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Non-technical summary

Research Question

The beta dispersion, which is the spread of betas on a stock market, can be inter-

preted as a measure of market vulnerability. If this idea can be confirmed, then the

level of beta dispersion can indicate the ability of a market to cope with systematic

shocks. Based on the empirical beta dispersion observed in the US equity market,

this study attempts to develop a reasonable measure of beta dispersion.

Contribution

The study contributes by being the first to introduce and analyze the beta dis-

persion as vulnerability measure of the market. An economic justification for this

phenomenon as well as a comprehensive in-sample and out-of-sample analysis are

provided. It is shown that beta dispersion is able to complement well-known pre-

dictors of the market risk premium. In addition, the study contributes toward the

improvement of timing strategies by introducing distributional regressions to the im-

plementation of portfolio strategies. This new approach leads to a strong reduction

in the return volatility of the resulting timing strategies.

Results

The applicability of beta dispersion as vulnerability measure of the market can be

confirmed broadly predominately with the help of predictive regressions and out-

of-sample R2. A high beta dispersion can indicate a distinct market downturn.

Further, a focused analysis of the cascading effect supports the economic idea in

more detail. Multiple predictive regressions approve that beta dispersion extends

the already known predictors of the market risk premium. Hence, it can be stated

that beta dispersion improves the forecasting accuracy of the future market return.

In addition, distributional regressions are applied successfully to implement timing

strategies. This approach improves the risk-return characteristics of the strategies

clearly, especially by reducing the return volatility.



Nichttechnische Zusammenfassung

Fragestellung

Die Beta-Dispersion, also die Ausdehnung der Betafaktoren an einem Aktienmarkt,

kann als Verletzlichkeitsmaß des Marktes interpretiert werden. Insofern diese Annah-

me zutrifft, gibt die Höhe der Beta-Dispersion Auskunft darüber, wie gut ein Markt

einen systematischen Schock verkraften kann. Die vorliegende Studie versucht mit

Daten des US-Aktienmarktes ein aussagekräftiges Maß für die Beta-Dispersion zu

entwickeln.

Beitrag

Die Studie beschreibt und analysiert erstmalig die Beta-Dispersion als Verletzlich-

keitsmaß des Marktes. Es wird eine ökonomische Begründung für dieses Phänomen

entwickelt und eine umfassende “in-sample”und “out-of-sample”Untersuchung durch-

geführt. Es zeigt sich, dass die Beta-Dispersion bekannte Maße zur Vorhersage der

Marktrisikoprämie komplementieren kann. Zusätzlich trägt die Studie dazu bei, sog.

“Timingstrategien” wirksamer zu implementieren, indem diese auf Wahrscheinlich-

keitsverteilungen, die aus Verteilungsregressionen geschätzt wurden, basiert werden.

Dieser neue Ansatz führt zu einer deutlichen Verringerung der Volatilität der hieraus

resultierenden Strategien.

Ergebnisse

Die Eignung der Beta-Dispersion als Verletzlichkeitsmaß eines Marktes kann wei-

testgehend bestätigt werden. Eine hohe Beta-Dispersion kann auf einen erhebli-

chen Markteinbruch hindeuten. Eine zielgerichtete Analyse des Kaskadeneffekts un-

terstützt darüber hinaus die ökonomische Idee hinter der Beta-Dispersion. Multiple

Regressionen zur Bestimmung der Prognosegüte bestätigen zudem, dass die Beta-

Dispersion bereits bekannte Maße zur Vorhersage der Marktrisikoprämie ergänzt.

Die Beta-Dispersion trägt damit zu einer höheren Vorhersagegenauigkeit der Markt-

risikoprämie bei. Schließlich kann gezeigt werden, dass Verteilungsregressionen er-

folgreich beim Aufsetzen von Timingstrategien eingesetzt werden können. Dieser

Ansatz verbessert deutlich die Risiko-Rendite-Eigenschaften der Strategien, insbe-

sondere da die Volatilität reduziert werden kann.
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1 Introduction

The prediction of the market risk premium has been receiving considerable atten-
tion from both academics and investors. Over the past decades, a growing number
of studies have developed macroeconomic and technical indicators that can forecast
the market risk premium, at least to a certain extent (e.g., Ang and Bekaert (2007);
Campbell and Thompson (2008); Rapach and Zhou (2013); Neely, Rapach, Tu, and
Zhou (2014)). The precise prediction of future returns is almost impossible, but
even reliable predictions of the sign of the future return can be very valuable to
different stakeholders. It helps investors to allocate their assets, it allows for the
cost of capital calculation in business valuation, and it can support supervisors in
monitoring the financial stability of markets. This study introduces beta dispersion
as a novel and successful predictor of the market return and provides a coherent
economic explanation on this measure. The study also presents an innovative em-
pirical implementation of a market timing strategy to show that the predictions
are useful to investors. Besides this investment perspective, the introduced beta
dispersion captures a facet of the systemic risk, which may contribute toward the
quantification of financial stability by supervisors.

