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Non-technical summary

Up to now, specifying and estimating a dynamic stochastic general equilibrium model
with both reasonable asset pricing and macroeconomic implications is a challenging task.
In recent years, considerable advances have been made by investigating novel and clev-
erly crafted model specifications to overcome the common problems. In particular, it
has been shown that, e.g., including frictions on the labor market, modifications regard-
ing the households’ preferences, or examining the consequences of well-chosen tail risk
distributions can be helpful in this respect.

However, even if a model is crafted for the purpose of jointly delivering macroeconomic
as well as asset pricing implications, estimation of such models may not necessarily lead to
parameters allowing to deliver on both. We therefore propose a complementary strategy.
We suggest constraining the estimation to deliver a particular posterior distribution for
some implied variable of interest, such as the Sharpe ratio, i.e., the market price for risk.
To demonstrate our methodology, we apply it to a model specification proposed by Uhlig
(2007). This model can deliver on some key macroeconomic and asset pricing observations
for particular parameter configurations. We show that the application of our methodology
produces a quantitative model with both reasonable asset-pricing as well as business-cycle
implications.



Nicht-technische Zusammenfassung

Bis heute fällt es der ökonomischen Literatur schwer, dynamische stochastische Gleich-
gewichtsmodelle zu spezifizieren und zu schätzen, die sowohl die Eigenschaften wichtiger
makroökonomischer Zusammenhänge replizieren als auch wichtige stilisierte Fakten von
Vermögenspreisen widerspiegeln können. In den letzten Jahren sind wichtige Fortschritte
gemacht worden, und durch sorgfältigere Formulierungen der Modelle konnten eine Reihe
von Ungereimtheiten überwunden werden. So hat sich z.B. gezeigt, dass die Modellierung
von Friktionen auf Arbeitsmärkten, Modifikationen der Nutzenfunktionen der Haushalte
oder die Betrachtung spezifischer Risikoverteilungen hier helfen können.

Allerdings führt die sorgfältigere Spezifizierung der Modelle nicht notwendigerweise
dazu, dass eine Schätzung dieser letztendlich zu zufriedenstellenden Ergebnissen führt.
Wir verfolgen in diesem Papier eine ergänzende Strategie: Die Modellschätzungen werden
insofern beschränkt, als dass für ausgewählte stilisierte Fakten, z.B. die Sharpe-Ratio,
bestimmte posteriore Verteilungen impliziert werden. Diese Methode wird auf das Mo-
dell von Uhlig (2007) angewendet, das grundsätzlich in der Lage ist bei bestimmten
Parameterkonfigurationen sowohl stilisierte Fakten von Konjunkturzyklen als auch von
Vermögenspreisen zu erklären. Tatsächlich zeigt sich, dass unsere Methode in diesem Fall
ein quantitatives Modell liefert, welches Vermögenspreise und Konjunkturzyklen in glei-
chem Maße erklären kann.
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1 Introduction

This paper presents a novel Bayesian method for estimating dynamic stochastic general
equilibrium (DSGE) models subject to constraints on the posterior distribution of the
implied Sharpe ratio. Starting from an initial, unconstrained prior, we construct a con-
strained prior so that the resulting implied posterior for some variable of interest (the
Sharpe-ratio, for instance) coincides with some a priori chosen distribution, and such that
the constrained prior is proportional to the original prior, conditional on that variable.
We apply our methodology to a DSGE model with habit formation in consumption and
leisure, real wage rigidities, and capital adjustment costs. We use a density centered at
the estimated Sharpe ratio to construct our constraint. We show that the estimation sub-
ject to this constraint produces a quantitative model with both reasonable asset pricing
as well as business cycle implications.

It can be challenging to specify and estimate a dynamic stochastic general equilibrium
(DSGE) model with reasonable asset pricing implications. Considerable advances have
been made in recent years by investigating novel and cleverly crafted model specifications
or by examining the consequences of well-chosen tail risk distributions. Examples of
examining tail risk distributions and disaster risks include Barro (2006), Gabaix (2012)
and Gourio (2012). Examples for investigating well-crafted model specifications often
fall in one of two branches. One branch of the literature exploits Epstein-Zin preference
specifications developed by Epstein and Zin (1989, 1991), and includes Tallarini (2000),
Rudebusch and Swanson (2012) or Guvenen (2009). The additional role of long-run
risk, see e.g. Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008), is exploited
in Piazzesi and Schneider (2007), for example. The other branch of the literature has
pursued habit formation specifications, see e.g. Abel (1990), Ljungqvist and Uhlig (2000),
Campbell and Cochrane (1999), Boldrin, Christiano, and Fisher (2001) and Uhlig (2007).
For a variety of reasons, it appears that the latter branch raises more challenges than
either an Epstein-Zin-based approach or an approach based on disaster risks.

Even if a model is cleverly crafted for the purpose of jointly delivering macroeconomic
as well as asset pricing implications, estimation of such models may not necessarily lead
to parameters allowing to deliver on both. In essence, the practical problem appears
to boil down to having just a single observation on the size of the risk premium, while
there are many observations helping to identify parameters crucial for the macroeconomic
dynamics of the model.

We therefore propose a complementary strategy. We propose to constrain the esti-
mation to deliver a particular posterior distribution for some implied variable of interest,
such as the Sharpe ratio, the market price for risk. Our procedure adds to the existing
literature on endogenous prior choice for Bayesian estimation of DSGE models, see e.g.
Del Negro and Schorfheide (2008) and Christiano, Trabandt, and Walentin (2011).

To demonstrate our methodology and to set ourselves a bit of a challenge, we pur-
posely apply it to a habit-formation model specification, extending Uhlig (2007) to include
additional shocks. While that model can deliver on some key macroeconomic and asset
pricing observations for particular parameter configurations, as shown in Uhlig (2007),
an estimated version is desirable to obtain a best fit, for assessing uncertainty and for
model comparisons. We solve the model around its stochastic steady state rather than
around its deterministic steady state: this may be important at the considerable level of
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risk premia which we seek to match, see also Coeurdacier, Rey, and Winant (2011). The
constrained estimation features a high degree of risk aversion with respect to short-term
fluctuations in consumption and thereby a low degree of intertemporal substitution, in
contrast to the suggestions by, say, Hall (1988) or Vissing-Jørgensen (2002). This is not
surprising and is a result of employing a habit-formation model and seeking to match risk
premia on asset markets.

We show that our implementation of the unconstrained estimation1 fails to deliver
reasonable asset pricing implications, while the constrained estimation delivers both rea-
sonable asset pricing as well as business cycle implications. In essence, the estimation
procedure seeks the least costly compromise between the two. We find that it does so by
increasing the persistence of the response of the investment-to-output ratio, using the cap-
ital stock as a long-run buffer to smooth out short-term consumption fluctuations. While
the effect on the estimated volatility of the shocks as well as the HP-filtered macroeco-
nomic moments of the model is negligible for practical purposes, there is a noticeable
difference in the unconditional (read: long-run) volatility of the investment-output ratio.
Put differently, the estimated habit formation model turns short-run shocks into long-run
risks, pointing to an interesting connection to the long-run risk literature for Epstein-Zin
preferences, see Bansal and Yaron (2004) and Hansen et al. (2008). The estimates sug-
gest that labor rigidities like the labor wedge and a small Frisch elasticity rather than
external habits in consumption play an important role for producing our results. These
insights are in line with Uhlig (2007), who has shown that inelasticity of labor supply, a
smaller elasticity of leisure substitution, and wage rigidities can help to explain the risk
premium. Remarkably, the volatility of the risk-free return is similar in size to what is
observed in the data and the ‘risk-free rate puzzle’ (Weil, 1989) is avoided. The Bayesian
posterior odds ratio between the unconstrained and the constrained model is around 12,
demonstrating that the constrained model is not “obviously false” from the unconstrained
perspective.

Of course, our procedure has limitations. If the model does not allow to get reasonably
close to matching macroeconomic as well as asset pricing implications regardless of the
parameter configurations, our estimation procedure will still find the “best compromise”,
but that compromise may not be appealing. In order to develop insights into these limits,
we therefore also apply our procedure to a plain-vanilla real business cycle model with
capital adjustment costs, essentially stripping away the habit-formation features in the
benchmark model described above. For numerical reasons, we target a Sharpe ratio half
as large as the Sharpe ratio used in our benchmark exercise above. We now find that the
constrained estimation procedure needs to set the investment-specific shock as well as the
labor supply shock four to six times as high as the unconstrained procedure, and that
there is now considerably more long-run volatility in both the investment-to-output ratio
as well as in employment. The Bayesian posterior odds ratio is very high, making the
constrained model look non-credible from the unconstrained perspective. Remarkably,
though, the HP-filtered macroeconomic moments still look reasonable, and the Sharpe
ratio is half as large as in the data. Put differently, while we would rather recommend the

1We recognize that one could alternatively try to add a sufficient number of financial observations as
data during the estimation procedure, until the model also delivers on the financial implications. One
way to understand our procedure is that it provides a faster and perhaps more transparent method to
implement this.
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model from our benchmark constrained-estimation exercise for the purpose of matching
both macroeconomic and asset pricing facts, this small scale model does not do “too
badly” and may be suitable for teaching purposes, for example. We believe that it would
have been more difficult to find this specification without the help of our estimation
procedure.

The paper is organized as follows. Section 2 introduces our methodology. Section 3
introduces the model, with section 4 providing the analysis regarding the asset pricing
implications and the approximation around the stochastic steady state. Section 5 presents
the estimation methodology, characterizes the data, and describes the choice of the uncon-
strained prior and the choice for the constraint. Section 6 presents the estimation results
and reports the asset pricing and business cycle characteristics of the model. Section 7
examines our procedure when applied to a simpler real business cycle model with capital
adjustment costs, but without habit formation. Section 8 concludes the paper. Several
appendices provide auxiliary results.

