expand the inverse filter with coefficients {ψi,d},

yt = (1− L)−det =
∞∑
i=0

ψi,det−i ,

which provides a well defined stationary process only for d < 0.5. If {et} has

a Wold representation in terms of zero mean white noise innovations {εt}, say
et =

∑∞
k=0 γkεt−k, then the impulse response coefficients {ci} of {yt} can be

obtained by convolution:

yt =
∞∑
i=0

ciεt−i .

Hassler and Kokoszka (2010) provide a necessary and sufficient condition which

{γk} has to obey for the impulse response coefficients to decay hyperbolically

in d. Under this rather weak condition it holds true that

ci ∼ c id−1 i.e. lim
i→∞

ci
id−1

= c , (2)
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where the constant c is defined in Hassler and Kokoszka (2010, Proposition

2.1). For d = 1, past innovations εt−i have a permanent effect on yt, while

for 0.5 ≤ d < 1 we observe nonstationarity with transitory shocks2, ci → 0 as

i → ∞. Finally, for 0 < d < 0.5 the impulse response coefficients {ci} die out

fast enough to be square-summable resulting in a stationary process, though

still dying out slowly enough that {cj} is not summable, which characterizes

long memory. In view of (2), d is interpreted as the degree of persistence or the

memory parameter measuring how slowly the effect of past shocks dies out.

As an alternative hypothesis to (1) we model m breaks constituting m+ 1

regimes,

yt = (1− L)−djet , t = Tj−1 + 1, . . . , Tj j = 1, . . . ,m+ 1 , (3)

with T0 = 0 and Tm+1 = T . The null hypothesis of no breaks becomes

H0 : d2 − d1 = · · · = dm+1 − dm = 0 .

In what follows we prefer the parameterization

dj = d+ θj−1 , j = 1, . . . ,m+ 1 , θ0 = 0 , (4)

such that θj denotes the shift relative to the first period occurring at the jth

break. The null hypothesis of interest may now be recast as

H0 : θ1 = · · · = θm = 0 . (5)

If a sudden shift in d is considered as too extreme in practice, there still may

2Such a feature is sometimes called “mean-reversion” although Phillips and Xiao (1999)
argue that this is a misnomer given the nonstationarity.
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be a “smooth transition”,3

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 +
t−1∑
i=0

ψi,d et−i , t = 1, . . . , T1

yT1
+

t−1−T1∑
i=0

ψi,d+θ1 et−i , t = T1 + 1, . . . , T2

...

yTm +
t−1−Tm∑

i=0

ψi,d+θm et−i , t = Tm + 1, . . . , T

, (6)

where ψi,d+θj are the coefficients from expanding (1 − L)−d−θj . In (6), only

realizations et after a break contribute to the slowly evolving long memory

after Tj.

As in Bai and Perron (1998), we assume that the potential break points are

determined by break fractions λj, i.e. Tj = [λjT ], where [·] denotes the integer
part. In fact, treating the break points as unknown parameters, it makes sense

to distinguish true break fractions λ0
j from those estimated from the data, λ̂j.

To reduce the notational burden we have ignored such a distinction in the

exposition so far. Further down we will assume that the true break points all

grow with the sample size, such that each subsample contains an increasing

number of observations.

Assumption 1 For the true break fractions it holds true that

0 = λ0
0 < λ0

1 < · · · < λ0
m < λ0

m+1 = 1 .

There exists a considerable body of literature that deals with a break from

an I(0) to an I(1) process (and vice versa), starting with tests pioneered by

3The model in (6) introduces a nonlinearity in Δdyt which is not present under the null
in (1). Baillie and Kapetanios (2007) and Baillie and Kapetanios (2008) found evidence
in favour of nonlinearity in addition to long memory in many economic and financial time
series. Contrary to (6), however, they instead assume a smooth transition autoregression
or a similar nonlinear I(0) model for Δdyt. An investigation of their tests under breaks in
memory is beyond the scope of the present paper.
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Kim (2000) and Busetti and Taylor (2004). If we wish to allow for d �= 0 under

the null, then d would have to be estimated first in order to apply such tests

to differenced data. However, it is not clear how the preliminary estimation

step would affect the subsequent test.

Some recent papers have proposed alternative procedures to detect breaks

in long memory at an unknown time. Referencing the least-squares principle,

Gil-Alana (2008) discusses a procedure allowing for breaks in the memory pa-

rameter and/or the mean and a linear time trend, but this technique does not

allow to establish significance. Sibbertsen and Kruse (2009) discuss a CUSUM

of squares-based test and find that the critical values depend on the unknown

parameter d. This requires a preliminary consistent estimation d̂ under H0;

such an estimate can be very volatile in smaller samples resulting in unreli-

able subsequent inference. Further, Ray and Tsay (2002) adopt a Bayesian

perspective and apply Markov Chain Monte Carlo methods to estimate the

posterior probability and size of a change in the order of integration. Finally,

Beran and Terrin (1996) suggest using non-overlapping subsamples to compute

(approximate) maximum likelihood [ML] estimates of d, d̂1, t = 1, . . . , T1, and

d̂2, t = T1 + 1, . . . , T , where T1 is varied systematically. The test statistic

builds on the maximum difference |d̂2 − d̂1|. The limiting distribution estab-

lished by Beran and Terrin (1999) coincides upon squaring with the one given

by Andrews (1993) as supremum of so-called tied-down Bessel processes. It

was derived under the sufficient assumption of
√
T -consistent estimators, see

Andrews (1993, Theorem 1). Consequently, Beran and Terrin (1996) work

with a parametric approximation to ML requiring a fully specified model for

the I(0) component {et}, see also Yamaguchi (2011), likewise working with

an approximation to ML. The asymptotic theory does not seem to hold for

semiparametric estimators converging with a slower rate than
√
T . This is

one further motivation for our proposal, since in the regression framework by

Demetrescu et al. (2008)
√
T -consistency is maintained, see also Proposition

2 below. The major advantage, however, of the regression approach is that it
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extends naturally to multiple breaks along the lines of Bai and Perron (1998).