The beta dispersion, which is defined as the time-varying spread of stock betas, can
be interpreted as a vulnerability measure of a market, particularly, measuring the
magnitude of a downturn. The more the betas are dispersed, that is, the more the
number of stocks with extremely high and low betas that are traded in a market,
the more inhomogeneously the stocks will be affected by and react to a systematic
shock. These market-wide shocks are inherently precarious for companies with high
betas because such companies are hit seriously. Consequently, these shocks cause a
sharp decline in the fundamentals of companies (e.g., sales and profit, among oth-
ers), thereby increasing insolvency risks. Moreover, the collapse of these companies
might trigger contagion effects for comparable and interconnected companies (e.g.,
suppliers), and this scenario might lead to an increase in the level of financial distress
risk in the whole market. This can be inferred to as an endogenous shock caused
by an initial exogenous shock and can be interpreted as the subsequent systematic
shock. In comparison, a market with a narrow beta dispersion would be more likely
to experience only the initial systematic shock. Therefore, beta dispersion should
provide a measure for a market’s vulnerability to systematic shocks. It must indi-
cate the probability and severity of the expected market decline, and, consequently,
should be able to predict future market returns. In this sense, beta dispersion can
be linked to financial stability. If beta dispersion is a valuable predictor of the
severeness of market downturns, then the level of beta dispersion can indicate the
ability of a market to cope with systematic shocks. Therefore, beta dispersion can
also serve as a measure for systemic risks and the stability of the financial market.

The study contributes by being the first to introduce and analyze the beta dis-
persion as vulnerability measure of the market. An economic justification for this
phenomenon as well as an in-depth analysis are provided. Besides, a reasonable mea-
sure for beta dispersion as an indicator of the vulnerability of a market is derived.
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This measure is studied and quantified empirically in a comprehensive way. Predic-
tive regressions confirm the ability of beta dispersion to predict the future market
return. The results can be verified by controlling for other well-known market return
predictors, such as the cay factor, dividend yield, and short rate. Importantly, beta
dispersion is also a valuable predictor of market return out-of-sample. It can clearly
compete with and extend the already known predictors of the market risk premium.
Hence, it can be stated that beta dispersion improves the forecasting accuracy of
the future market return.

The study also contributes toward the improvement of timing strategies by intro-
ducing distributional regressions to the implementation of portfolio strategies. Beta
dispersion is used as conditional information to estimate the distribution of the
future market return. The probability that the market return will be positive is
used as a decision criterion whether to invest in the market. This approach leads
to a strong reduction in the return volatility of the resulting timing strategies and
beats the benchmarks in terms of return per unit of risk. The study shows that
investors can profit from the predictive relationship between beta dispersion and
market return. It is demonstrated that the concept of distributional regressions is
promising in the financial context and can be modified to other models of prediction
for enhancing timing strategies.

First, this study is related to the literature on the prediction of market returns
and the equity premium (among others Lettau and Ludvigson (2001); Goyal and
Welch (2003); Lewellen (2004); Avramov and Chordia (2006); Ang and Bekaert
(2007); Spiegel (2008); Cochrane (2008); Campbell and Thompson (2008); Kellard,
Nankervis, and Papadimitriou (2010); Pollet and Wilson (2010); Rapach, Strauss,
and Zhou (2010); Faria and Verona (2018)). Welch and Goyal (2008) provide a
comprehensive overview of the most common macroeconomic predictors of the mar-
ket return. They conclude that most predictors perform poorly out-of-sample and
would not help an investor to profit from forecasts. Their analysis concludes that
the historical mean of the market return seems to be the most stringent and suc-
cessful predictor. Neely et al. (2014) as well as Baetje and Menkhoff (2016) compare
macroeconomic predictors to technical indicators typically used by practitioners and
reason that the latter perform just as well as macroeconomic predictors in- and out-
of-sample. My study adds to the literature by demonstrating that beta dispersion
contains unregarded information about future market returns and can successfully
predict the market return in- and out-of-sample. Additionally, the study adds beta
dispersion to the existing range of predictors of market return increasing the pre-
dictive accuracy of the market return.

