Central bank digital currency:
the future of money and banking?

Monika Piazzesi
Stanford & NBER

Martin Schneider
Stanford & NBER

Eltville, June 21 & 22, 2019
Message

- **Central bank digital currency (CBDC)**
 - rapidly growing literature with many proposals
 - this talk: interest-bearing reserve accounts for everyone

- **Market for liquidity**
 - bank deposits: bond with option to sell on demand
 - credit lines: option to get loan on demand

- **Commercial banks**
Deposits and credit card limits at US commercial banks
Message

- Central bank digital currency (CBDC)
 - rapidly growing literature with many proposals
 - this talk: interest-bearing reserve accounts for everyone

- Market for liquidity
 - bank deposits: bond with option to sell on demand
 - credit lines: option to get loan on demand

- Commercial banks
 - add value by providing liquidity
 - complementarity between bank deposits & credit lines

⇒ CBDC not complementary to credit lines, beneficial only if much cheaper to produce than deposits
Framework

- Preferences & technology as in neoclassical growth model
 - households work & consume goods
 - complete financial markets → representative household
 - competitive firms
 - make goods from capital & labor, capital from goods

- Liquidity constraints
 - buyers of goods = households & capital producers
 - need payment instruments before buying
 - unpredictable liquidity needs: only share v gets chance to buy
 - sellers = producers of goods
 - need payment instruments after selling
 - predictable liquidity needs: store funds, pay wages & rents later
 - banks = providers of payment instruments
 - need payment instruments to meet customer outflows
Payment instruments & financial frictions

- Competitive banks offer 2 payment instruments
 - deposits: hold before trade, spend if needed, keep otherwise
 - credit lines: draw down to receive loan if needed, don’t use otherwise
 - prices per unit of liquidity provided

- Financial frictions in banks & firms
 - collateral constraint: debt $\leq \phi$ value of assets
 - asset management services κ per unit of assets at price p
 - services require capital & labor \rightarrow keep balance sheets short!

- Capital markets
 - costless adjustment of equity in banks, firms
 - equilibrium size of banking "small" relative to capital stock
 - households, banks & central bank can invest directly in capital

 Ricardian equivalence & MM hold except for liquid instruments
Comparing payment systems

- Characterizing equilibrium
 - allocation = solution to planner problem w/ resource constraint
 \[C_t (1 + \Omega^c_t) + l_t (1 + \Omega^i_t) = Y_t (1 - \Omega^y_t) \]
 - liquidity costs \(\Omega \)s depend on details of payment system

- Real effects of payment system
 - more costly payment system = less efficient production technology
 allocation responds as in neoclassical growth model
 - effects may differ by sector
 for example, \(\Omega^i > \Omega^c \rightarrow \) payment system discourages investment
 - "banking crisis" = shift in \(\Omega \)s = technology shock

- Now derive \(\Omega \)s & steady-state welfare for different payment systems
Banks offer only deposits

- How many deposits are needed to support trade?
- buyers of goods = households & capital producers
 - only share v actually spends deposits to buy
 - buying $C_t + I_t$ requires deposits $D_t = \frac{(C_t + I_t)}{v}$ before trade
 - liquidity needs are unpredictable: precautionary deposit holdings
- sellers = producers of goods
 - selling $C_t + I_t$ requires deposits $vD_t = C_t + I_t$ after trade
- Who trades with whom & bank liquidity management
 - many identical banks, households & firms
 - all interbank flows wash out; bank liquidity constraints do not bind
 - liquidity shocks, reserves & funds market: Piazzesi & Schneider 2018
Banks offer only deposits

Before trade

Buyer
A	L
D

Seller
A	L

Bank
A	L
K | D | E

Central Bank
A	L

After trade

Buyer
A	L

Seller
A	L

Bank
A	L
K | D | E

Central Bank
A	L

\[(1 - \nu)D \rightarrow vD\]
Banks offer only deposits

Before trade

<table>
<thead>
<tr>
<th>Buyer</th>
<th>Seller</th>
<th>Bank</th>
<th>Central Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>((C + I)/v)</td>
<td>(1 + (\Omega^c_t))</td>
<td>D/(\phi)</td>
<td>D/(\phi)</td>
</tr>
</tbody>
</table>

After trade

<table>
<thead>
<tr>
<th>Buyer</th>
<th>Seller</th>
<th>Bank</th>
<th>Central Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>(((C + I)^{\frac{1-v}{v}}))</td>
<td>Y</td>
<td>D/(\phi)</td>
<td>D/(\phi)</td>
</tr>
</tbody>
</table>

Liquidity costs

\[
C_t (1 + \Omega^c_t) + I_t (1 + \Omega^i_t) = Y_t (1 - \Omega^y_t)
\]

\[
\Omega^c = p \frac{\kappa}{\phi} \frac{2 - v}{v}
\]

\[
\Omega^i = p \left(\frac{\kappa}{\phi} + \kappa^i \right) \frac{2 - v}{v}
\]

\[
\Omega^y = p \frac{\kappa}{\phi}
\]
Banks offer only deposits

- Resource constraint for equivalent planner problem

\[
C_t \left(1 + p \frac{\kappa \cdot 2 - v}{\phi} \right) + I_t \left(1 + p \frac{2 - v}{v} \left(\frac{\kappa}{\phi} + \kappa^i\right)\right) = Y_t \left(1 - p \frac{\kappa}{\phi}\right)
\]

- Properties of banking with deposits
 - liquidity costs are high if liquidity needs are unpredictable
 (\(v\) small, large precautionary deposit holdings)
 - investment extra costly because firms are not natural savers
 (balance sheet costs \(\kappa^i\))
Banks offer deposits & credit lines