3 Tests with known break points

In some cases, economists have an idea of the timing of a potential break point

in persistence or wish to know the impact of a certain event on persistence.

In the context of this paper, the inauguration of a new central bank governor

might be an event that induces a break in inflation persistence. Alternatively,

economists might be interested in the impact of a new inflation target or a new

monetary policy regime on inflation persistence. Therefore, the case of known

break fractions is an interesting starting point for which we will first derive

a test statistic from the Lagrange Multiplier [LM] principle under simplifying

assumptions before then turning to extensions that are relevant in practice.

3.1 Under iid assumptions

Working with finite samples of size T the theoretical difference operator from

(1) has to be adjusted. Given a finite past starting value with the first observa-

tion y1, the infinite expansion is truncated in practice. We call the truncated

differences Δd
t,y instead of Δdyt, and denote them by xt for brevity,

xt = Δd
t,y =

t−1∑
j=0

πj,dyt−j , t = 1, . . . , T . (7)

This amounts to assuming that past values of yt are zero for t ≤ 0. To derive

an LM test we will further assume absence of short memory.

Assumption 2 Let {et} = {εt}, t ∈ Z, from (3) be an iid series with mean 0

and variance σ2. The starting values are set equal to zero, yt = 0 for t ≤ 0.

To set up the score function in the Appendix we have to assume a Gaussian

pseudo-log-likelihood function, although Gaussianity is not required for the

8



limiting distribution below.

Proposition 1 Under (3) with (4), (5), and Assumption 2, the LM statistic

becomes - with true break points - Tj = [λ0
jT ]

LM =
6

σ4 π2

m∑
j=1

(
Tj+1∑

t=Tj+1

xtx
∗
t−1

)2

Tj+1 − Tj

, (8)

where

x∗
t−1 =

t−1∑
i=1

i−1xt−i (9)

with {xt} from (7)

Proof See Appendix.

Note that the summation in LM starts with the second sample after T1,

but the information of the first sample is contained in x∗
t−1. Along the lines

of Breitung and Hassler (2002, Theo. 1), LM can be approximated by an

F−statistic testing for ψ1 = · · · = ψm = 0 in the following regression estimated

by ordinary least squares [OLS],

xt =
m∑
j=1

ψ̂j x
∗
t−1 Dt(λ

0
j) + ε̂t, t = [λ0

1T ] + 1, . . . , T, (10)

with the step dummy variables (j = 1, . . . ,m)

Dt(λ
0
j) =

{
1 , t = [λ0

jT ] + 1, . . . , [λ0
j+1T ]

0 , else
. (11)

9



For the usual F−statistic it is straightforward to obtain (with SSR =
∑T

t=T1+1 ε̂
2
t )

T −m

mSSR

m∑
j=1

(
Tj+1∑

t=Tj+1

xtx
∗
t−1

)2

Tj+1∑
t=Tj+1

(
x∗
t−1

)2 =
LM

m
+ op(1) ,

since (Tj+1 − Tj)
−1

Tj+1∑
t=Tj+1

(
x∗
t−1

)2
converges to σ2π2/6 under Assumption 1.

The LM statistic testing for (5) assumes the true d to be known a priori,

which will rarely be the case in practice. Often, practitioners will estimate

the unknown d before testing for a break, which will result in fractional mis-

specification when computing the differences. Therefore, we now consider the

model

Δd+δyt = et , t = 1, . . . , T , (12)

where δ �= 0 is the degree of misspecification. Consequently, the differences

{xt} from (7) are not I(0) but rather I(δ), and hence serially correlated and

therefore correlated with {x∗
t−1}. Hence, it is easy to show for ψ̂j from (10) that

ψ̂j � 0, and that the LM statistic diverges as T increases. To compensate for

this effect we propose combining regression (10) with the original proposal of

Breitung and Hassler (2002).

Breitung and Hassler (2002) consider testing for the parameter value d

(assuming a priori that there is no break) within

xt = φ̂x∗
t−1 + ε̂t, t = 2, . . . , T. (13)

The test is consistent, and a violation of the specified order of integration

(δ �= 0) will be captured by φ̂ → E(xtx
∗
t−1). This is the motivation for merging

10



both regressions:

xt = φ̂x∗
t−1 +

m∑
j=1

ψ̂j x
∗
t−1 Dt(λ

0
j) + ε̂t, t = 2, . . . , T. (14)

A break in fractional integration is indicated by means of the usual F−statistic

F (λ0
1, . . . , λ

0
m) from (14) testing for the null

H0 : ψ1 = · · · = ψm = 0 . (15)

In case of no fractional misspecification, the following result can be established,

where “
d−→” stands for the convergence in distribution.