As the definition of beta dispersion is inspired by the concept of return dispersion,
this study is related to the literature on return dispersion. The return dispersion
is a measure of the cross-sectional variability in stock returns at a certain point in
time. A high return dispersion occurs in an economic recession and is positively
related to the volatility level of the market and the momentum factor (Bekaert and
Harvey, 2000; Christie and Huang, 1995; Connolly and Stivers, 2003; Stivers, 2003;
Connolly and Stivers, 2006; Jiang, 2010). Maio (2016) explicitly studies return dis-
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persion as the predictor of the future market return and confirms this connection.
Contrarily, this study focuses on the cross-sectional standard deviation of betas,
which resembles return dispersion, but explicitly focuses on systematic risk. Addi-
tionally, the interpretation of beta dispersion as a market return predictor differs
from that of return dispersion. The beta dispersion is constructed to be a measure of
systemic imbalances in the market, and, therefore, predicts stumbles of the market,
while return dispersion is an alternative measure of volatility. My study shows that
beta dispersion and return dispersion complement each other and can co-exist in
predictive analyses.

Finally, this study is related to market timing strategies and their performance
evaluation, which have been extensively discussed in the literature (Jeffrey, 1984;
Pfeifer, 1985; Bauer Jr and Dahlquist, 2001; Kostakis, Panigirtzoglou, and Ski-
adopoulos, 2011; Neuhierl and Schlusche, 2011; Hallerbach, 2014; Dichtl, Drobetz,
and Kryzanowski, 2016). To determine the allocation between stock and money
market, technical, macroeconomic, and sentiment indicators have been introduced
and tested for their ability to time the market (Brock, Lakonishok, and LeBaron,
1992; Shen, 2003; Chen, 2009; Feldman, Jung, and Klein, 2015). Unlike stock se-
lection strategies, market timing strategies try to achieve an outperformance only
by driving investment in the market portfolio during market upturns and prevent
investments during market downturns without any selection of single assets (Sharpe,
1975). This study introduces a new possibility of differentiating between upturns
and downturns with the help of distributional regression and chooses a careful in-
vestment approach that also considers the probability of a positive market return.
The introduced strategies outperform the benchmark, even when the performance is
accounted for general shortcomings of market timing strategies (Zakamulin, 2014).

The remainder of this paper is structured as follows. In Section 2, the economic
idea why beta dispersion is a measure of market vulnerability is developed and the
methodology how to measure the beta dispersion is described. Section 3 presents
the data. Section 4 displays the empirical results, consisting of descriptive statistics,
statistical analyses, and market timing strategies and their performance. Section 5
concludes the paper.

2 Beta Dispersion as a Measure of Market Vul-

nerability

2.1 Economic Idea

The spread between high betas and low betas on a market is defined as beta disper-
sion. In other words, beta dispersion refers to the deviation of the betas’ distribution
from its mean at a particular point in time. By definition, the market beta equals
one and, accordingly, betas of all stocks in that market have to group around this
weighted mean. Until now, not much attention has been paid to how widespread
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or concentrated the individual betas are and whether this has any impact on the
stability of the market and, consequently, on the market return.

To illustrate the economic idea behind the beta dispersion as a measure for mar-
ket vulnerability, two markets that are completely identical, except for their specific
beta dispersion, can be considered. On market A, the beta dispersion is narrow, that
is, the betas of all the stocks are clotted closely around one. Contrarily, on market
B, the beta dispersion is large, and the betas are widespread, meaning that some
stocks have beta values close to zero and some have extremely high betas. Now,
both markets experience an identical systematic exogenous shock. All the stocks
in market A should react very similarly because the companies are affected rather
alike by the shock. Hence, this should be reflected in the stock prices as the shock
hits all the stocks nearly equally strongly owing to their more or less equal betas.
On market B, stocks with a low beta, close to zero, hardly react to the systematic
shock, because the companies are hardly affected in their business operations by
the shock. Contrarily, stocks with a high beta react intensely, indicating that for
such companies the systematic shock might threaten their businesses in a way which
jeopardizes their economic survival. This increases the risk of financial distress in
market B. Since most of the firms in a market are interconnected, the collapse of en-
dangered high-beta firms might spill over to those firms that are strongly connected
to them. The spillover spreads via all possible transmission channels. This includes
physical, legal, and intangible ways, such as loss of confidence. These contagion
effects trigger an endogenous second round systematic shock (the risen level of dis-
tress risk) on market B and can lead to an overall market downturn if this spillover,
or better yet, cascading effect proceeds. This makes beta dispersion an indicator of
the vulnerability of the market and represents systemic risk characteristics of the
market.