- How many deposits & credit lines are needed to support trade?
- buyers of goods
 - suppose only use credit lines
 - buying $C_t + l_t$ requires credit limits $L_t = (C_t + l_t)/v$ before trade
 - actual loans drawn down = $vL_t = C_t + l_t$
- sellers
 - selling $C_t + l_t$ requires deposits $vD_t = C_t + l_t$ after trade
Banks offer deposits & credit lines

Before trade

Buyer
A L

Seller
A L

Bank
A L

Central Bank
A L

After trade

Buyer
A L

Seller
A L

Bank
A L

Central Bank
A L

The diagram illustrates the flow of deposits and credit lines before and after a trade. The arrows indicate the movement of funds between the buyer, seller, bank, and central bank.
Banks offer deposits & credit lines

Before trade

<table>
<thead>
<tr>
<th>Buyer</th>
<th>Seller</th>
<th>Bank</th>
<th>Central Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

After trade

<table>
<thead>
<tr>
<th>Buyer</th>
<th>Seller</th>
<th>Bank</th>
<th>Central Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>C + I</td>
<td>Y</td>
<td>vL</td>
<td>vL</td>
</tr>
</tbody>
</table>

Liquidity costs

\[C_t (1 + \Omega^c_t) + I_t (1 + \Omega^i_t) = Y_t (1 - \Omega^y_t) \]

\[\Omega^c = 0 \quad \Omega^i = 0 \quad \Omega^y = p \frac{K}{\phi} \]
Banks offer deposits & credit lines

- Resource constraints with & without credit lines
 \[C_t + I_t = Y_t \left(1 - p \frac{\kappa}{\phi}\right) \]
 \[C_t \left(1 + p \frac{\kappa 2 - \nu}{\phi \nu}\right) + I_t \left(1 + p \frac{2 - \nu}{\nu} \left(\frac{\kappa}{\phi} + \kappa^i\right)\right) = Y_t \left(1 - p \frac{\kappa}{\phi}\right) \]

- Welfare gains from credit lines
 1. avoid precautionary holdings of deposits = higher TFP
 2. avoid firms’ balance sheet costs = investment-specific tech progress
 3. complementarity of products at banks = higher TFP
due to collateral savings, not liquidity constraint
Central bank offers CBDC

- Central bank
 - maximal leverage ϕ^*, asset management costs κ^*
 - CBDC = central bank deposits offered at marginal cost

- CBDC good only if central bank technology better
 - welfare gains require $\kappa^*/\phi^* < \kappa/\phi$
 - either cheaper asset management or better ability to commit

- CBDC good if technology better & banks offer only deposits
 - all depositors migrate to central bank
 - commercial banks disappear; no value beyond liquidity provision
 - investment *increases* because liquidity is cheaper

- CBDC good if banks also offer credit lines?
Equilibrium with CBDC, bank deposits & credit lines

- Buyers’ and sellers’ choice of payment instruments
 - deposits and CBDC priced the same \rightarrow bank customers indifferent
 - here: buyers still use credit lines (ν small, κ^*/ϕ^* not too small)
 - paper: also case when households stop using credit lines

- Response by commercial banks
 - still issue deposits, match higher interest rate earned on CBDC
 - increase price of credit lines to break even
 - high funding costs, no longer profitable to invest in capital
 - bank assets = loans from drawn credit lines
 - deposit outflow to CBDC
 - liquidity constraint: banks hold CBDC before trade
Equilibrium with CBDC, bank deposits & credit lines

Before trade

Buyer

A | L

Seller

A | L

Bank

A | L

\[(1 - \phi)vL \quad EvL\]

Central Bank

A | L

\[K^* \quad (1 - \phi)vL \quad E^*\]

After trade

Buyer

A | L

\[vL \quad vL\]

Seller

A | L

\[vL \quad \phi vL\]

Bank

A | L

\[vL \quad \phi vL \quad E\]

Central Bank

A | L

\[K^* \quad (1 - \phi)vL \quad E^*\]
Equilibrium with CBDC, bank deposits & credit lines

- Comparing resource constraints

CBDC improves welfare if & only if

\[
\frac{\kappa^*}{\phi^*} < \frac{1 - \phi \kappa}{2 \phi}
\]

- if CBDC sufficiently cheap to offset cost of credit line = higher TFP
- if \(\kappa^*/\phi^*\) only marginally below \(\kappa/\phi\), CBDC reduces welfare
Central bank credit line

- Can CB help keep asset side of banks unchanged?
 - Yes: offer credit line to banks, priced at κ/ϕ

- Choice of payment instruments
 - buyers still use credit line
 - all deposits migrate to CB

- Commercial bank response
 - before trade: no need for holding liquid funds
 - after trade: deposits replaced by loan from central bank

- Comparing resource constraints
 - $\Omega^c = \Omega^i = 0$, same as before CBDC
 - but $\Omega^y = p(\kappa/\phi + \kappa^*/\phi^*)$ is larger
 - sum of balance sheets now longer \rightarrow higher cost
Central bank digital currency (CBDC)
 - rapidly growing literature with many proposals
 - this talk: interest-bearing reserve accounts for everyone

Market for liquidity
 - bank deposits: bond with option to sell on demand
 - credit lines: option to get loan on demand

Commercial banks
 - add value by providing liquidity
 - complementarity between bank deposits & credit lines

⇒ CBDC not complementary to credit lines, beneficial only if much cheaper to produce than deposits