Proposition 2 Under the assumptions of Proposition 1 and Assumption 1 it

follows for the estimators from (14) that

√
T

(
φ̂ , ψ̂1 , . . . ψ̂m

)′ d−→ Nm+1 (0,Σ)

as T → ∞, where Σ has full rank and is given in the Appendix. Hence,

mF (λ0
1, . . . , λ

0
m)

d−→ χ2(m) ,

where χ2(m) denotes a chi-squared distribution with m degrees of freedom.

Proof See Appendix.

Remark 1 In practice, the variables entering (14) will have a mean different

from zero that has to be accounted for. Deterministic components have to be

extracted prior to the regression, see e.g. Robinson (1994), such that {xt} can

be considered as a zero mean variable.

Remark 2 Under the more realistic null model (12) instead of (1) the asymp-

totic distribution of the estimators from (14) is not obvious. Although local
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power results (for δ = c/
√
T ) are available from Tanaka (1999, Theorem 3.1)

or Demetrescu et al. (2008, Proposition 3), it is not clear how they generalize

for a fixed δ. Still, we expect that estimates φ̂ significantly different from 0

will account for (at least moderate) misspecification δ �= 0, such that χ2(m)

provides a valuable approximation for the multiple of the F−statistic under

the null of no break in fractional integration. Computer simulations reported

below support this conjecture.

To back Remark 2, we report some results from a small computer exercise

for the case m = 1, which corresponds to a classical Chow test applied to the

regression (14) (or the lag-augmented version (16) below). We simulated time

series with T = 1000 observations where the known potential break point is

located in the middle of the sample (λ0
1 = 0.5). The data is simulated with

standard normal iid innovations et = εt entering (12), such that the observ-

ables are integrated of order δ without break. The parameter δ measures the

degree of misspecification (assuming d = 0 and no break) . All experiments

rely on 1000 replications. We computed the size (at nominal 1%, 5%, and 10%

level) of the F−test F (λ0
1) from Proposition 2, i.e. from regression (14) with-

out lags. Figure 1 shows experimental sizes sufficiently close to the nominal

ones for the range of −0.4 ≤ δ ≤ 0.4. Only for δ = 1 did we observe size

distortions which would be unacceptable in practice. Hence, Figure 1 soundly

supports our conjecture in Remark 2 that a misspecification or estimation of

d in practice will leave the test valid. In fact, the size properties even improve

when working with the lag-augmented regression4. Figure 2 displays the rejec-

tion rates of F (λ0
1) from (16) when compared with quantiles from χ2(1). Even

for a misspecification as strong as δ = 1 the size distortion is negligible.

4This is not surprising since the lags capture some of the serial correlation of {xt} due
to misspecification.
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Figure 1. Rejection rates from (14) plotted against δ

Figure 2. Rejection rates from (16) plotted against δ
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3.2 Extensions

Assumption 2 is too restrictive for practical purposes and can be relaxed con-

siderably. We indicate generalizations without going into technical details and

omit formal proof, as our test statistic is related to statistics handled in the

papers referenced below. A valid set of conditions replacing Assumption 2 is

now adopted from Hassler, Rodrigues, and Rubia (2009).

Assumption 3 Let {et} from (3) be a stable autoregressive process of order

p,

et =

p∑
i=0

aiet−i + εt ,

driven by a strictly stationary and ergodic martingale difference series {εt}
with variance σ2 satisfying an eight-order cumulant condition.

Let us briefly comment on four generalizations going beyond the previous

section (Assumption 2).

First, Assumption 3 relaxes the assumption of independence and instead

assumes lack of correlation, maintaining that the innovations form a martingale

difference series. In case of conditional homoskedasticity, E(ε2t |εt−1, εt−2 , . . .) =

σ2, the asymptotic results of the previous section will not change, see, for ex-

ample, Robinson (1991). In case of conditional heteroskedasticty, however, it is

necessary to employ Eicker-White standard errors as advocated by Demetrescu

et al. (2008). With such robustified standard errors the limiting distribution

remains unchanged. More generally, this even holds true for unconditional

heteroskedasticty of very general form, E(ε2t ) = σ2
t , where the variance process

allows for smooth shifts as well as sudden breaks, see Kew and Harris (2009).

Second, upon fractional differencing one often observes additional short

memory correlation in {et}. To account for autocorrelation, we follow Deme-

trescu et al. (2008) and augment the test regression with lagged endogenous
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variables,5

xt = φ̂x∗
t−1 +

m∑
j=1

ψ̂j x
∗
t−1 Dt(λ

0
j) +

p∑
i=1

âi xt−i + ε̂t . (16)

In fact, Demetrescu et al. (2008) allow for more general processes {et} than in

Assumption 3. Their assumptions accommodate many short memory AR(∞)

processes that can be approximated with growing p. Since the regressors in

(16) are not orthogonal, Demetrescu et al. (2008) advise against data-driven

lag-length selection, as the model selection step affects subsequent inference

about ψj even asymptotically, see, for example, Leeb and Pötscher (2005).

Instead, they advocate choosing the lag length p in (16) by deterministically

following the rule of thumb

p =
[
4(T/100)1/4

]
, (17)

which was originally proposed by Schwert (1989). Although it lacks optimality

properties it is widely used in applied econometrics. Demetrescu, Hassler,

and Kuzin (2011) collected further experimental support for its usefulness in

practice in that it balances the trade-off between power and control of size

under H0.

Third, the starting value condition in Assumption 2 may be relaxed. Note

that the sequence of regressors {x∗
t−1} is only asymptotically stationary. With-

out zero starting values, the stationary, non-observable counterpart is x∗∗
t−1 =∑∞

j=1 j
−1Δdyt−j with yt being from (3) under H0. The difference between x∗∗

t−1

and x∗
t−1 becomes negligible with growing sample size, as already stressed by

Demetrescu et al. (2008) and more recently by Hassler et al. (2009). Hence,

the zero starting value assumption can be discarded without loss.