The larger the beta dispersion of a specific market, the higher the likelihood of a
subsequent second-round shock following an initial exogenous shock. Therefore, a
market with a high beta dispersion is more likely to be financially unstable com-
pared to a market with a relatively narrower beta dispersion. If the beta dispersion
is high, the market is especially endangered towards systematic shocks. With a high
beta dispersion, the probability rises that a moderate systematic shock evolves and
leads to a severe market decline due to the cascading effect. For example, during
the subprime crisis, the financial institutions often exhibited extremely high betas.
Even a moderate market shock can cause serious problems for such high-beta firms
and affect the entire financial system because of the interconnectedness of financial
institutions. Large beta dispersion and the concentration of high-beta companies
within a specific industrial sector eventually lead to a severe overall market down-
turn when compared to a market with a more moderate beta dispersion. In this
context, the beta dispersion can be considered a measure for the vulnerability of the
market stability. Contrarily, such a strong downturn would be less likely if there
were no stocks with extremely high betas or the high-beta stocks were less indus-
trially concentrated and interconnected. This would make the cascading effect less
pronounced. If this conclusion applies, then the beta dispersion would not only be
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a measure for the vulnerability of a market and a predictor of the magnitude of
future market downturns but also a promising approach of extending systemic risk
measures.

The beta dispersion can and should be clearly differentiated from the return dis-
persion in two ways. First, the beta dispersion is suitable as an explicit measure
for market vulnerability and it focuses on the systematic component of stocks. The
return dispersion can be understood as a model-free measure of market volatility.
Angelidis, Sakkas, and Tessaromatis (2015) show that return dispersion can predict
the expected market return as it is an alternative specification of market risk. The
beta dispersion has a different economic idea and should explicitly predict the extent
of market downturns. The heterogeneous behavior of companies and their business
operations is accompanied with different sensitivities to systematic shocks, which
is highlighted by this definition. The beta dispersion is better suited to measure
this heterogeneity in stock returns because the beta standardizes the diverse return
movements and makes them comparable in terms of sensitivity toward systematic
risk. It must be noted that a large return dispersion can be caused by idiosyncratic
risk and, thus, can be much less informative about market vulnerability, which is
of special interest in this study. The idea that a cascading effect pushes the market
into a crisis seems to be more straightforward when reducing the source of risk to
systematic shocks.

2.2 Measures of Beta Dispersion

Based on the economic explanation, for the subsequent analysis, it is crucial to re-
flect how the beta dispersion can be measured to depict the economic idea and not
waste any information. The first notion to measure the spread between high and
low betas on the market is to compare the tails of the beta distribution in terms
of extreme quantiles. Besides this, a reasonable definition of beta dispersion can be
derived based on the return dispersion, which is, as described, the cross-sectional
deviation of stock returns from their value-weighted mean. It quantifies the hetero-
geneity of stock returns at a certain point in time. In this sense, a beta dispersion
will be represented by the cross-sectional deviation of betas from their mean and
capture how heterogeneous the betas are at a certain point in time. Both defini-
tions of beta dispersion combine a cross-sectional and a time dimension of market
properties and aggregate them into a single measure of market vulnerability. Each
measure emphasizes a specific feature of beta dispersion. While the first approach
concentrates on the stocks that are most endangered following the economic idea of
the beta dispersion, the second approach considers all the stocks in a market and,
therefore, all possible information. Hence, both measures are defined and studied.

Both measures of beta dispersion are calculated based on the estimated betas of all
stocks. The first approach measures the current difference between the mean beta
of the high-beta quantile β̄Hight (90%-quantile) and the mean beta of the low-beta
quantile β̄Lowt (10%-quantile) of all constituent stocks of the market ranked by their
beta (compare Equation 1):
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QBDt = β̄Hight − β̄Lowt . (1)

The second approach measures the value-weighted as well as the equal-weighted
square root squared deviation of all betas from their mean, which is formally defined
in Equation 2:

BDt =

√√√√ n∑
i=1

(
wi,t · βi,t −

n∑
i=1

(wi,t · βi,t)

)2

. (2)

In this analysis βi,t is the estimated beta of stock i and wi,t is the value- or equal-
weighted share of stock i in the market. The value-weighted version gives additional
impact to the large stocks in the market. However, large firm-size does not automat-
ically indicate that the company is highly interconnected with other firms, which is
vital to the idea of beta dispersion. The equal-weighted version of the Equation 2
only focuses on the extent to which the betas are widespread, independently of other
firm characteristics.