2 Constructing the Constrained Prior

Our methodology can broadly be understood as a Bayesian estimation subject to a con-
straint. In our application, we shall estimate a dynamic stochastic general equilibrium
(DSGE) model, using standard prior specifications. As is well known, many estimated
DSGE models typically have poor asset pricing implications, unless designed otherwise
or — and that is the perspective in this paper — unless the estimation pays particular
attention to these aspects. From the perspective of model applications, it is interesting
to know the properties of the model, if the estimation procedure is constrained to deliver
certain asset pricing implications. In our specific example, we seek to constrain our prior
to deliver particular implications regarding the Sharpe ratio, i.e. the market price for
risk. A standard estimation-subject-to-constraints procedure would impose some equal-
ity or inequality constraint on the parameter of interest during estimation. We extend
this procedure by imposing a particular posterior shape on a variable of interest.

From a methodological perspective, one might fear that our procedure amounts to
“using the data twice”. However, the choice of the imposed implied posterior for the vari-
able of interest is entirely up to the researcher employing this methodology and simply a
generalization of textbook estimation-subject-to-constraint. From a pure methodological
perspective, it should not matter much, whether such constraints are imposed “a priori”
in order to express strong beliefs about the properties of some parameter, or “a poste-
riori” in order to learn more about certain features of a model. From the perspective
of econometrics as conversation and rhetoric, see McCloskey (1983), we view this as a
practical and appealing way to explore and communicate model properties within a range
of specifications of interest, rather than being forced to examine model estimates, that
deliver non-credible implications for key variables. For these practical reasons, one may
then wish to obtain a data-driven implied posterior for the variable of interest. While
one does then use the data twice, the risk of misleading posterior probabilities should be
small, if the variable of interest typically is not estimated to be within a reasonable range,
if the data was used only once with a standard prior specification.

Since the strategy can be applied more generally than just for the Sharpe ratio, we
shall describe it in general terms. Suppose one wishes to impose the constraint (or a priori

3



belief) that a value ω, which can be expressed as a function of the parameters ω = ω(θ),
lies within bounds a and b. A straightforward modification of some unconstrained prior
would then be calculated by constraining its domain to this set,

p (θ|X) ∝
{
p (θ) p (X|θ) if ω (θ) ∈ Q
0 if ω (θ) 6∈Q (1)

where Q ≡ {θ : a ≤ ω (θ) ≤ b} (2)

This, of course, is a straightforward application of Bayesian estimation subject to a con-
straint.

We wish to refine this approach for several reasons. First, since the model will typically
favor parameters with a low Sharpe ratio, the approach above will lead to a pile-up of the
constrained parameters at the lower bound a: the results will then be rather sensitive to
specifying that lower bound. Second, our a priori beliefs regarding the Sharpe ratio are
more appropriately formulated as a probability distribution, or, more precisely, given by
an uncertain estimate of the Sharpe ratio, given observed data, rather than imposing it
to lie within some interval. Finally, the procedure becomes both more flexible and more
reasonable. We argue that it is more appealing to learn the implications of the model,
if the Sharpe ratio is constrained to be high with considerable probability, rather than
imposing it to be within some interval.

Consequently, we use the following approach. The model generates data X: the
particular observation at hand is the realization X̄. We start from some “unconstrained
prior” p(θ) in the parameter vector θ. We then calculate a “constrained prior” p̃(θ), such
that the following two properties hold:

P1: the implied posterior for the Sharpe ratio ω = ω(θ) coincides with some a priori
given distribution F (ω), with density f(ω) at the given observation X̄.

P2: the constrained prior is proportional to the unconstrained prior, given any ω.

This approach should be viewed as a modification or refinement of the standard approach
of Bayesian estimation subject to a constraint, described above. Rather than impos-
ing an inequality constraint on a parameter or function of the parameters, we impose a
probability density.

More formally, we start from

1. a proper prior p(θ), which we call the “unconstrained prior”.

2. a likelihood function `(X | θ).

3. A mapping Ω(θ) = ω ∈ IR.

4. A differentiable probability distribution function F (ω) on IR, i.e. an increasing
function with limω→−∞ F (ω) = 0, limω→∞ F (ω) = 1. Define the probability density
f(ω) = F ′(ω).

Given any data X, calculate the implied unconstrained posterior for ω as well as its
density,

G(ω | X) =

∫
θ|Ω(θ)≤ω

p(θ | X)dθ (3)
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g(ω | X) = G′(ω | X) (4)

Define the “transformation function”

h(ω) =
f(ω)

g(ω | X̄)
(5)

Note that h depends on the particular observation X̄. One could make the dependence
of h(·) on the observation X̄ more explicit by writing h(ω | X̄): however, we will not
calculate h(·) except at X̄. It is important, that h does not vary with the data, when
defining the constrained prior below in equation (6), i.e., h(ω) is a function of ω only from
here onwards.

We claim that the following prior has the two desired properties listed above. Define
the constrained prior p̃ as

p̃(θ) = C−1p(θ)h(Ω(θ)) (6)

where

C =

∫
p(θ)h(Ω(θ))dθ (7)

is the integration constant. Note that (6) implies the second of the desired properties,
i.e. that the constrained prior is proportional to the unconstrained prior for any given
ω. We need to verify the first desired property. The implied posterior for ω, given some
observation X is given by

G̃(ω | X) =

∫
θ|Ω(θ)≤ω

p̃(θ | X)dθ (8)

We need to show that G̃(· | X̄) = F (·).
Let g̃(ω | X) = G̃′(ω | X). Substituting the explicit expression for the posterior, it

follows that

g̃(ω | X)∆ ≈
∫
θ|ω≤Ω(θ)≤ω+∆

(
p(θ)h(Ω(θ))`(X | θ)∫
p(θ)h(Ω(θ))`(X | θ)dθ

)
dθ (9)

≈ h(ω)∫
p(θ)h(Ω(θ))`(X | θ)dθ

∫
θ|ω≤Ω(θ)≤ω+∆

p(θ)`(X | θ)dθ (10)

∝ f(ω)

g(ω | X̄)

∫
θ|ω≤Ω(θ)≤ω+∆

p(θ)`(X | θ)dθ (11)

Likewise,

g(ω | X)∆ ∝
∫
θ|ω≤Ω(θ)≤ω+∆

p(θ)`(X | θ)dθ (12)

Therefore, at X = X̄,

g̃(ω | X̄)∆ ∝ f(ω)∆ (13)

Integrating and recognizing that both sides of this equation are probability densities
delivers

G̃(ω | X̄) = F (ω)
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as claimed.
Numerically, we proceed as follows. We approximate f (ω) and g (ω) by a Gamma

distribution, imposing that the standard deviation of g (ω) is larger than the standard
deviation of f (ω) to ensure that the tails of h die out and that we therefore obtain a
proper prior. In our application, it turns out that we thus need to impose some f (ω),
which is considerably tighter than would be justified on estimation uncertainty of the
Sharpe ratio alone. Since our main aim is a flexible implementation of estimation subject
to constraint rather than the imposition of a particular data-driven prior, we do not view
this as a substantial drawback. Note that we implicitly impose that the Sharpe ratio is
positive: this seems reasonable on economic grounds. The following algorithm implements
our methodology:

1. Estimate the model by sampling from the unconstrained posterior p (θ|X)

2. Approximate the implied unconstrained probability density function g
(
ω | X̄

)
3. Calculate the transformation function h(ω) per (5).

4. Estimate the model with the constrained prior by sampling from p̃ (θ|X).

5. For Bayesian posterior odds ratio calculations and model comparisons, for exam-
ple, calculate the normalization constant C of equation (7). We utilize a Laplace
approximation for this calculation.

3 The Model

We apply our methodology to a dynamic stochastic general equilibrium model with ex-
ternal habit formation or “catching-up with the Joneses” (see Abel, 1990) in both con-
sumption and leisure, building on Uhlig (2007). We extend the model by adding shocks,
to permit estimation, as well as solving the model around the stochastic steady state. We
briefly describe it here for the sake of completeness.

Output yt is produced with capital kt−1 in place from the previous period as well as
labor nt per the Cobb-Douglas production function,

yt = kθt−1 (ezP,tnt)
1−θ . (14)

where zP,t is a productivity or technology parameter. We assume it to follow a random
walk with drift

zP,t = γ + zP,t−1 + εP,t, (15)

with γ reflecting the trend. We assume that εP,t is i.i.d. normal with standard error σP .
Output is produced by a competitive sector of firms. The usual first order conditions

imply wages :

wt =
(1− θ) yt

nt
(16)

and capital rental rates or dividends

dt =
θyt
kt−1

. (17)
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There is a representative household with the utility function

U = E

[
∞∑
t=0

βt
((ct −Ht) (A+ (ezL,tlt − Ft)υ))1−η − 1

1− η

]
. (18)

The discount factor β and A, ν, η are parameters, which we assume to satisfy ν > 0
and η > ν/ (ν + 1) in order to assure monotonicity and concavity, see Uhlig (2007). The
variables ct and lt denote consumption and leisure of the particular household. The utility
depends on the economy-wide average level of consumption habit and leisure habit, Ht

and Ft, evolving according to

Ht = eγ ((1− ρc)χCt−1 + ρcHt−1) , (19)

Ft = (1− ρl)ψLt−1 + ρlFt−1, (20)

where Ct and Lt are aggregate average levels of consumption and leisure: in equilibrium,
Ct = ct and Lt = lt. The parameters ρc, ρl, χ and ψ determine the persistence and
importance of the habit features. The variable zL,t represents a labor supply shock. We
assume it to follow an AR(1)process,

zL,t = πLzL,t−1 + εL,t (21)

where εL,t is i.i.d. normal with standard error σL. Total time endowment is normalized
to unity, so that total labor supply is

nt = 1− Lt.