5The original LM tests by Robinson (1991) and Robinson (1994) in the time and frequency
domain do not feature such a simple and general correction for short memory; cf. also Tanaka
(1999).
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4 Tests with unknown break points

Let us now turn to the interesting situation of where the timing of potential

breaks in long memory is not known a priori. First, we adopt the tools by

Bai and Perron (1998) to determine the number of breaks and to test for their

significance. We then investigate their finite sample behavior in our context

through Monte Carlo experimentation.

4.1 Implementation

We stick to the regression equation (16), only that the break fractions are now

not known but varied over the sample. To underline this difference, we write

xt = φ̂x∗
t−1 +

m∑
j=1

ψ̂j x
∗
t−1 Dt(λj) +

p∑
i=1

âi xt−i + ε̂t , (18)

where the step dummies Dt(λj) are defined as in (11) but with λj and hence

Tj = [λjT ] varying. Under Assumption 3 all variables are (asymptotically)

stationary, and the stage is set to perform a multiple change analysis along

the lines of Bai and Perron (1998).

On top of the model Assumption 1 concerning the true break fractions,

we now assume that in the empirical aplication each sample segment has a

minimal length determined by a trimming parameter ε > 0:

Tj − Tj−1

T
≥ ε , j = 1, . . . ,m+ 1 .

The limiting distributions depend on the trimming, and Bai and Perron (1998)

provide critical values for ε = 0.05. Bai and Perron (2003a), however, recom-

mend the usage of ε = 0.15 in order to have better size properties in finite

samples. For the rest of the paper we will work with ε = 0.15 relying on cor-

responding critical values from response surface regressions by Bai and Perron
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(2003b).6 F−statistics F (λ1, . . . , λm) testing for ψ1 = · · · = ψm = 0 from (18)

are computed for all possible break points subject to

Λε = {(λ1, . . . , λm) : |λj − λj−1| ≥ ε , j = 1, . . . ,m+ 1} , λ0 = 0, λm+1 = 1 .

The maximum across all F−statistics is called supF (m). It can easily be deter-

mined by a grid search for moderate sample sizes and small m. For large values

of m, Bai and Perron (2003a) recommend the principle of dynamic program-

ming. Critical values are available up to m = 9. For m = 1, this corresponds

to a max-Chow test in line with Andrews (1993). The candidates for breaks

are the arguments maximizing supF (m) (or, as an equivalent, minimizing the

sum of squared residuals from (18)):

(λ̂1, . . . , λ̂m) = argmax
Λε

(F (λ1, . . . , λm)) .

In many cases, we do not want to specify a specific number (m) of potential

breaks a priori. We would prefer to determine m from the data. To this end,

Bai and Perron (1998) suggest a so-called double maximum test which we do

not investigate here. Instead, we adopt their third proposal to test for the

null hypothesis of 
 breaks versus the alternative of 
 + 1 changes building

on a test statistic supF (
 + 1|
). To determine the number of breaks, Bai

and Perron (2003a) advocate a sequence of tests, 0 vs. 1, 1 vs. 2, and so

on; if supF (
 + 1|
) is not significant for 
 ≥ m, then the number of breaks

is determined as m = 
. Obviously, supF (1|0) = supF (1). Generally, the

statistic supF (
+1|
) is computed in the following way: Determine the break

points assuming 
 breaks, (λ̂1, . . . , λ̂�). For each of the 
+1 segments, determine

the F−statistic testing for m = 1 break at unknown time in segment j, say

supFj(1). If the overall maximal value, maxj=1,...,�+1 supFj(1) is sufficiently

large, then the null of 
 breaks is rejected in favor of 
+1 breaks. The critical

6The critical values are available from an unpublished appendix to Bai and Perron (2003b)
posted on the homepage of Pierre Perron.
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values are again available from Bai and Perron (1998, 2003b).

4.2 Monte Carlo evidence

For this section, we simulated time series with T = 500 observations, based

on standard normal iid innovations {εt}. The true data generating process is

from (6) (with d = 0 without loss of generality). The differences, however,

are not computed with the true d; rather, we mimic the real life situation

where d is not known but estimated. The estimator is the so-called exact local

Whittle [ELW] estimator proposed by Shimotsu and Phillips (2005). With

the estimated d, the differences {xt} are constructed. F−statistics are from

regression (18) with p = 5 (according to (17)). We computed the size (at

nominal 1%, 5%, and 10% level) and power. All the rejection frequencies rely

on 1000 replications.

4.2.1 Case of one break

First, we focus on the situation where the data-generating process [DGP] has

m = 1 change. Table 1 shows the empirical size and power of the supF (1)

test, the mean of the estimated break fractions, their standard deviation and

their root mean squared error for different values of θ1 = θ in (3). Figure 3

visualizes the power and the size of the test for |θ1| = |θ| ≤ 0.4 and |θ| = 1.

The unknown break data is in the middle of the sample, λ0
1 = 0.5.

The simulation results in Table 1 correspond to expectations. The larger

the difference in the order of integration before and after the break, the easier

the break is detected and correctly allocated. In other words, the larger θ is in

absolute terms, the higher the rejection rate and the smaller the RMSE(λ̂1).