3 Data

The empirical analyses on beta dispersion are based on daily stock prices and market
values of the S&P 500 Index and its constituents from April 1964 to December 2016.
The data source for the stock data is the Wharton Research Data Service (WRDS),
and the period is constrained by the availability of detailed information on the
constituents of the S&P 500. In addition, the industry of each stock in the S&P 500
Index is needed. To classify the stocks, the S&P standard sector definition is used
to ensure that the stocks are allocated to ten different, broad sectors including
consumer discretionary, consumer staples, energy, financials, healthcare, industrials,
materials, real estate, technology, and utilities. The focus on 500 highly liquid stocks
is advantageous as it ensures the availability of the daily price data, which, in turn,
ensures an appropriate beta estimation. Moreover, the availability of highly liquid
exchange-traded funds (ETFs) on the S&P 500 Index facilitate easy trading the
market, which will be crucial to the market timing strategy at a later stage. This
also ensures the implementation of the timing strategies at relatively low transaction
costs. As the risk-free interest rate, the 1-month T-bill rate from Kenneth French’s
website is used. For additional analysis, the cay factor (Lettau and Ludvigson, 2001),
which is obtained from Martin Lettau’s website, dividend yield of the S&P 500 Index
(from WRDS), and volatility index (VIX) (accessed via Datastream) are needed.
Further the aligned sentiment index (Huang, Jiang, Tu, and Zhou, 2015) used is
provided by Guofu Zhou’s website. Additional variables are calculated based on the
described data.1

1A precise description of the additional variables and their calculation can be found in Appendix
A.1.
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Figure 1: Time Series of Beta Dispersion and S&P 500 Index Level
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Note: This figure shows the time series of beta dispersion and the level of the S&P 500 Index
from the period April 1964 to December 2016. The beta dispersion is calculated as the difference
between the 90%- and 10%-quantile of the beta-sorted constituents of the S&P 500 Index.

Betas are estimated with different rolling windows from daily returns over 3, 6,
12, and 36 months. These window lengths ensure that sufficient observations are
available to estimate reliable betas. The estimates are calculated at the end of each
month starting in April 1964 and ending in December 2016. These betas are used
to calculate the different approaches to measure the beta dispersion as described in
the previous section.

4 Empirical Implementation and Results

4.1 Empirical Description of the Beta Dispersion

A visual analysis of beta dispersion and market performance can give a basic under-
standing of the underlying predictive relationship. In order to visualize the economic
idea, Figure 1 shows the price development of the S&P 500 Index, representing the
market in this study, and the beta dispersion in this market.
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In this figure, the beta dispersion is calculated with the quantile approach, following
Equation 1. This figure supports the hypothesis that beta dispersion can be inter-
preted as a vulnerability measure and the economic idea seems to hold. The beta
dispersion had been on an exceptionally high level on previous occasions of major
market downturns. This was particularly noticeable around the dotcom bubble in
2000 and was less pronounced from 2008 onwards. The examination of separate time
series of the 90% quantile and the 10% quantile of beta distribution leads to the
conclusion that the variation of the beta dispersion is mainly caused by variations
in the high-beta quantile. The variation of the 10% quantile (low-beta quantile)
is relatively narrow and stable over the sampled period. Contrarily, the variability
of the 90% quantile (high-beta quantile) is remarkable. This corresponds to the
economic idea that the cascading effect is caused by the stumbling of the high-beta
companies.

The effect of a second endogenous shock should be more pronounced if most of the
stocks with high betas are operating within the same industrial sector. A closer look
is now taken at the high-beta stocks. If the industry-specific concentration in the
high-beta quantile coincides with a high beta dispersion, then the cascading effect
on other companies in different industrial sectors would be intensified as there will
be an increase in the bankruptcy risk of not only one company but of the whole
sector. Figure 2 shows that the industry-specific concentration of high-beta stocks
increases prior to market downturns and also slightly in advance of increases in the
beta dispersion. This can be seen in the dotcom bubble of 2000 and the subprime
crisis of 2008. The concentration is measured as the maximum absolute number of
stocks from the same sector included in the high-beta quantile at a certain point in
time.