The budget constraint of the agent is

ct + xt + Tt = dtkt−1 + wtnt. (22)

Capital accumulation is affected by a depreciation rate δ and investment adjustment costs
g (·),

kt =

(
1− δ + g

(
ezI,t

xt
kt−1

))
kt−1. (23)

Following Jermann (1998), we assume the adjustment cost function g (·) to satisfy

g
(
δ̃
)

= δ + eγ − 1, g′
(
δ̃
)

= 1, g′′
(
δ̃
)

= −1

ζ
∀ ζ > 0,. (24)

where δ̃ is defined as δ̃ = exp(γ) + δ − 1, to adjust for trend growth. Adjustment costs
are affected by the parameter zI,t, following the AR(1) process

zI,t = πIzI,t−1 + εI,t, (25)

where εI,t is i.i.d. normal with standard deviation σI . Given initial capital k−1, the
household maximizes its utility by choosing leisure lt, consumption ct, and investments xt
subject to the constraints (22) and (23), taking as given the exogenous habits Ht and Ft
and their aggregate evolution, real wages wt, dividends dt and lump-sum taxes Tt.
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The agent’s first-order condition for labor supply yields the frictionless wage or the
marginal rate of substitution,

wft =
UL
Uc

=
ezL,tυ (ct − χct−1)

A (ezL,tlt − ψlt−1)1−ν + ezL,tlt − ψlt−1

, (26)

As motivated in Uhlig (2007), we assume real wage rigidities as postulated by e.g. Hall
(2005), Shimer (2005), and Blanchard and Gaĺı (2007). More precisely, we assume that

wt = (eγwt−1)µ
(
e$+εW,twft

)1−µ
. (27)

The parameter $ > 0 represents an average wage markup to ensure that w > wf lo-
cally around the steady state, and that therefore the labor market is (typically) demand
constrained. The wage markup εW,t follows an AR(1) process

εW,t = πW εW,t−1 + εW,t, (28)

where εW,t is a normally i.i.d. with standard deviation σW . The parameter µ reflects
the degree of real wage stickiness. In the special case of µ = α = εW = 0, there are no
frictions and wages are fully flexible.

Finally, there is a government, financing an exogenously given stream of expenditures
gt with lump sum taxes,

gt = Tt (29)

We assume that
gt = ḡezP,t−1egt (30)

where ezP,t−1 appears to assure a stationary spending-to-output ratio and where gt is
assumed to follow the AR(1) process

gt = πGgt−1 + εG,t, (31)

with εG i.i.d. normal with standard deviation σG.
The five entries of the shock vector

εt = [εP,t, εL,t, εI,t, εW,t, εG,t]
′ (32)

are assumed to be independent. Equilibrium is defined as usual.
For the further analysis, define λt as the marginal utility of consumption,

λt = Uc (ct, lt) , (33)

and define the stochastic discount factor

Mt = β
λt
λt−1

, (34)

Risk premia arise from investigating the Lucas asset pricing equation

1 = Et [Mt+1Rt+1] . (35)
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where Rt+1 is the one-period return on investing one unit of resources. For investing in
capital, for example, let

qt =

(
g′
(

exp zI,t
xt
kt−1

)
exp zI,t

)−1

, (36)

be the shadow price of a unit of capital. The return for investing in capital is then

Rk
t =

θ yt
kt−1

+
(

1− δ + g
(
ezI,t xt

kt−1

))
qt − xt

kt−1

qt−1

. (37)

For the numerical analysis, the variables kt, yt, ct, Ht, wt, w
f
t , xt, λt, and gt have to

be productivity-detrended to solve the model. This is done by dividing each variable by
exp(zP,t−1), except capital kt, which is detrended with exp(zP,t) and λt which is detrended

by exp(−ηzP,t−1). Beside this, lt, Ft, nt, qt, R
f
t , Rk

t , Mt, and dt are stationary. We
use a logarithmic approximation around the stochastic detrended steady state for our
computations and solve for the recursive law of motion. In the following, all detrended
variables are marked with “∼” and the log-deviations from the detrended variables are
marked with “∧”. For details see technical appendix B.

4 Asset Pricing and Stochastic Steady State

Following Campbell (1994) and Uhlig (1999), we log-linearize the detrended model and
solve for the recursive law of motion. We solve the model by using the method of unde-
termined coefficients,

ŷt = Aĥt−1 +Bεt , (38)

where ŷt = log (yt)− log (yss) is a vector containing all log-linearized model variables and
ĥt = log (ht) − log (hss) is the vector containing all log-linearized state variables of the
model, with yss and hss as their corresponding steady state values. The entries in the
matrices A and B can typically be interpreted as elasticities.

Following Lettau and Uhlig (2002) and using the representation (38), we can decom-
pose the log pricing kernel into its conditional expectation and its innovations:

M̂t+1 = Et

[
M̂t+1

]
+ bMεt+1 , (39)

where bM indicates the row vector of matrix B with respect to the pricing kernel. Let
Σ = ε′tεt be the variance-covariance matrix of εt: we assumed it to be diagonal, but the
formulas apply more generally. The conditional variance, σ2

M of the pricing kernel is

σ2
M = bMΣb′M . (40)

Similarly, we can solve for the conditional variances σRk of R̂k
t and other assets. Addi-

tionally, the conditional covariance of the pricing kernel and the return on capital, σMRk ,
can be evaluated as

σMRk = bMΣb′Rk , (41)

with bRk the row vector of matrix B for the return on capital R̂k.
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Exploiting the (approximate) joint normality of all variables, as in Lettau and Uhlig
(2002), it now follows that the risk premium on, say, the return on capital over the risk
free return satisfies2

logEt
[
Rk
t+1

]
− logRf

t = −σMRk . (42)

where “=” is meant to read “up to log-approximation”. Likewise, for the Sharpe ratio ω,
defined here as in Lettau and Uhlig (2002) as

ω =
logEt

[
Rk
t+1

]
− logRf

t

σRk
(43)

we obtain
ω = −σMRk

σRk
. (44)

This provides the target for our constraint in the constrained estimation procedure. As
in Hansen and Jagannathan (1997), Campbell and Cochrane (2000), or Lettau and Uhlig
(2002), the highest possible Sharpe ratio is equal to σM , by assuming a correlation between
the pricing kernel and the return of capital equal to -1.

Following Juillard (2010) and Coeurdacier et al. (2011), we furthermore use (44) to
adjust the steady state with this “second-order” correction. For the numerical solution,
we impose that

E
[
Rf
t

]
= E

[
exp

(
− log M̄ − Et

[
M̂t+1

]
− σ2

M

2

)]
, (45)

as well as

E
[
Rk
t+1

]
= E

[
exp

(
− log M̄ − Et

[
M̂t+1

]
− σ2

M

2
− σMRk

)]
. (46)

Given M̄ as well as variances and covariances, note that the right-hand side can once
again be calculated using (38) and the assumption of normally distributed shocks.

Because the conditional second moments depend on the policy function, we get a fixed
point problem by solving our model accurately with respect to the stochastic steady state.
For this reason, we use an iterative procedure. We start with the nonstochastic steady
state to obtain our policy function. The resulting steady state adjustment yields a new set
of policy functions, etc.. As discussed in Canton (2002), a few iterations suffice to achieve
convergence and to resolve the fixed point problem to a reasonable degree of accuracy.

5 Estimation

5.1 Data

The estimation of the model is based on six time series from 1963:qI to 2008:qII. All data
are quarterly and in real terms. For both the unconstrained and constrained estimation,

we use the vector of time series Xt =
[
∆ŷt, ∆ĉt, n̂t, x̂t − ŷt, R̂f

t , R̂
q
t

]
, where ∆ŷt is the

2For example, Et[R
k
t+1] = Et

[
exp

(
Et

[
logRk

t+1

]
+ bRkεt+1

)]
= exp

(
Et

[
logRk

t+1

]
+ σ2

Rk/2
)
. A few

more similar calculations deliver the equations in the text.
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first difference of detrended log output per capita, ∆ct is the first difference of detrended
log consumption per capita, x̂t − ŷt is the demeaned log investment-to-output ratio, n̂t
is de-meaned hours worked per capita, R̂f

t is the demeaned risk free rate, and R̂obs
q,t are

the excess returns on an aggregate stock market index. Additionally, for the constrained
estimation, we calculate the Sharpe ratio, using total returns on an aggregate stock market
index.

We use the quarterly real Gross Domestic Product as a measure of aggregate output.3

We use civilian noninstitutional population over 16 years from the Bureau of Labor Statis-
tics (BLS) as a proxy for population to calculate per capita time series. We calculate the
first differences of the real logarithmic output per capita and afterwards reduce the mean
of this time series. This mean is used to calibrate the growth rate γ in the model. Con-
sumption is expenditures on non-durables and services. Private investment is calculated
as the sum of nominal gross private investment and personal durable consumption both
provided by the Bureau of Economic Analysis (BEA). Both time series, consumption and
investment, are transformed into real and per capita terms, by using the GDP deflator and
the population series mentioned above. Finally, we calculate the demeaned log-differences
of consumption as well as the demeaned logarithm of the investment-output ratio for the
estimation. Additionally, we include hours worked into the estimation. In particular, we
use quarterly hours worked by employees working in private, non-farm business excluding
non-profit business. This series is an updated version of the one used by Francis and
Ramey (2009). The final logarithmic time series is demeaned.

As a proxy for the riskless real interest rate, we use the quarterly returns calculated
based on the monthly returns of the three month T-Bill returns provided by the Board of
Governors of the Federal Reserve System. The returns are calculated in real terms, too,
by using the implicit inflation given by the GDP price deflator. Furthermore, the final
logarithmic return series is demeaned. Finally, we use also excess returns as observable
variable. The excess returns are calculated as the log differences between the total returns
of the S&P 500 and the three month T-Bill returns. Because there is no equivalent variable
in our model, we define excess returns’ log-linear deviations from steady state as follows

R̂q
t = −σMRq +

1

1− Ω

(
R̂k
t − R̂f

t

)
+ εQ,t , (47)

where Ω is a parameter which can be interpreted as leverage and εQ,t is an i.i.d. error term
and assumed to be uncorrelated with the stochastic discount factor. Similar to Section 4,
we derive the mean excess returns as the negative covariance between the pricing kernel
and the excess returns, −σMRq . While we can observe the Sharpe ratio of the total returns
of the S&P 500 in the data, we cannot observe a Sharpe ratio for the return on economy-
wide capital in the data. Hence, we assume that in our economy all assets are priced
along the implied market line and therefore excess returns and capital returns share the
same Sharpe ratio. Thus, we use ω · σRq as a proxy for the mean excess returns. Table 1
summarizes some stylized asset pricing facts:4

3See appendix A for details on the source and a description of any data used in this paper.
4The estimates are based on the maximum likelihood estimation of the following data generating

process, Rq
t = ωσRq + σQεt εt ∼ N (0, 1). The presented standard deviation are based on inverse Hessian

which is a consistent estimator of the covariance matrix of the parameters.
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Table 1: Stylized asset pricing facts (quarterly).