Overall, the performance of our test in a finite sample is satisfactory. The size

of the test is good: 1%, 5%, 10% corresponding to the critical values of the 1%,

5% and 10% significance level. The power is extremely high if the difference

in the long memory parameter before and after the break is greater than 0.3
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Table 1. Rejection of the null hypothesis of supF (1) for different values of θ

θ 1% CV 5% CV 10% CV λ̂1 σ(λ̂1) RMSE(λ̂1)

-1 100.0% 100.0% 100.0% 0.50 0.02 0.02
-0.4 97.0% 99.4% 99.7% 0.49 0.07 0.07
-0.3 73.9% 91.0% 95.4% 0.48 0.10 0.10
-0.2 29.0% 53.5% 67.2% 0.48 0.15 0.15
-0.1 5.1% 16.0% 25.9% 0.49 0.21 0.21

0 0.6% 4.5% 8.7% 0.49 0.24 0.24
0.1 4.9% 14.5% 22.8% 0.51 0.21 0.21
0.2 25.5% 48.4% 60.9% 0.51 0.15 0.16
0.3 66.8% 87.3% 93.8% 0.51 0.10 0.10
0.4 94.6% 98.6% 99.3% 0.51 0.06 0.06
1 100.0% 100.0% 100.0% 0.50 0.02 0.02

Notes: The table shows, for different values of θ, how often the null
hypothesis was rejected in the Monte Carlo study using the 1%, 5%
and 10% critical values. The table also reports the mean of the
estimated break fraction, its standard deviation and its root mean
squared error. Simulation is conducted under the basic set-up: T =
500, λ0

1 = 0.5, {εt} white noise.

Figure 3. supF (1) plotted against θ, m = 1
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Figure 4. supF (1): different break fractions and MA(1), nominal level of 5 %

in absolute terms. Even if the difference is only ±0.2, the power is still high.

Figure 3 depicts the symmetry of the rejection rates with respect to θ around

zero.

Next, we investigate the performance of the supF (1) test in the light of a

number of variations in the simulation set-up. In the left-hand graph of Figure

4, the 5%-rejection rates are plotted against θ for different values of the true

unknown break fraction: λ0
1 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. It is remarkable

how well breaks are detected where there are only 150 observations before or

after the break if θ > 0.2, that is for λ0
1 = 0.2 and λ0

1 = 1−0.2. Where θ ≤ 0.2,

and λ0
1 = 0.2 or λ0

1 = 1−0.2, the power is low. For all other cases, the power is

high and the RMSE(λ̂1) (not reported here) are comparable to those reported

in Table 1.7

The right-hand graph in Figure 4 contains the 5%-rejection rates plotted

against θ for three different moving average parameters. To allow for the short

memory of the time series {et} in (3), we consider an MA(1) process,

et = εt + b εt−1.

7Tables containing corresponding information as reported in Table 1 are available for all
variations to the simulation set-up reported in this subsection.
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Figure 5. supF (1): different sample sizes, nominal level of 5 %

The MA(1) coefficient b takes on the values 0.00 (white noise), 0.50 and 0.75.

Due to the lagged variables included in regression (18), the size and power of

the supF (1) are hardly affected, see Figure 4.

Figure 5 shows the power of the test for different sample sizes, T ∈{250, 500, 1000, 2000}.
Unsurprisingly, the power decreases as the sample size decreases. For T = 250,

the test is only of limited use but if T is greater, the test has good and even

excellent power properties.

Next, we present a number of rejection frequencies of supF (2) testing

against 2 breaks where the true DGP only has one change. The results from

Figure 6 can be compared with supF (1) from Figure 3. In particular, at the

10 % level we observe that supF (2) is mildly conservative under the null hy-

pothesis. Consequently, it displays less power than supF (1), which does not

come at a surprise since supF (1) specifies the number of (potential) breaks

correctly. Further, we present results for sequential testing under one break in

Figure 7. The left-hand graph contains rejection frequencies for F (1|0), which
coincide of course with F (1) from Figure 3. The right-hand graph in Figure

7 shows the empirical sizes of supF (2|1) at conventional levels. Given one

break, supF (2|1) tends to be mildly conservative; only in case of θ = 1, are
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Figure 6. supF (2) plotted against θ, m = 1

the experimental sizes above the nominal ones.

We briefly summarize the findings for m = 1. The power of the supF (1)

test depends especially on the difference in the order of integration before

and after the break. If the difference is larger than 0.3, the power is very

good. Furthermore, the power is almost unaffected by variations in the true

break fraction or the value of the moving average coefficient in the case of

MA(1) short memory. The power of the test is good for samples with at least

500 observations. Its size properties are quite satisfactory throughout all the

simulation set-ups in that the power does not come at the price of a too liberal

test.

Testing against two breaks we observe that supF (2) and supF (2|1) are

both mildly conservative in that the experimental size tends to be smaller

than the nominal one.

4.2.2 Case of two breaks

The only difference to the previous experiments is that the DGP in this section

has two breaks (m = 2). The true break fractions are λ0
1 = 1/3 and λ0

2 = 2/3.
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Figure 7. supF (1|0) and supF (2|1) plotted against θ, m = 1

We consider the following scheme of breaks

d1 = 0 , d2 = θ , d3 = 0 ,

which means in the notation of (4): θ1 = θ and θ2 = 0.

The size and power results of supF (1) are given in the left-hand graph of

Figure 8. Clearly, the power curve is not as steep as in Figure 3 because in

the present DGP the second change returns to the original level.

