### SEVERE WEATHER AND THE MACROECONOMY

Hee Soo Kim (Indiana) Christian Matthes (Indiana) Toan Phan (FRB Richmond\*) 05/11/2023 - Bundesbank Spring Conference

\*The views expressed here are of the authors & should not be interpreted as of the Federal Reserve Bank of Richmond or the Federal Reserve System

- The literature so far has focused on either:
  - 1. developing countries and lower frequencies (Dell, Jones, and Olken 2012; Hsiang and Jina 2014; Bakkensen and Barrage 2018...)
  - 2. subnational or micro-level studies for US (Colacito, Hoffmann, and Phan 2019...)

- The literature so far has focused on either:
  - 1. developing countries and lower frequencies (Dell, Jones, and Olken 2012; Hsiang and Jina 2014; Bakkensen and Barrage 2018...)
  - 2. subnational or micro-level studies for US (Colacito, Hoffmann, and Phan 2019...)
- This paper: Unapologetically macro perspective at business cycle frequencies for US

- The literature so far has focused on either:
  - 1. developing countries and lower frequencies (Dell, Jones, and Olken 2012; Hsiang and Jina 2014; Bakkensen and Barrage 2018...)
  - 2. subnational or micro-level studies for US (Colacito, Hoffmann, and Phan 2019...)
- This paper: Unapologetically macro perspective at business cycle frequencies for US
- Measurement problem

- $\cdot\,$  The literature so far has focused on either:
  - 1. developing countries and lower frequencies (Dell, Jones, and Olken 2012; Hsiang and Jina 2014; Bakkensen and Barrage 2018...)
  - 2. subnational or micro-level studies for US (Colacito, Hoffmann, and Phan 2019...)
- This paper: Unapologetically macro perspective at business cycle frequencies for US
- Measurement problem
- · This paper: Direct measures of extreme weather events

- $\cdot\,$  The literature so far has focused on either:
  - 1. developing countries and lower frequencies (Dell, Jones, and Olken 2012; Hsiang and Jina 2014; Bakkensen and Barrage 2018...)
  - 2. subnational or micro-level studies for US (Colacito, Hoffmann, and Phan 2019...)
- This paper: Unapologetically macro perspective at business cycle frequencies for US
- Measurement problem
- $\cdot$  This paper: Direct measures of extreme weather events
- Have these effects changed over time (evidence of adaptation)?

- The literature so far has focused on either:
  - 1. developing countries and lower frequencies (Dell, Jones, and Olken 2012; Hsiang and Jina 2014; Bakkensen and Barrage 2018...)
  - 2. subnational or micro-level studies for US (Colacito, Hoffmann, and Phan 2019...)
- This paper: Unapologetically macro perspective at business cycle frequencies for US
- Measurement problem
- $\cdot$  This paper: Direct measures of extreme weather events
- Have these effects changed over time (evidence of adaptation)?
- This paper: Use a nonlinear time series model to find that the effects of these shocks, but not their volatility, have become more severe.

## Data

A monthly index of climate risks, based on a basket of extreme climate events & sea level rise:

- 1. T90: Frequency of extreme high temperatures
- 2. T10: Frequency of extreme low temperatures
- 3. W: Frequency of high winds
- 4. P: Maximum amount of heavy precipitation
- 5. D: Longest period of consecutive dry days last 12 months
- 6. S: Change in sea level

- Weather data measured on grid with resolution of 2.5 by 2.5 degrees latitude and longitude (except *S*)
- Standardize each component (using location- and month-specific mean and standard deviation) relative to benchmark period (1961-1990)
- Average across all grid points/locations
- $ACI = mean(T90_{std} T10_{std} + P_{std} + D_{std} + W_{std} + S_{std})$



**Figure 1:** The six components of the ACI (low temperatures, high temperatures, heavy precipitation, drought, high wind and sea level) for the continental US.