Mean s.d.
Sharpe ratio 0.2049 0.0753
mean excess returns 0.0149 0.0054
s.d. excess returns 0.0727 0.0038

5.2 Choice of the unconstrained prior

As in Uhlig (2007), we find it useful to describe our unconstrained prior in terms of an
economically meaningful transformation of the model’s parameter. Specifically, consider
the Frisch elasticity of labor supply, defined as the elasticity of labor supply to frictionless
wages by holding the marginal rate of consumption constant,

τ =
dn

dwf
wf

n

∣∣∣∣
Ūc

. (48)

Given our preference assumptions, this yields

τ =
Un

n̄

[
Unn −

U2
nc

Ucc

] =
1− n̄
n̄
· η (1 + α) (1− ψ)

η (α (1− ν) + 1 + ν)− ν , (49)

where α = A (1− ψ)−ν l̄−ν . Therefore, rather than specifying a prior for A or ν we shall
specify a prior for τ , and calculate the implied A and ν from τ as well as the other
parameters and variables in equation (49). We assume that the steady state level of hours
worked is n = 1/3. From the first-order conditions,

ν = 1− (1− ψ)
l̄

1− l̄
1

τ
−
(

2− 1

η

)
1

(1− χ)κ
, (50)

with

κ =
e$

1− θ
1− l̄
l̄

c̄

ȳ
, (51)

where the c̄/ȳ is the steady state consumption share of output.5 Additionally, we can
solve for the remaining preference parameters,

α =
κν (1− χ)

1− ψ − 1 (52)

A = α (1− ψ)ν l̄ν (53)

While the real business cycle literature often assumes a relatively high Frisch elastic-
ity of two or more (Prescott, 1986; King, Plosser, and Rebelo, 1988), recent papers of
Bayesian DSGE model estimation found far smaller values for the Frisch elasticity in a
New Keynesian model framework. For example, Justiniano and Primiceri (2008) argue

5More details regarding steady state calculation can be found in appendix B.2.
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for values between 0.25 and 0.5. These findings are in line with some micro-data based
studies, which argue for small values in a range between 0 and 0.7, too (see Pistaferri,
2003, and references therein). To that end, we use a prior for the inverse of the Frisch
elasticity, which is Gamma distributed with mean 1.0 and a standard deviation of 0.75.
This assumption covers the values used in the different strands of the literature.

For explaining business cycle facts and asset pricing facts simultaneously, we expect
that the discount factor β as well as the power utility parameter η play an important role.
The business cycle literature often uses values for the discount factor that are slightly
smaller than one to ensure a positive time preference of the representative agent and
steady-state risk-free returns comparable to observed returns. However, from an asset
pricing perspective, discount factors with much smaller values or values greater than one
are postulated. These opposing assumptions are known as the risk-free rate puzzle (see
Weil, 1989). However, Kocherlakota (1990) has shown that values for the discount factor
above unity can be in line with positive time preference if the economy is growing. For
this reason, we use a prior information for the riskless return to ensure positive time
preference and solve recursively for the discount factor:

β = exp(ηγ − σ2
M/2− log(R̄f )) (54)

In particular, we assume that the steady state risk-free real quarterly return is inverted-
gamma distributed with mean 0.005 and standard deviation 0.01. This ensures that the
mass of the prior is on positive real annual returns which are smaller than 4%. Finally,
we assume that the power utility parameter is uniformly distributed between 1 and 200
which implies most of the prior mass on high values. This is in contrast to the common
business cycle literature which generally assumes small values and therefore uses quite
informative prior, but allows our procedure to consider high degrees of risk aversion when
seeking to match asset pricing facts: this is useful when constraining the prior in the
next step. The prior for the remaining deep model parameters are chosen in line with the
recent literature. An overview of the priors is given in Table 2.

In addition, to the steady state labor supply, we also calibrate the growth rate of the
economy γ and the capital share θ. As mentioned in the previous Subsection, we calibrate
the growth rate equal to the observed value of 0.0044 per quarter. The capital share is
calibrated to 0.33 as common.

5.3 Choice of constrained prior

As described in Section 2, we approximate f (ω) and g (ω) using a Gamma distribution,
imposing that the standard deviation of g (ω) is larger than the standard deviation of
f (ω) to ensure that the tails of h die out and that we therefore guarantee a proper
prior. Given our application in the present paper, we approximate g (ω) using a Gamma
distribution with mean 0.02 and standard deviation 0.002. By approximating f (ω), we
follow our estimates for the Sharpe ratio (Table 1) and assume that f (ω) is Gamma
distributed with mean 0.2049. We choose a standard deviation of 0.001 for f (ω). This is
considerably tighter than would be justified on estimation uncertainty of the Sharpe ratio
alone. Since the aim of the exercise here is to obtain a model estimate in line with the
observed Sharpe ratio as well as to illustrate our estimation methodology, we view this
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Table 2: Prior distribution for model parameter and additional parameter. Para(1) and
Para(2) correspond to means and standard deviations for the Beta, Gamma, Inverted
Gamma, and Normal distribution, while for the Uniform distribution, these values corre-
spond to the lower and upper bounds. The acronym s.s. indicates steady state values.

Domain Density Para(1) Para(2)
Model parameter
µ wage rigidity [0, 1) Beta 0.75 0.1
η power utility parameter R+ Uniform 1 200
χ consumption habit [0, 1) Beta 0.5 0.23
ψ leisure habit [0, 1) Beta 0.5 0.23
ρc consumption habit [0, 1) Beta 0.5 0.23
ρl leisure habit [0, 1) Beta 0.5 0.23
δ depreciation rate [0, 1) Beta 0.02 0.005
ζ investment adjustment costs R Normal 4.0 1.0
1/τ inverse Frisch elasticity (s.s.) R+ Gamma 1.00 0.750
log R̄f risk-free return (s.s.) R+ InvGam 0.005 4.0
Ω leverage [0, 1) Beta 0.5 0.23
autoregressive parameter and s.d. of shocks
πG AR government shock [0, 1) Beta 0.85 0.1
πW AR wage mark-up shock [0, 1) Beta 0.85 0.1
πI AR investment shock [0, 1) Beta 0.85 0.1
πL AR labor supply shock [0, 1) Beta 0.85 0.1
εP s.d. technology shock R+ InvGam 0.01 4.0
εW s.d. wage mark-up shock R+ InvGam 0.01 4.0
εI s.d. investment shock R+ InvGam 0.01 4.0
εL s.d. labor supply shock R+ InvGam 0.01 4.0
εG s.d. government shock R+ InvGam 0.01 4.0
εQ s.d. excess return shock R+ InvGam 0.01 4.0

as perfectly adequate: after all, this is part of the prior specification, and not necessarily
entirely data-driven.

6 Estimation Results

We estimate the posterior mode of the distribution and employ a random walk Metropolis-
Hastings algorithm to approximate the uncertainty distribution of the parameters. We
run two chains, each with 300,000 parameter vector draws. The first 75% have been
discarded. We provide results for both the unconstrained and the constrained prior.

Table 3 shows detailed posterior statistics, e.g. the posterior mean and the highest
probability density (HPD) interval6, using the range between 5% and 95%. The results

6This will be the HPD interval, if the posterior density is symmetric and strictly increasing towards
the median, an assumption which appears to be approximately satisfied for the posterior.
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indicate that the posterior distributions of all structural parameters are well approximated
and different from the prior distribution.

Table 3: MCMC Results

Unconstrained prior Constrained prior
Parameter Posterior HPD Posterior HPD

Mean 5% 95% Mean 5% 95%
Model parameter
µ 0.2685 0.1392 0.3948 0.2882 0.1644 0.4209
η 4.9508 2.1058 8.0901 108.18 84.19 134.30
χ 0.8689 0.8096 0.9258 0.8402 0.7777 0.9086
ψ 0.8555 0.7951 0.9167 0.8438 0.7871 0.9022
ρc 0.6090 0.4967 0.7237 0.6551 0.5523 0.7646
ρl 0.0696 0.0044 0.1344 0.0723 0.0043 0.1367
Ω 0.1188 0.0099 0.2276 0.1073 0.0059 0.2059
ζ 7.8726 6.7565 9.0130 7.8361 6.7952 8.9570
δ 0.0172 0.0136 0.0206 0.0175 0.0139 0.0210
1/τ 5.5308 3.6103 7.4448 7.1055 5.1878 9.0453
log(R̄f ) 0.0047 0.0027 0.0065 0.0032 0.0017 0.0046
autoregressive parameter and s.d. of shocks
πG 0.9116 0.8798 0.9450 0.9253 0.8909 0.9611
πI 0.7065 0.6432 0.7711 0.7003 0.6417 0.7580
πW 0.6008 0.4787 0.7119 0.9303 0.8909 0.9719
πL 0.9240 0.8812 0.9693 0.6516 0.5400 0.7670
σP 0.0091 0.0083 0.0098 0.0090 0.0083 0.0097
σI 0.0135 0.0107 0.0162 0.0132 0.0108 0.0156
σL 0.0031 0.0027 0.0034 0.0029 0.0026 0.0032
σW 0.0205 0.0149 0.0256 0.0211 0.0155 0.0265
σG 0.0197 0.0171 0.0224 0.0190 0.0169 0.0211
σQ 0.0765 0.0696 0.0831 0.0738 0.0677 0.0802
Log marginal density 3439.74 3437.25

By comparing the results of the estimation with unconstrained prior and constrained
prior, we find the biggest difference for the power utility parameter η. This result is
expected, because introducing the constrained prior decisively shifts the marginal prior
distribution with respect to η to high values. Additionally, for this class of preferences,
the parameter is directly linked to the agents’ relative risk aversion regarding short-term
fluctuations in consumption, which can be calculated as:

RRA =
η

1− χ , (55)

We calculate the relative risk aversion for every draw from the posterior. The implied
posterior statistics can also be found in Table 4. This calculation of the relative risk
aversion regarding short-term fluctuations in consumption has been criticized by Boldrin,
Christiano, and Fisher (1997), who argue that relative risk aversion with respect to wealth
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Table 4: Distributions of implicit model parameter and steady state values.