The size and power of supF (2) and supF (2|1) are depicted in Figures 9 and

8 (right-hand graph), respectively. While the size is very similar, we observe

that supF (2) outperforms supF (2|1) in terms of power.

5 U.S. inflation

We use the monthly U.S. consumer price index (CPI) collected by the Orga-

nization for Economic Cooperation and Development. The sample runs from

January 1966 until June 2008, yielding 509 observations. Inflation is computed

as the annualized monthly change in CPI: pt = 1200(log(CPIt)−log(CPIt−1)).
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Figure 8. supF (1|0) and supF (2|1) plotted against θ, m = 2

Figure 9. supF (2) plotted against θ, m = 2
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5.1 Preliminary analysis

It has been argued that long memory may be spurious and caused by breaks

in the mean or by regime shifts. In particular, Lobato and Savin (1998) raised

the question of whether the long memory in inflation is due to deterministic

shifts. See also Sibbertsen (2004) for a corresponding survey paper. In order

to avoid any confusion between mean shifts and long memory, we allow for a

shift in the overall mean while seasonally demeaning at the same time. The

demeaned inflation rate becomes

yt =

{
pt − μ̂1(τ0)− seast , t = 1, . . . , [τ0 T ]

pt − μ̂2(τ0)− seast , t = [τ0 T ] + 1, . . . , T

where τ0 is the unknown, potential break fraction, μ̂1(τ0) (μ̂2(τ0)) is the esti-

mated mean before (after) the break point and seast is the effect of seasonality.
8

In order to find τ0, we adopt an approach developed by Hsu (2005) who mod-

ified the local Whittle [LW] estimator for d, discussed by Robinson (1995). In

the same way we modify the more refined exact local Whittle [ELW] estimator

by Shimotsu and Phillips (2005). In a grid search over τ ∈ [0.15, 0.85], d is

estimated while accounting for a mean shift and seasonality at the same time.

The modified criterion function is

R(d; τ) = log(G(d; τ))− 2d

B

B∑
i=1

log(λi)

with

G(d; τ) =
1

B

B∑
i=1

IΔdy(λi; τ) , (19)

8Seasonality is accounted for by twelve monthly dummies (dumseas), the break in mean
is accounted for by a mean dummy (dumμ) taking on the value one before and the value 0
after [τ0 T ]. The variable yt is the residual of the regression of pt on dumμ and dumseas.
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where λi are harmonic frequencies λi = 2πi/T , i = 1, . . . , B, and the band-

width B is usually chosen according to

B = T α , 0.5 < α < 0.8 .

Further, IΔdy(λi; τ) denotes the periodogram evaluated from Δdyt for a given

mean shift fraction τ . Denote the conditional ELW estimator obtained for

given τ in a first minimization as d̂(τ), while a second optimization step is

necessary to find the change-point estimator τ̂ :

τ̂ = arg min
τ ∈ [0.15,0.85]

R(d̂(τ); τ) .

The modified ELW estimator for the memory parameter d is d̂(τ̂). Since the

estimator τ̂ converges to the true normalized change point τ0 (see Lavielle and

Ludeña, 2000), Hsu (2005) argues that the limiting distribution is not affected.

From Shimotsu and Phillips (2005) we conclude

2
√
B (d̂(τ̂)− d)

d→ N (0, 1) , (20)

which allows to compute approximate confidence intervals.

Next, we wish to test whether the mean shift is significant, H0 : μ1 = μ2,

using a test statistic proposed by Hidalgo and Robinson (1996):

HR = T d−0.5 μ̂1(τ0)− μ̂2(τ0)√
Ω

∼ N (0, 1) ,

where Ω depends on G(d; τ). To obtain a feasible version of the test statistic,

the unknown parameters are replaced by the estimators τ̂ and d̂(τ̂).

We repeat the empirical analysis for different values of the bandwidth:

B ∈ {T 0.60, T 0.65, T 0.70, T 0.75}. The candidate for the break fraction τ0 lies in

the interval 1981/8 to 1982/7, depending on the bandwidth B, see Table 2.

For all choices of bandwidth, the mean shift is clearly significant according to
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Table 2. Estimation of the order of integration

B T 0.60 = 42 T 0.65 = 57 T 0.70 = 78 T 0.75 = 107

d̂(τ̂) 0.44 0.34 0.35 0.29
CI [0.31, 0.57] [0.23, 0.45] [0.25, 0.44] [0.21, 0.37]

τ̂ T 1981/8 1981/10 1981/10 1982/7
HR 2.07 2.65 2.61 3.07

Notes: d̂(τ̂) is the modified ELW estimate of d of the seasonally adjusted
inflation which is demeaned accounting for one mean shift. The band-
width is denoted by m. The 90% confidence interval of the estimation
of d is given in parentheses. Furthermore, the date of the mean shift
and the HR-statistic is given. The statistics correspond to the most
appropriate choice of B are highlighted.

the HR statistic.

Table 2 reports the estimates of the order of integration. Needless to say,

the appropriate choice of B is of crucial importance. If B is chosen too small,

the estimate has a great standard deviation and might be imprecise. By con-

trast, choosing B too large results in a bias due to short memory components.

Our estimate of d seems to stabilize for B = T 0.65 and B = T 0.70 while the

estimate for B = T 0.75 seems to exhibit a small downward bias. Therefore,

the choice B = T 0.70 maximizes the number of observations that do not lead

to a bias: the results corresponding to this choice of B are highlighted below.

The order of integration of inflation in the whole sample period is 0.35, with

B = T 0.70, implying that inflation is stationary.