### The Actuaries Climate Index



Figure 2



Figure 3: US data (after seasonal adjustment)

# Identification and Econometric Model

- I'll talk about identification in a linear model first to economize on notation
- · Definition of forecast error:  $\mathbf{u}_t = \mathbf{y}_t E_{t-1}\mathbf{y}_t$
- Going from forecast error to structural shocks:  $u_t = \Sigma e_t$ ,  $e_t \sim N(0, I)$
- For what follows next, assume that ACI is ordered first in  $\mathbf{y}_t$

### Assumption (Identification)

We assume that all variation in the ACI coming from unexpected changes from one month to the next (i.e. coming from  $\mathbf{u}_t$ ) is due to the ACI shock we want to identify.

$$\mathbf{u}_t^1 = \Sigma_{11} \mathbf{e}_t^1$$

This assumption implies that all elements in the first row of  $\Sigma$  except for the very first element  $\Sigma_{11}$  are equal to zero.

• Smooth Transition VAR with  $\mathcal{L} =$  12 lags:

$$\mathbf{y}_{t} = \tilde{z}_{t-1}(\mathbf{m}_{1} + \sum_{\ell=1}^{\mathcal{L}} \mathbf{A}_{\ell,1}\mathbf{y}_{t-\ell} + \Sigma_{1}\mathbf{e}_{t}) + (1 - \tilde{z}_{t-1})(\mathbf{m}_{2} + \sum_{\ell=1}^{\mathcal{L}} \mathbf{A}_{\ell,2}\mathbf{y}_{t-\ell} + \Sigma_{2}\mathbf{e}_{t}) \quad (1)$$

•  $0 \leq \tilde{z}_{t-1} \leq 1$ 

• Expectations and Forecast Error:

$$E_{t-1}\mathbf{y}_{t} = \tilde{z}_{t-1}(\mathbf{m}_{1} + \sum_{\ell=1}^{\mathcal{L}} \mathbf{A}_{\ell,1}\mathbf{y}_{t-\ell}) + (1 - \tilde{z}_{t-1})(\mathbf{m}_{2} + \sum_{\ell=1}^{\mathcal{L}} \mathbf{A}_{\ell,2}\mathbf{y}_{t-\ell})$$
(2)  
$$\mathbf{u}_{t} = (\tilde{z}_{t-1}\boldsymbol{\Sigma}_{1} + (1 - \tilde{z}_{t-1})\boldsymbol{\Sigma}_{2})\mathbf{e}_{t}$$
(3)

• Benchmark: time-transition

$$\tilde{z}_t := \frac{t+1}{T}, \quad \forall 0 \le t \le T-1$$

- Microeconometric studies have tried to tackle time variation by splitting their sample (Barreca, Clay, Deschene, Greenstone, and Shapiro 2016)  $\rightarrow$  nested in our approach
- Allowing for time variation is key to studying **adaptation**

- Bayesian approach
- Approximate posterior via sequential Monte Carlo (SMC) Herbst & Schorfheide, Bognanni & Herbst
- Standard Minnesota type-priors for A.
- Priors are the same for both sets of parameters (beginning and end of sample)  $\rightarrow$  differences over time driven by likelihood

## RESULTS













### **DIGGING DEEPER: INFLATION**

- Run same specification as before, but add core CPI inflation (y/y) as an additional variable
- Responses of other variables very similar to benchmark



### DIGGING DEEPER: LEVEL EFFECT ON LOG IP

- Run same specification as before, but replace y/y IP growth with m/m annualized IP growth - then cumulate those responses.
- Responses of other variables very similar to benchmark
- Reminiscent of Hsiang and Jina's finding of trend of effects of cyclones
- Substantial discussion of trend vs growth rate effects (Dell, Jones, and Olken)
- Useful for calibration of damage function in equilibrium / IA models