Unconstrained prior Constrained Prior
Parameter Posterior HPD Posterior HPD

Mean 5% 95% Mean 5% 95%
β 1.0162 1.0043 1.0292 1.0436 0.9538 1.1388
ν 5.8312 3.4399 8.1339 5.1088 2.9349 7.4408
α 0.5953 0.3922 0.7917 0.6071 0.3247 0.8797
x̄/ȳ 0.3232 0.2944 0.3513 0.3129 0.2939 0.3328
c̄/ȳ 0.3968 0.3687 0.4256 0.4071 0.3872 0.4261
RRA 39.20 15.26 63.95 719.25 419.23 1032.3

is more meaningful. Similarly, Swanson (2012) argues that this measure ignores the labor
margin which can lead to a inaccurate measure of the household’s true attitudes toward
risk, especially in the case of habit formation. We do not wish to take a stand here on the
debate as to how to measure “risk aversion” in the most meaningful manner: rather, our
results intend to illustrates the intuitive fact that high relative risk aversion for short-term
consumption fluctuations is needed to explain stylized asset pricing facts.

For both estimations we identify similar volatilities of the exogenous shocks. This
means, both economies face the same “economy-wide” risk. Since high economy-wide
risk is therefore not at the heart of matching the high Sharpe ratio according to these
estimates, a high relative risk aversion (in the sense described above) is unavoidable, see
also Rudebusch and Swanson (2008) or Lettau and Uhlig (2002). For habit-based DSGE
models as presented in the present paper, the elasticity of intertemporal substitution is the
inverse of the relative risk aversion. This elasticity can be calculated as 0.026 and 0.0013
for the estimation with unconstrained prior and constrained prior, respectively. Com-
pared to the findings by Hall (1988) or Vissing-Jørgensen (2002), these are very small,
but unavoidably so due to the need for a high degree of relative risk aversion. Some
recently estimated DSGE models likewise postulate high parameter values for external
or internal habit and therefore also imply small elasticities. As shown by Uhlig (2007),
wage rigidities can be a helpful ingredient to explain a high risk premium in habit-based
DSGE models. Our estimation results, however, show that the degree of wage rigidity
is small and similar for both estimation. Instead, the constrained estimation prefers a
smaller Frisch elasticity τ , compared to the unconstrained estimation: the Frisch elastic-
ity of labor supply τ decreases from 0.18 for the unconstrained estimation to 0.14 for the
constrained estimation. Both values are in line with findings of the microeconomic liter-
ature (see Pistaferri, 2003), but are at odds with some of the macroeconomic literature.
We feel comfortable with these results, however, since the model is nonetheless capable
of matching aggregate labor fluctuations as shown in Subsection 6.2: it is these aggre-
gate observations which are at the heart of the motivation for the large macroeconomic
Frisch elasticities used elsewhere. Intuitively, these estimates indicate high labor market
rigidities for the estimation with the constrained prior, in line with the insights of Uhlig
(2007), but focus on supply elasticities rather than wage elasticities.
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6.1 Implied asset pricing facts

Table 5 shows the implied distribution of the first and conditional second moments for
both estimations. In general, the estimation with constrained prior delivers asset price
facts similar to those observed in the data. The estimation with unconstrained prior can
only explain the moments of the risk-free rate appropriately. Especially, the Sharpe ratio
and the risk premium illustrate the well known difficulty of explaining asset pricing facts
using standard DSGE models.

Table 5: Implied quarterly asset pricing facts by the estimated models. All values in
percent with the exception of the Sharpe ratio.

Unconstrained prior Constrained prior
Posterior Posterior

Mean 5% 95% Mean 5% 95%
s.d. risk-free return σRf 0.39 0.35 0.42 0.38 0.35 0.42
s.d. return on capital σRk 1.19 0.97 1.41 1.18 0.98 1.37
s.d. excess returns σRq 7.86 7.20 8.54 7.59 6.98 8.22
s.d. pricing kernel σM 4.16 1.90 6.82 92.15 72.13 110.92
Risk premium (Rk/Rf ) −σMRk 0.024 0.015 0.034 0.240 0.200 0.280
Sharpe ratio (Rk) ω 0.0203 0.0140 0.0270 0.205 0.203 0.206

The conditional second moments of the risk free rate are similar for both estimations
and comparable to the data. In particular, the mean of risk free return for the estimation
with constrained prior is slightly smaller but still in line with observations (see Table 3).
Additionally, the moments of the return of capital for both estimations are comparable
with each other. The high risk aversion parameter η delivers the large conditional volatil-
ity of the stochastic pricing kernel σM , which in turn is needed to obtain the observed
Sharpe ratio: this standard deviation is also the maximal Sharpe ratio for any asset and
approximately five times as high as the Sharpe ratio for the return on capital. Put differ-
ently, the constrained estimate of our model is in principle compatible with Sharpe ratios
for other asset classes, which happen to be up to five times as large as those observed for
the stock market, and therefore compatible in principle with the findings in Scholl and
Uhlig (2008) and Piazzesi and Schneider (2012). By contrast, the implied Sharpe ratio
and risk premium for the unconstrained estimates is too low by a factor of 10, compared
to observations.

6.2 Implied business cycle facts

In the following subsection, we investigate in more detail the empirical performance of
our estimated models with respect to business cycle statistics. Table 6 compares standard
deviations and cross-correlations after HP-filtering the data as well as simulated time
series, both for the unconstrained and the constrained estimation. The differences between
these two types of estimates are remarkably small, and reasonably close to the data.

To better detect where the constrained estimation procedure “compromises” in order
to also explain the asset pricing facts, it is useful to analyze unconstrained variances. To
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Table 6: HP-filtered (λ = 1600) theoretical and empirical moments. The theoretical
moments are based on 1200 draws from the posterior. The numbers in brackets indicate
5% and 95% probabilities.

Unconstrained Constrained Data
Prior Prior

Standard Deviation of Output
Output ŷ 0.0129 0.0126 0.0148

[0.0120;0.0141] [0.0118;0.0135]
Relative Standard Deviation to Output
Consumption ĉ 1.0415 1.0452 0.5516

[ 0.9653;1.1162] [0.9606;1.1324]
Investment x̂ 2.9560 3.1034 3.6632

[2.7632;3.1738] [2.9451;3.2903]
Hours worked n̂ 1.1570 1.1299 1.2372

[1.0931;1.2223] [1.0621;1.1954 ]
Correlation with Output
Consumption ĉ 0.6387 0.6016 0.8210

[0.5547;0.6929] [0.5085;0.6660]
Investment x̂ 0.7503 0.7531 0.9226

[0.7074;0.7863] [0.7149;0.7902]
Hours worked n̂ 0.7829 0.7763 0.8676

[0.7435;0.8210] [0.7372;0.8111]

do so, we compare the predicted unconditional second moments of the DSGE models with
those of a Bayesian vector autoregression (BVAR) with two lags. In particular, we esti-
mate the BVAR with the same set of observable variables as used for the DSGE estimation
with the exception of the excess returns. Moreover, we assume a weak Normal-Whishart
prior for the coefficients and the covariance matrix of the BVAR. Afterwards, we draw
1200 parameter vectors from the posterior of the BVAR as well as 1200 parameter vectors
from the posterior distributions of both estimated DSGE models. For each parameter
vector draw, we calculate the unconditional second moments. Figure 1 shows the implied
distributions for the standard deviations of the observable variables.

The estimated DSGE models predict similar standard deviations for output growth
which are slightly smaller than those predicted by the BVAR(2). Moreover, the predicted
standard deviations for consumption growth, hours worked, and the real risk-free interest
rate are similar to each other. While they match the standard deviation of the real
quantities well, both DSGE models overpredict the standard deviation of the real risk-free
interest rate compared to the BVAR (Christiano et al., 2011). The biggest difference can
be found for the implied standard deviation of the investment-output ratio of the DSGE
models. While the model estimated with the unconstrained prior predicts values close to
those of the BVAR, the model estimated with constrained prior predicts a bigger standard
deviation. This characteristic is related to a higher autocorrelation of the investment-
output ratio in comparison to the BVAR and the benchmark DSGE. Put differently,
the estimated habit formation model turns short-run shocks into long-run risks. This
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Figure 1: Implied standard deviations of the DSGEs and the BVAR(2) based on 1200
draws from the corresponding posterior.
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n̂t R̂f
t

BVAR(2)
unconstrained prior
constrained prior

can also be seen in the considerably more persistent autocorrelations for the investment-
output ratio for the constrained estimates compared to the unconstrained estimates or
the BVAR (see Figure 5 in the Appendix). This points to an interesting connection to
the long-run risk literature for Epstein-Zin preferences, see Bansal and Yaron (2004) and
Hansen et al. (2008), which should be explored in future research.

6.3 Model comparison

Our procedure allows a formal comparison of the constrained and the unconstrained esti-
mate. We use the Modified Harmonic Mean estimator by Geweke (1999) to calculate the
marginal data density of each model. We find a difference in the marginal data density
which implies posterior probabilities of 0.92 vs. 0.08 and a posterior odds ratio of 12.1
in favor of the model estimated with the unconstrained prior. While the unconstrained
model is unsurprisingly more probable, when ignoring the asset pricing implications, these
calculations show that the constrained estimates are reasonably plausible, from the per-
spective of the unconstrained model. It therefore turns out that one does not have to
strain too much to also explain asset pricing features with this habit-formation model.