We investigate whether there is a second break in the mean. To this end,

we proceeded sequentially, subtracting the first mean-shift from the series and

searching for a second mean-shift.9 The second break is insignificant, even at

the 10% significance level. For this reason, we only account for one shift in

the mean. In Figure 10 we plot inflation adjusted for seasonal means and the

9As an alternative to the sequential procedure we also allow for two mean shifts simul-
taneously and obtain similar break points and p-values.
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Figure 10. Monthly U.S. inflation πt - seasonally demeaned and adjusted for
a mean shift

break in the overall mean, called πt.

Next, we visually investigate whether there has been a change in variance

by inspecting the rolling standard deviations of inflation st(π) for πt (5 years

window), depicted in Figure 11. We observe that the eighties were character-

ized by a reduction in volatility. To account for this variance heterogeneity,

we report Eicker-White standard errors in the next section as advocated by

Demetrescu et al. (2008) and Kew and Harris (2009).

5.2 Testing against changes in inflation persistence

We now turn to the estimation of a change in persistence in U.S. inflation

rates. As a first step, we apply the difference filter to the adjusted inflation

rates (πt):

xt = (1− L)d̂πt,

where d̂ = 0.35 is the estimated order of integration of the whole sample as

reported in Table 2. Note that the precise value of d used for differencing

is not of major importance since we observed a considerable robustness with

respect to misspecification, see Remark 2. Next, we estimate regression (18)
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Figure 11. Rolling standard deviations for πt (window of 5 years)

with m = 1 using p =
[
4(509/100)1/4

]
= 6 lags, and compute a sequence

of F−statistics, F (λ1), see Figure 12. Their maximum values, supF (1), are

clearly significant, irrespective of whether F (λ1) is computed using usual or

Eicker-White standard errors. Both versions of the test detect the break in

October 1973.

Similarly, we observe that supF (2) is significant at the 1% level: the criti-

cal value is 9.36 while supF (2) takes on the values 14.86 and 10.14 with usual

standard errors and with Eicker-White robustified standard errors, respec-

tively. Again, the first break is found in October 1973, while the second one is

located in March 1980. Note, that supF (1) is larger than supF (2), suggesting

that there is only one break.10

To verify whether there is a second change in persistence or not, we apply

the supF (2|1) test. In Figure 13 we present F1(1) and F2(1) computed for the

segments before and after October 1973, respectively. The maximum thereof,

supF (2|1), found in June 1980, is below 8.51 and hence not significant at the

10Bai and Perron (1998) also investigate a double maximum test, not considered in this
paper. The number of break points is found by taking the maximum over all supF (m) test
statistics, where m = 1, 2, ..., 5. This maximum value is then compared to critical values
in order to determine the significance. This suggests that in our analysis there is only one
break point.
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Figure 12. F (λ1) (usual and Eicker-White standard errors) with critical values
for a search in the interval 15%-85% of the observations

10 % level, irrespective of whether robust Eicker-White standard errors are

used or not.

One virtue of our approach is that it can find a change in d even with

few -at least 150- observations before or after the break.11 On this account,

we were able to detect an early break in persistence taking place in 1973.

Moreover, we can deduce the direction of the change in persistence from the

sign of ψ̂. A positive coefficient indicates a decrease in persistence after a break,

while a negative coefficient indicates an increase, where the dummy variable

Dt(λ) is defined as in (11).12 In our estimation, ψ̂ is positive, leading us to

the conclusion that inflation persistence has increased since 1973. Naturally,

we would like to know the order of integration before and after the break.

However, the short time period does not allow us to reliably estimate the

11As becomes evident in Figure 4, the power of the test increases with the difference in
the order of integration before and after the break. Another factor is the total number of
observations in the whole sample, see Figure 5. If the difference in the order of integration
is at least 0.3 and the sample size is 500, the test has a rejection rate of more than 80% if
there are at least 150 observations left before and after the break.

12This interpretation is inferred directly from Proposition 3 in Demetrescu et al. (2008)
and the derivations of this paper.
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Figure 13. F1(1) and F2(1) (OLS and Eicker-White standard errors) with
critical values in search for a second break

order of integration before the break.13

The order of integration after 1973/10 can be estimated more reliably.

The point estimate is 0.27 with a 90% confidence interval of [0.15, 0.39], for

B = T 0.70. It is worth noting that this confidence interval overlaps with

the confidence interval of d estimated over the whole sample. This is not

surprising as the rather long second subsample starting in 1973/10 dominates

the estimation results obtained for the whole sample.

To sum up, we conclude that inflation persistence increased after 1973 and

stayed constant thereafter. The estimate of d is about 0.27 after the break. By

looking at the confidence intervals, we come to the conclusion that inflation

neither has short memory (d ≤ 0) nor is nonstationary (d ≥ 0.5). In addition

to the break in persistence, we have evidence for a break in the mean and a

trending behavior of the variance.

13The order of integration was estimated to be 0.22 for B = T 0.70 with a 90% confidence
interval [0.01, 0.43]. However, the estimation depends heavily on single observations.
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6 Concluding remarks

We proposed new tests against breaks in the order of fractional integration,

which are built on the change-test methodology applied to the lag-augmented

LM regression by Demetrescu et al. (2008). The procedures are sup-F -tests,

specifically following Andrews (1993) in the case of one potential break and

more generally following Bai and Perron (1998). In particular, the latter

authors allow for a sequence of tests to determine the unknown number of

changes. Monte Carlo simulations indicate that the power of the tests essen-

tially depends on the size of the changes. Breaks relatively close to the end or

beginning of the sample can be detected with remarkable reliability.