21

### HOW IMPORTANT ARE WEATHER SHOCKS?

| Beginning of Sample |         |           |                   |               |               |  |  |  |
|---------------------|---------|-----------|-------------------|---------------|---------------|--|--|--|
|                     | ACI     | IP growth | Unemployment rate | CPI inflation | interest rate |  |  |  |
|                     | h=12    | h=12      | h=12              | h=12          | h=12          |  |  |  |
| 16th                | 99.97%  | 0.03%     | 0.03%             | 0.21%         | 0.01%         |  |  |  |
| 50th                | 99.99%  | 0.30%     | 0.39%             | 1.52%         | 0.15%         |  |  |  |
| 84th                | 99.99%  | 1.16%     | 1.66%             | 3.96%         | 0.66%         |  |  |  |
| End of sample       |         |           |                   |               |               |  |  |  |
|                     | ACI     | IP growth | Unemployment rate | CPI inflation | interest rate |  |  |  |
|                     | h=12    | h=12      | h=12              | h=12          | h=12          |  |  |  |
| 16th                | 100.00% | 0.37%     | 0.10%             | 0.16%         | 0.11%         |  |  |  |
| 50th                | 100.00% | 1.79%     | 0.97%             | 1.12%         | 1.15%         |  |  |  |
| 84th                | 100.00% | 4.76%     | 3.31%             | 3.23%         | 4.92%         |  |  |  |

Table 1: Variance decomposition

|      |         |           | End of sample     |               |               |
|------|---------|-----------|-------------------|---------------|---------------|
|      | ACI     | IP growth | Unemployment rate | CPI inflation | interest rate |
|      | h=12    | h=12      | h=12              | h=12          | h=12          |
| 16th | 100.00% | 0.37%     | 0.10%             | 0.16%         | 0.11%         |
| 50th | 100.00% | 1.79%     | 0.97%             | 1.12%         | 1.15%         |
| 84th | 100.00% | 4.76%     | 3.31%             | 3.23%         | 4.92%         |

• Compare to Smets-Wouters: Monetary policy shock at posterior mode explains 10 percent or less of GDP growth and inflation at similar horizons.

## FURTHER RESULTS

### **CONSUMPTION GROWTH**



- Robustness checks
  - Splitting the sample:  $\tilde{z}_{t-1} = 0$  until 1990,  $\tilde{z}_{t-1} = 1$  after Result
  - With non-seasonally adjusted data Result
  - t-distributed errors Result
  - Detrended ACI Result
  - Principal Component Analysis Result
  - Alternative transition variables: lagged MA of ACI & lagged MA of CO2 concentration Results

### Splitting the sample: $\tilde{z}_{t-1} = 0$ until 1990, $\tilde{z}_{t-1} = 1$ after



### NON SEASONALLY ADJUSTED



### **T-DISTRIBUTED ERRORS**



back

28

### **DETRENDED ACI**



### PRINCIPAL COMPONENT ANALYSIS W/ DISAGGREGATE COMPONENTS



### • What drives our results?

- Adding one ACI component at a time to our STVAR
- Precipitation has no effect on IP growth either at beginning or end of the sample, but does increase unemployment at end of the sample **Result**
- The decrease in IP growth at end of the sample is driven by changes in both high and low temperatures **Result**
- Sea level changes lead to changes in inflation consistent with those we see in our benchmark results (Result)

### **PRECIPITATION SHOCK**



### HIGH TEMPERATURE SHOCK



### LOW TEMPERATURE SHOCK



### SEA LEVEL SHOCK



- Substantial changes in the effects of extreme weather events over the last decades
- Effects big enough now for macro people to care (we think)

- Substantial changes in the effects of extreme weather events over the last decades
- Effects big enough now for macro people to care (we think)
- Working hypothesis: lack of adaptation

- Substantial changes in the effects of extreme weather events over the last decades
- Effects big enough now for macro people to care (we think)
- Working hypothesis: lack of adaptation
- The road ahead: effects on different sectors, different regions

### ALTERNATIVE TRANSITION: LAGGED MA OF ACI



### RESPONSES TO ACI SHOCK: LAGGED MA OF ACI AS TRANSITION VARIABLE



### Alternative transition: Lagged MA of CO2 Concentration



# RESPONSES TO ACI SHOCK: LAGGED MA OF CO2 CONCENTRATION AS TRANSITION VARI-ABLE