7 Application to a simple RBC model

In the following section, we apply our method of a constrained prior to a w8j0o34 version
of the model in this paper. First, we assume that households have the following utility
function which is separable in consumption and leisure,

U = E

[
∞∑
t=0

βt
c1−η
t

1− η −Ψl
ezL,tn

1+1/τ
t

1 + 1
τ

]
, (56)

where η is the parameter of relative risk aversion and τ is the Frisch elasticity with respect
to labor supply. The variable ezL,t reflects preference fluctuations in labor supply and Ψl

the scaling parameter with respect to disutility of labor. In comparison to the benchmark
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model of 3, we exclude habit formation in consumption and leisure. Additionally, we
abstract from real wage rigidities by assuming that the real wage is equal to the marginal
rate of substitution: as a result, there is no separate exogenous shock to market wages. We
set growth to zero and solve the model around its deterministic steady state. Additionally,
we assume that the exogenous technology process follows an AR(1)process,

zP,t = πP zP,t−1 + εP,t (57)

where εP,t is normally i.i.d. with standard deviation σP . Finally, we also abstain from
defining excess returns in the model. Our assumption about the government and pro-
duction of output and capital remain the same, as do our assumptions about the four
remaining exogenous stochastic processes, other than the change in (57).

Since we have four rather than six shocks, we reduce the vector of quarterly observables
for the unconstrained estimation to Xt = [∆ŷt, ∆ĉt, n̂t, x̂t − ŷt]. Fewer parameters are
estimated. We calibrate the depreciation rate to δ = 0.025 and the steady state risk-free
rate to 1.0042, which is the mean of the corresponding times series used in the former
part of this paper. This implies a discount rate β = 0.9958. Additionally, we choose
a more diffuse prior distribution for the inverse of the Frisch elasticity, which is now a
Gamma distribution with mean 5 and standard deviation of 2, to avoid maximization
problems. For the same reason, we soften our additional Sharpe ratio constraint for the
estimation with constrained prior. More precisely, we assume that the observed Sharpe
ratio is centered around 0.102 instead of 0.204 as in the data. The prior distributions of
the remaining parameters are the same.

Table 7: MCMC Results for the simple RBC model

Unconstrained Prior Constrained Prior
Parameter Posterior HPD Posterior HPD

Mean 5% 95% Mean 5% 95%
Model parameter
η 7.6114 4.3446 10.8825 43.5015 29.3441 57.4003
ζ 6.3621 5.0788 7.5694 5.8340 4.5777 7.0856
1/τ 2.9802 1.7344 4.1938 12.1938 10.3318 14.1113
autoregressive parameter and s.d. of shocks
πG 0.9072 0.8846 0.9288 0.9270 0.9054 0.9489
πI 0.9444 0.9219 0.9671 0.7978 0.7549 0.8418
πP 0.9464 0.9287 0.9648 0.9931 0.9910 0.9953
πL 0.9933 0.9882 0.9985 0.9964 0.9944 0.9984
σP 0.0098 0.0089 0.0106 0.0110 0.0100 0.0120
σI 0.0407 0.0270 0.0537 0.1786 0.1609 0.1957
σL 0.0532 0.0338 0.0707 0.2726 0.2065 0.3371
σG 0.0139 0.0127 0.0151 0.0137 0.0125 0.0149
Log marginal density 2443.91 2393.29

Table 7 shows detailed posterior statistics. There are similarities to the corresponding
Table 3. As should be expected, the distribution for the power utility parameter η is now
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centered around a value corresponding to high relative risk aversion. Likewise, the Frisch
elasticity of labor supply decreases when imposing the constraint, but the decrease is now
larger, falling from 0.31 to 0.08. In particular, we can observe the same mechanisms,
higher relative risk aversion and higher labor market frictions as before. The estimated
standard deviations of the shocks are a key difference. The constrained estimate for the
RBC model implies volatilities for the investment-specific shock σI as well as the labor
supply shock σL. Thus, high “economy-wide” risk contributes to match the imposed
Sharpe ratio. Due to the separability of the utility function, the maximum Sharpe ratio
is just a function of η and the conditional standard deviation of consumption, which also
depends on the model parameters,

ωmax = ησc (58)

An increase of the relative risk aversion raises the desire of households to smooth con-
sumption: the high volatilities σI and σL help to offset that.

Table 8: Implied quarterly asset pricing facts by the estimated models. All values in
percent with the exception of the Sharpe ratio.

Unconstrained prior Constrained prior
Posterior Posterior

Mean 5% 95% Mean 5% 95%
s.d. risk-free return σRf 0.27 0.17 0.37 3.26 2.90 3.63
s.d. return on capital σRk 3.05 2.00 4.09 13.83 12.58 14.95
s.d. pricing kernel σM 3.87 2.33 5.39 22.25 16.43 27.93
Risk premium −σMRk 0.063 0.029 0.097 1.41 1.28 1.53
Sharpe ratio (Rk) ω 0.020 0.0149 0.0253 0.102 0.100 0.104

Table 8 shows the implied asset pricing facts of the model for both estimation ap-
proaches. We are successful in matching the Sharpe ratio constraint, which was set
at half of the observed value. The model estimated with the constrained prior fails in
matching the low volatility of the risk-free rate. In comparison with the former model, the
present model estimation delivers a high volatility of the return on installed capital which
is higher than the volatility of equity observed in the data, and thus contributing to a risk
premium higher than should be expected given the reduced Sharpe ratio. However, as
Gomme, Ravikumar, and Rupert (2011) have shown, the observed volatility of the return
to installed capital is smaller than the observed volatility of stock market returns.

Figure 2 illustrates the implied distributions of the unconditional moments of the ob-
served variables for both estimation approaches and compares them with those of a BVAR
with two lags. Similar to the benchmark model and the results in Figure 1, we obtain
a higher implied standard deviation for the investment-output ratio for the constrained-
prior estimation, along with a high autocorrelation of this variable. In contrast to the
benchmark model and the results in Figure 1, hours worked likewise now have consid-
erably higher unconditional variance and persistence. Both are, again, low-frequency
phenomena: these effects disappear when calculating HP-filtered moments, as Table 9
in the appendix shows. Finally, the posterior odds ratio is 9.64e21 to one in favor of
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Figure 2: Implied standard deviations of the of the more simple DSGEs and the BVAR(2)
based on 1200 draws from the corresponding posterior.
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the model estimated with the unconstrained prior, compared with 12.1 for the former
model. The Bayesian posterior odds ratio therefore makes the constrained model look
non-credible from the unconstrained perspective. The application to this simpler RBC
model therefore shows the limitations of our procedure: while it tries hard to push this
model to explain both asset pricing facts and macroeconomic facts, larger gaps between
the quantitative model results and the observations emerge.

Then again, one may also consider the glass “half-full”. Since the HP-filtered macroe-
conomic moments still look reasonable, the risk premium is roughly in line with the data
and the Sharpe ratio, at half of its observed value, comes within the range of observa-
tions, one may wish to consider this a decent fit or a good starting point for other uses
and explorations. Put differently, while we would rather recommend the model from our
benchmark constrained-estimation exercise for the purpose of matching both macroeco-
nomic and asset pricing facts, this small scale model does not perform “too badly” and
may be suitable for teaching purposes, for example. We believe that it would have been
hard to find this specification without the help of our estimation procedure.

8 Conclusion

We have presented a novel Bayesian method for estimating dynamic stochastic general
equilibrium (DSGE) models subject to the constraining the posterior distribution of the
implied Sharpe ratio. We first presented our methodology in more general terms. Starting
from an initial, unconstrained prior, we construct a constrained prior so that the resulting
implied posterior for some variable of interest (the Sharpe-ratio, say) coincides with some
a priori chosen distribution, and such that the constrained prior is proportional to the
original prior, conditional on that variable.

We then applied our methodology to a DSGE model with habit formation in con-
sumption and leisure, real wage rigidities and capital adjustment costs, building on Uhlig
(2007). We use a density centered at the estimated Sharpe ratio to construct our con-
straint. We show that the estimation subject to this constraint produces a quantitative
model with both reasonable asset-pricing as well as business-cycle implications, thus offer-
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ing more hope than the somewhat more pessimistic message in Rudebusch and Swanson
(2008, 2012) regarding habit-formation models.

To understand the limitations of our procedure, we also apply our methodology to a
simpler RBC model, which does not feature habit formation or real wage rigidities. We
show that the discrepancies between observations and model simulations become more
apparent, even at the best fit. However, even here one may consider the glass “half-full”.
Since the HP-filtered macroeconomic moments still look reasonable, the risk premium is
roughly in line with the data and the Sharpe ratio, at half of its observed value, comes
within the range of observations. We believe that it would have been hard to find this
specification without the help of our estimation procedure.

A Data

In this paper, we use several macro and financial time series. This appendix describes
some modifications and, in particular, the source of the raw data.

Real GDP: This series is BEA NIPA table 1.1.6 line 1 (A191RX1).

Nominal GDP: This series is BEA NIPA table 1.1.5 line 1 (A191RC1).

Implicit GDP Deflator: The implicit GDP deflator is calculated as the ratio of Nom-
inal GDP to Real GDP.

Private Consumption: Real consumption expenditures for non-durables and services
is the sum of the respective nominal values of the BEA NIPA table 1.1.5 line 5
(DNDGRC1) and BEA NIPA table 1.1.5 line 6 (DNDGRC1) and finally deflated
by the deflator mentioned above.

Private Investment: Total real private investment is the sum of the respective nom-
inal values of the series Gross Private Investment BEA NIPA table 1.1.5 line 7
(A006RC1) and Personal Consumption Expenditures: Durable Goods BEA NIPA
table 1.1.5 line 4 (DDURRC1) and finally deflated by the deflator mentioned above.

Hours worked: The series measures the hours worked of employees working in private
non-farm business excluding non-profit business. This series is an updated version of
the one used by Francis and Ramey (2009) and is available on the authors’ website.
Source: http://weber.ucsd.edu/~vramey/

Civilian Population: This series is calculated from monthly data of civilian noninsti-
tutional population over 16 years (CNP16OV) from the U.S. Department of Labor:
Bureau of Labor Statistics.

S&P 500: The total returns of the S&P 500 are calculated by the monthly values from
the S&P price index and dividends calculated by Robert J. Shiller and provided on
his website. Source: http://www.econ.yale.edu/~shiller/data.htm

Risk-free Rate: The quarterly risk-free return is calculated from monthly returns of
the 3-Month Treasury Bill: Secondary Market Rate provided by the Board of
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Governors of the Federal Reserve System. The real returns are calculated with the
implicit inflation rate of the price deflator series above.