Using the new tools, we investigate whether inflation persistence, i.e. the

order of integration of inflation, in the U.S. has changed. In order to forestall

spuriously high orders of integration, we adjust inflation rates by accounting

for a shift in the mean where the break point is determined endogenously.

Testing adjusted inflation, we find an increase in its persistence in October

1973. A second potential break in March 1980 is not significant at the 10%

level.

Many studies measure inflation persistence as the largest autoregressive

root [LARR] or as the sum of autoregressive coefficients [SARC]. Those mea-

sures cannot discriminate between different degrees of long-run persistence, see

Kumar and Okimoto (2007) and Gadea and Mayoral (2006). Therefore, it is

not surprising that most of these studies do not find evidence for a break in per-

sistence. In contrast, most studies using the order of integration as a measure

of persistence, which in a wider sense also includes the studies of Cogley and

Sargent (2001) and Cogley and Sargent (2005), find time-varying persistence.

The studies find breaks taking place in the early 1970s, the early 1980s and/or

the early 1990s. Employing Eicker-White standard errors, our tests are robust

to the apparent time-varying inflation volatility (see, for example, Stock and

Watson (2007) or Pivetta and Reis (2007) for evidence). We are led to the

conclusion that there is only one change in persistence and this took place in

32



1973. This break date coincides with the end of the Bretton Woods system,

a sharp increase in oil prices and the start of an episode of high inflation.14

Breaks in the eighties, documented in the literature, might be attributed to

mean shifts or the decrease in inflation volatility.

Appendix

Proof of Proposition 1

Under Gaussianity and Assumption 2 the pseudo-log-likelihood function be-

comes

L(θ1, . . . , θm; d, σ2) = −T

2
log(2πσ2)− 1

2σ2

T∑
t=1

ε2t ,

with εt = Δd+θj−1 for t = Tj−1 + 1, . . . , Tj using (3) and (4), or εt = Δd+θj for

t = Tj + 1, . . . , Tj+1, such that (j = 1, . . . ,m)

∂εt
∂θj

=

{
(log(1− L)) (1− L)d+θjyt , t = Tj + 1, . . . , Tj+1

0 else
.

With log(1 − L) = −∑∞
j=1 j

−1Lj we obtain for the score vector evaluated

under the null (where Δyt = εt)

S =

(
∂L
∂θj

∣∣∣∣
θj=0

)
j=1,...,m

=

⎛⎝ 1

σ2

Tj+1∑
t=Tj+1

εtε
∗∗
t−1

⎞⎠
j=1,...,m

with ε∗∗t−1 =
∞∑
j=1

j−1εt−j ,

where {ε∗∗t−1} is a stationary process with variance

σ2
∗∗ = Var

(
ε∗∗t−1

)
= σ2

∞∑
j=1

j−2 = σ2π
2

6
.

14The events are not described in order to indicate causality but rather in order to integrate
the break date into its historical background.
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To construct the LM statistic we compute the Fisher information as the outer

product of gradients,

I = E (S S ′) =
σ2
∗∗
σ2

diag (T2 − T1, . . . , Tm+1 − Tm) .

Hence, we obtain

S ′I−1S =
1

σ2∗∗σ2

m∑
j=1

(
Tj+1∑

t=Tj+1

xtx
∗
t−1

)2

Tj+1 − Tj

.

Since the LM statistic is evaluated under H0, we replace εt with Δdyt. Given

the starting value assumption in Assumption 2, this coincides with xt defined

in (7). Consequently, ε∗∗t−1 equals x∗
t−1 from (9), and the LM statistic becomes

LM from (8) as required. �

Proof of Proposition 2

Write the regression equation (14) in obvious matrix notation, y = X β̂ + ε̂,

with

y′ = (x2, . . . , xT ) ,

β̂′ = (φ̂, ψ̂1, . . . , ψ̂m) ,

and X containing (x∗
1, . . . , x

∗
T−1)

′ as the first column, while the other columns

contain zeros and segments of (x∗
Tj
, . . . , x∗

Tj+1−1)
′. Under Assumption 2 we

have xt = εt ∼ iid(0, σ2). The required limiting distributions can be obtained

as set out by Robinson (1991) or Tanaka (1999), see also Hassler and Breitung

(2006, Lemma A):

X ′X
T

p→ σ2 π
2

6
Λ0
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where
p→ stands for convergence in probability, and

Λ0 =

(
1 (λ0)′

λ0 diag(λ0
2 − λ0

1, . . . , λ
0
m+1 − λ0

m)

)
, (λ0)′ = (λ0

2 − λ0
1, . . . , λ

0
m+1 − λ0

m) ,

and

X ′y√
T

d→ Nm+1

⎛⎜⎜⎝
⎛⎜⎜⎝

0
...

0

⎞⎟⎟⎠ , σ4π
2

6
Λ0

⎞⎟⎟⎠ .

Consequently,
√
T β̂ follows a limiting normal distribution with Σ = 6

π2 (Λ
0)

−1
.

Define the m× (m+ 1) matrix R with R β̂ = (ψ̂1, . . . , ψ̂m)
′. The F−statistic

becomes

F (λ0
1, . . . , λ

0
m) =

T −m− 1

m

β̂′R′ (R (X ′X)−1R′)−1
R β̂

ε̂′ε
,

and its limiting distribution follows the usual way. �
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