B Model solution

B.1 FONC

The economy described in the paper follows the trend γ. To write the equilibrium con-
ditions in stationary terms, the set of variables has to be detrended by zt−1 as follows:

c̃t =
ct

ezP,t−1
, ỹt =

yt
ezP,t−1

, w̃t =
wt

ezP,t−1
, w̃ft =

wft
ezP,t−1

(B-1)

k̃t−1 =
kt−1

ezP,t−1
, x̃t =

xt
ezP,t−1

, H̃t =
Ht

ezP,t−1
, λ̃t =

λt
e−ηzP,t−1

Following, the set of the stationary first order necessary conditions of the equilibrium
can be rewritten as:

nt = 1− lt (B-2)

Rk
t qt−1 =

θỹt

k̃t−1

+

(
1− δ + g

(
ezI,t

x̃t

k̃t−1

))
qt −

x̃t

k̃t−1

(B-3)

qte
zI,t =

1

g′
(
ezI,t x̃t

k̃t−1

) (B-4)

E
[
Rf
t

]
= E

[
exp

(
− log M̄ − Et

[
M̂t+1

]
− σ2

M

2

)]
(B-5)

E
[
Rk
t+1

]
= E

[
exp

(
− log M̄ − Et

[
M̂t+1

]
− σ2

M

2
+ σMRk

)]
(B-6)

Mt = β
λ̃t

λ̃t−1

exp (−η (γ + εP,t−1)) (B-7)

λ̃t =
(
c̃t − H̃t

)−η
(A+ (ezL,tlt − Ft)ν)1−η

(B-8)

exp (εP,t−1) H̃t = (1− ρc)χc̃t−1 + ρcH̃t−1 (B-9)

Ft = (1− ρl)ψlt−1 + ρlFt−1 (B-10)

w̃ft =
ezL,tυ

(
c̃t − H̃t

)
A (ezL,tlt − Ft)1−ν + ezL,tlt − Ft

(B-11)

w̃t =
(1− θ) ỹt

nt
(B-12)

exp (µεP,t−1) w̃t = (w̃t−1)µ
(
e$+εW,tw̃ft

)1−µ
(B-13)

ỹt =
(
k̃t−1

)θ
(exp (γ + εP,t)nt)

1−θ (B-14)

exp (γ + εP,t) k̃t =

(
1− δ + g

(
ezI,t

x̃t

k̃t−1

))
k̃t−1 (B-15)
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ỹt = c̃t + x̃t + ḡegt (B-16)

The equilibrium is defined together with the exogenous variables zL,t, zI,t, εW,t and gt.

B.2 Steady-state

To calculate the steady state we take the following as given:

z̄L = z̄I = 1 and q̄ = 1 , (B-17)

as well as that the steady-state ratio of government expenditures to output is 28%:

ḡ
¯̃y

= 0.28 (B-18)

Furthermore, we can calculate the real depreciation rate:

δ̃ = eγ + δ − 1

Remembering the previous discussion about the asset pricing implications, we know that
the Euler equation has to hold for any asset. This implies that (eq. B-5) is equal to (eq.
B-6). Given a value for R̄f and σ2

M , we can solve for steady state pricing kernel:

M̄ = exp

(
− log

(
R̄f
)
− σ2

M

2

)
(B-19)

The return on capital is equal to:

R̄k =
1

M̄ exp
(
σ2
M

2
+ σMRk

) . (B-20)

Now, we can also solve for the discount rate:

β = m̄ exp (ηγ) (B-21)

Now, we can also solve for:
¯̃x
¯̃y

=
θδ̃

R̄k + δ − 1
(B-22)

and
¯̃y
¯̃k

=
R̄k + δ − 1

θ
(B-23)

and because ¯̃x/¯̃k = δ̃ for:
¯̃c
¯̃k

=
¯̃y
¯̃k
−

¯̃x
¯̃k
− ḡ

¯̃y
·

¯̃y
¯̃k

. (B-24)

Given the assumption that steady state leisure is twice as high as labor, l̄ = 2/3 and

n̄ = 1− l̄, (B-25)
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we can solve for the steady state capital:

¯̃k =

[ ¯̃y
¯̃k

] 1
θ−1

n̄eγ , (B-26)

this allows now to solve for steady-state value ¯̃y, ¯̃x, ¯̃g, and ¯̃c.
As shown in section 5.2 we use the condition of the Frisch elasticity (τ) to resolve for

the remaining steady states and parameters. In the case of wage rigidities, the following
steady-state relationship between the market wage and the frictionless wage (marginal
rate of substitution) holds:

¯̃w = ¯̃wfe$ , (B-27)

where the market wage is determined by the condition:

¯̃w = (1− θ)
¯̃y

n̄
(B-28)

Now we define the parameter κ as:

κ =
e$

1− θ
1− l̄
l̄

c̄

ȳ
(B-29)

Given the Frisch elasticity τ the following has to hold:

Υ =
l̄

1− l̄
1

τ
−
(

2− 1

η

)
1

(1− χ)κ
(B-30)

Afterwards, we can resolve for the remaining parameters by solving the equation:

ν = 1− (1− ψ) Υ (B-31)

α =
κν (1− χ)

1− ψ − 1 (B-32)

A = α (1− ψ)ν l̄ν . (B-33)

Given these remaining parameters, we can solve for the steady state values of the remain-
ing variables.

B.3 Log-linearization

l̂t = − n̄

1− n̄ n̂t (B-34)

r̂kt + q̂t−1 =

[
R̄k − 1 + δ

R̄k

](
ˆ̃yt − ˆ̃kt−1

)
+
eγ

R̄k
q̂t +

δ̃

R̄k
zI,t (B-35)

q̂t =
1

ζ
ˆ̃xt +

(
1

ζ
− 1

)
zI,t −

1

ζ
ˆ̃kt−1 (B-36)

ˆ̃wt = ˆ̃yt − n̂t (B-37)

ˆ̃wft = zL,t + ĉdt +

[
να

1 + α
− 1

]
l̂dt (B-38)
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ˆ̃λt = −ηĉdt +

[
ν (1− η)

1 + α

]
l̂dt (B-39)

ˆ̃Ht + εP,t−1 = (1− ρc) ˆ̃ct−1 − ρc ˆ̃Ht−1 (B-40)

F̂t = (1− ρl) l̂t−1 − ρlF̂t−1 (B-41)

(1− χ) ĉdt = ˆ̃ct − χ ˆ̃Ht (B-42)

(1− ψ) l̂dt = zL,t + l̂t − ψF̂t (B-43)

0 = Et

[
r̂kt+1 + M̂t+1

]
(B-44)

0 = Et

[
M̂t+1

]
+ r̂ft (B-45)

M̂t = ˆ̃λt + ˆ̃λt−1 − ηεP,t−1 (B-46)

ˆ̃yt = θˆ̃kt−1 + (1− θ) n̂t + (1− θ) εP,t (B-47)

ˆ̃wt = µ ˆ̃wt−1 + (1− µ) ˆ̃wft + (1− µ) εW,t − µεP,t−1 (B-48)

eγ ˆ̃kt = (1− δ) ˆ̃kt−1 + δ̃ ˆ̃xt + δ̃zI,t − eγεP,t (B-49)

¯̃y ˆ̃yt = ¯̃cˆ̃ct + ¯̃xˆ̃xt + ḡgt (B-50)

εW,t = πW ε̂W,t−1 + εW,t (B-51)

zL,t = πLẑL,t−1 + εL,t (B-52)

zI,t = πI ẑI,t−1 + εI,t (B-53)

gt = πGĝt−1 + εG,t (B-54)

C Model solution of the more simple RBC model

C.1 FONC

nt = 1− lt (C-1)

Rk
t qt−1 =

θyt
kt−1

+

(
1− δ + g

(
ezI,t

xt
kt−1

))
qt −

xt
kt−1

(C-2)

qte
zI,t =

1

g′
(
ezI,t xt

kt−1

) (C-3)

1 = Et

[
Rf
tMt+1

]
(C-4)

1 = Et
[
Rk
t+1Mt+1

]
(C-5)

Mt = β
λt
λt−1

(C-6)

λt = c−ηt (C-7)

wt = Ψle
zL,t

l
1
τ
t

λt
(C-8)

wt =
(1− θ) yt

nt
(C-9)

27



yt = (kt−1)θ (ezP,tnt)
1−θ (C-10)

kt =

(
1− δ + g

(
ezI,t

xt
kt−1

))
kt−1 (C-11)

yt = ct + xt + ḡegt (C-12)

(C-13)

The equilibrium is defined together with the exogenous variables zL,t, zI,t, zP,t and gt.

C.2 Steady-state

To calculate the steady state, we follow the same steps as for the foregoing model with
the exception of wages. Given that steady state labor supply is calibrated to n̄ = 1/3,
wages are calculated as before:

w̄ = (1− θ) ȳ
n̄

(C-14)

The marginal rate of substitution implies also that

w̄ = Ψl
l̄
1
τ

c̄−η
. (C-15)

To clear the labor market, we have to solve for the scaling factor

Ψl = (1− θ) ȳ c̄
−η

n̄1/τ
(C-16)

C.3 Log-linearization

l̂t = − n̄

1− n̄ n̂t (C-17)

r̂kt + q̂t−1 =

[
R̄k − 1 + δ

R̄k

](
ŷt − k̂t−1

)
+

1

R̄k
q̂t +

δ

R̄k
zI,t (C-18)

q̂t =
1

ζ
x̂t +

(
1

ζ
− 1

)
zI,t −

1

ζ
k̂t−1 (C-19)

ŵt = ŷt − n̂t (C-20)

ˆ̃wt = zL,t +
1

τ
l̂t − λ̂t (C-21)

λ̂t = −ηĉt (C-22)

0 = Et

[
r̂kt+1 + M̂t+1

]
(C-23)

0 = Et

[
M̂t+1

]
+ r̂ft (C-24)

m̂t = λ̂t + λ̂t−1 (C-25)

ŷt = θk̂t−1 + (1− θ) n̂t + (1− θ) zP,t (C-26)

k̂t = (1− δ) k̂t−1 + δx̂t + δzI,t (C-27)

ȳŷt = c̄ĉt + x̄x̂t + ḡgt (C-28)
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zP,t = πP zP,t−1 + εP,t (C-29)

zL,t = πLzL,t−1 + εL,t (C-30)

zI,t = πIzI,t−1 + εI,t (C-31)

gt = πGgt−1 + εG,t (C-32)

D Tables and Figures

D.1 Additional results benchmark model

Figure 3: Prior and posterior distribution of the model with unconstrained prior. Vertical
dashed line indicates the posterior mode.
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Figure 4: Prior and posterior distribution of the model with constrained prior. Vertical
dashed line indicates the posterior mode.
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Figure 5: Implied autocorrelation of observable variables of the DSGEs and the BVAR(2).
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D.2 Additional results of the more simple RBC model

Figure 6: Prior and posterior distribution of the more simple RBC model with uncon-
strained prior. Vertical dashed line indicates the posterior mode.
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Figure 7: Prior and posterior distribution of the more simple RBC model with constrained
prior. Vertical dashed line indicates the posterior mode.
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Figure 8: Implied autocorrelation of observable variables of the more simple DSGEs and
the BVAR(2).
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Table 9: HP-filtered (λ = 1600) theoretical and empirical moments for the more simple
RBC model. The theoretical moments are based on 1200 draws from the posterior. The
numbers in brackets indicate 5% and 95% probabilities.

Unconstrained Constrained Data
Prior Prior

Standard Deviation of Output

Output ˆ̃y 0.0104 0.0105 0.0148
[0.0098;0.0111] [0.0098;0.0112]

Relative Standard Deviation to Output

Consumption ˆ̃c 0.6503 0.6416 0.5516
[0.5829;0.7240] [0.5737;0.7124]

Investment ˆ̃x 3.3759 3.4671 3.6632
[3.2632;3.4857] [3.3546;3.5902]

Hours worked ˆ̃n 1.1032 1.5276 1.2372
[1.0128;1.1960] [1.4233;1.6405]

Correlation with Output

Consumption ˆ̃c 0.4250 0.4457 0.8210
[0.3332;0.5092] [0.3395;0.5354]

Investment ˆ̃x 0.8567 0.8542 0.9226
[0.8313;0.8787] [0.8256;0.8769]

Hours worked ˆ̃n 0.5639 0.4424 0.8676
[0.4911;0.6360] [0.3365;0.5346]
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Blanchard, O. and J. Gaĺı (2007, 02). Real wage rigidities and the new keynesian model.
Journal of Money, Credit and Banking 39 (s1), 35–65.

Boldrin, M., L. J. Christiano, and J. D. M. Fisher (1997). Habit persistence and asset
returns in an exchange economy. Macroeconomic Dynamics 1 (2), 312–32.

Boldrin, M., L. J. Christiano, and J. D. M. Fisher (2001). Habit persistence, asset returns,
and the business cycle. American Economic Review 91 (1), 149–166.

Campbell, J. Y. (1994). Inspecting the mechanism: An analytical approach to the stochas-
tic growth model. Journal of Monetary Economics 33 (3), 463–506.

Campbell, J. Y. and J. H. Cochrane (1999). Force of habit: A consumption-based ex-
planation of aggregate stock market behavior. Journal of Political Economy 107 (2),
205–251.

Campbell, J. Y. and J. H. Cochrane (2000). Explaining the poor performance of
consumption-based asset pricing models. Journal of Finance 55 (6), 2863–2878.

Canton, E. (2002). Business cycles in a two-sector model of endogenous growth. Economic
Theory 19 (3), 477–492.

Christiano, L. J., M. Trabandt, and K. Walentin (2011). Introducing financial frictions
and unemployment into a small open economy model. Journal of Economic Dynamics
and Control 35 (12), 1999 – 2041.

Coeurdacier, N., H. Rey, and P. Winant (2011). The risky steady state. American
Economic Review 101 (3), 398–401.

Del Negro, M. and F. Schorfheide (2008). Forming priors for DSGE models (and how it
affects the assessment of nominal rigidities). Journal of Monetary Economics 55 (7),
1191–1208.

Epstein, L. G. and S. E. Zin (1989). Substitution, risk aversion, and the temporal behavior
of consumption and asset returns: A theoretical framework. Econometrica 57 (4), 937–
69.

Epstein, L. G. and S. E. Zin (1991). Substitution, risk aversion, and the temporal be-
havior of consumption and asset returns: An empirical analysis. Journal of Political
Economy 99 (2), 263–86.

33



Francis, N. and V. A. Ramey (2009). Measures of per capita hours and their implications
for the technology-hours debate. Journal of Money, Credit and Banking 41 (6), 1071–
1097.

Gabaix, X. (2012). Variable rare disasters: An exactly solved framework for ten puzzles
in macro-finance. The Quarterly Journal of Economics 127 (2), 645–700.

Geweke, J. (1999). Using simulation methods for bayesian econometric models: inference,
development, and communication. Econometric Reviews 18 (1), 1–73.

Gomme, P., B. Ravikumar, and P. Rupert (2011). The return to capital and the business
cycle. Review of Economic Dynamics 14 (2), 262–278.

Gourio, F. (2012). Disaster risk and business cycles. American Economic Review 102 (6),
2734–66.

Guvenen, F. (2009). A parsimonious macroeconomic model for asset pricing. Economet-
rica 77 (6), 1711–1750.

Hall, R. E. (1988). Intertemporal substitution in consumption. The Journal of Political
Economy 96 (2), 339–357.

Hall, R. E. (2005). Employment fluctuations with equilibrium wage stickiness. American
Economic Review 95 (1), 50–65.

Hansen, L. P., J. C. Heaton, and N. Li (2008). Consumption strikes back? measuring
long-run risk. Journal of Political Economy 116 (2), 260–302.

Hansen, L. P. and R. Jagannathan (1997). Assessing specification errors in stochastic
discount factor models. The Journal of Finance 52 (2), 557–590.

Jermann, U. J. (1998). Asset pricing in production economies. Journal of Monetary
Economics 41 (2), 257–275.

Juillard, M. (2010). Local approximation of DSGE models around the risky steady state.
mimeo, Bank of France.

Justiniano, A. and G. E. Primiceri (2008). The time-varying volatility of macroeconomic
fluctuations. American Economic Review 98 (3), 604–41.

King, R. G., C. I. Plosser, and S. T. Rebelo (1988). Production, growth and business
cycles: I. the basic neoclassical model. Journal of Monetary Economics 21 (2-3), 195–
232.

Kocherlakota, N. R. (1990). On the ‘discount’ factor in growth economies. Journal of
Monetary Economics 25 (1), 43–47.

Lettau, M. and H. Uhlig (2002). The sharpe ratio and preferences: A parametric approach.
Macroeconomic Dynamics 6 (2), 242–265.

Ljungqvist, L. and H. Uhlig (2000). Tax policy and aggregate demand management under
catching up with the joneses. American Economic Review 90 (3), 356–366.

34



McCloskey, D. N. (1983). The rhetoric of economics. Journal of Economic Litera-
ture 21 (2), 481–517.

Piazzesi, M. and M. Schneider (2007). Equilibrium yield curves. In NBER Macroeconomics
Annual 2006, Volume 21, NBER Chapters, pp. 389–472. National Bureau of Economic
Research, Inc.

Piazzesi, M. and M. Schneider (2012). Inflation and the price of real assets. Working
paper, Stanford University.

Pistaferri, L. (2003). Anticipated and unanticipated wage changes, wage risk, and in-
tertemporal labor supply. Journal of Labor Economics 21 (3), 729–754.

Prescott, E. C. (1986). Theory ahead of business-cycle measurement. Carnegie-Rochester
Conference Series on Public Policy 25, 11–44.

Rudebusch, G. D. and E. T. Swanson (2008). Examining the bond premium puzzle with
a DSGE model. Journal of Monetary Economics 55 (Supplemen), S111–S126.

Rudebusch, G. D. and E. T. Swanson (2012). The bond premium in a DSGE model with
long-run real and nominal risks. American Economic Journal: Macroeconomics 4 (1),
105–43.

Scholl, A. and H. Uhlig (2008). New evidence on the puzzles: Results from agnostic
identification on monetary policy and exchange rates. Journal of International Eco-
nomics 76 (1), 1–13.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies.
American Economic Review 95 (1), 25–49.

Swanson, E. T. (2012). Risk aversion and the labor margin in dynamic equilibrium models.
American Economic Review 102 (4), 1663–91.

Tallarini, T. D. (2000). Risk-sensitive real business cycles. Journal of Monetary Eco-
nomics 45 (3), 507–532.

Uhlig, H. (1999). A toolkit for analysing nonlinear dynamic stochastic models easily. In
R. Marimon and A. Scott (Eds.), Computational Methods for the Study of Dynamic
Economies, Chapter 3, pp. 30–61. Oxford University Press.

Uhlig, H. (2007). Explaining asset prices with external habits and wage rigidities in a
DSGE model. American Economic Review 97 (2), 239–243.

Vissing-Jørgensen, A. (2002). Limited asset market participation and the elasticity of
intertemporal substitution. Journal of Political Economy 110 (4), 325–353.

Weil, P. (1989). The equity premium puzzle and the risk-free rate puzzle. Journal of
Monetary Economics 24 (3), 401–421.

35


	Non-technical summary
	Nicht-technische Zusammenfassung
	1 Introduction
	2 Constructing the Constrained Prior
	3 The Model
	4 Asset Pricing and Stochastic Steady State
	5 Estimation
	5.1 Data
	5.2 Choice of the unconstrained prior
	5.3 Choice of constrained prior

	6 Estimation Results
	6.1 Implied asset pricing facts
	6.2 Implied business cycle facts
	6.3 Model comparison

	7 Application to a simple RBC model
	8 Conclusion
	A Data
	B Model solution
	B.1 FONC
	B.2 Steady-state
	B.3 Log-linearization

	C Model solution of the more simple RBC model
	C.1 FONC
	C.2 Steady-state
	C.3 Log-linearization

	D Tables and Figures
	D.1 Additional results benchmark model
	D.2 Additional results of the more simple RBC model

	References