In 2001, a maximum of 45 out of 50 stocks belonged to the same industrial sector.
The sectors in which the stocks were concentrated were those that were hit by the
crisis first. Contrary to the high-beta quantile, the industrial concentration of stocks
in all other quantiles is rather stable and, by far, not as highly concentrated as in
the high-beta quantile. The imbalance was due to the technology stocks before the
dotcom bubble and financial sector stocks before the subprime crisis. These findings
corroborate the hypothesis why the second endogenous shock is extensive if an initial
systematic exogenous shock simultaneously and strongly hits a whole industrial
sector. A high beta dispersion combined with a high industrial concentration seems
to be a strong measure for the vulnerability of a market. This means systematic
shocks cannot be absorbed easily by this market.

4.2 Predicting Market Returns – In-sample Evaluation

Predictive regressions are typically conducted to investigate and quantify an as-
sumed predictive relationship. The dependent variable, here the log excess return of
the market RM,t, is regressed on a lagged explanatory or better predictive variable
Pt−1. The general form of this linear regression is shown in Equation 3 below:
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Figure 2: Beta Dispersion and the Concentration of Stocks in One Sector
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Note: This figure shows the time series of beta dispersion and the concentration of the stocks in
one specific sector in the high-beta decile from April 1964 to December 2016. The concentration
comprises the absolute amount of stocks in the quantile that stem from the same sector. The
S&P standard sector definition is used for this classification to ensure that the stocks are allocated
to 10 different sectors (consumer discretionary, consumer staples, energy, financials, healthcare,
industrials, materials, real estate, technology, and utilities). The maximum concentration is 50
stocks due to the construction of deciles.
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RM,t = α +
∑

βPiPi,t−1 + εt, (3)

with βPi is the coefficient of predictive variable i, and εt being the disturbance term
of the regression. This form of analysis is also referred to as in-sample prediction
because the whole data sample is used to estimate the regression parameters. Pre-
dictive regressions face statistical particularities that have to be respected. If the
dependent and predictive variables are both calculated from the same data (e.g.,
asset prices), then the autocorrelation in the εt can be induced because the data
point at the split betweent− 1 and t is included in the calculation of both vari-
ables (Stambaugh, 1999). Another potential source of artificial autocorrelation and,
thus, biased estimators, is a dependent variable calculated over more than one pe-
riod. These problems can be solved by bootstrapping and simulation of critical test
statistics (Bollerslev, Tauchen, and Zhou, 2009; Bollerslev, Marrone, Xu, and Zhou,
2014) and by following the correction proposed by Britten-Jones, Neuberger, and
Nolte (2011). To address the first mentioned source of artificial autocorrelation, it
is ensured that there is no overlap between the data used to calculate the dependent
and the predictive variables. In addition, by a transformation of the explanatory
variables matrix, the autocorrelation in the error terms, which is caused by over-
lapping periods, can be removed. This correction for artificial autocorrelation of
Britten-Jones et al. (2011) is used for all the following regressions.

To test whether the beta dispersion is informative for future market movements,
predictive regressions are run to explain the log excess return of the market (RM,t)
at time t for the next 3, 6, and 12 months. To begin with, the lagged measure of
the beta dispersion QBDt−1, respectively, the value-weighted and equal-weighted
BDt−1, as defined in Equation 1 and in Equation 2, respectively, is the only ex-
planatory variable. The predictive regression follows the below-mentioned form:

RM,t = α + β · (Q)BDt−1 + εt. (4)

The results of these predictive regressions with the equal-weighted beta dispersion
(BDEW ) as explanatory variable for the log excess return of the market are given
in Table 1.2 Panel A presents the results for the 3-month market return, Panel B
for the 6-month market return, and Panel C for the 12-month market return.

All specifications of the beta dispersion generate significant results at least at a
10% level, which is generally much higher. All coefficients have a negative sign, as
expected, following the idea of beta dispersion as a vulnerability measure. It shows
that a very high beta dispersion in the estimation period tends to be associated with
a negative market return in the following period. The shorter the estimation period
of the betas, the more significant the coefficient in the predictive regression. The
in-sample R2

adj are the highest in the estimation of beta, with 6 months of daily data.

2The results of the predictive regression with the value-weighted beta dispersion (BDVW ) and
the beta dispersion based on quantiles (QBD) are given in Appendix A.2, because they hardly
give any additional insights.
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Table 1: Linear Predictive Regressions with BDEW

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0539 0.0590 0.0585 0.0607
(0.0000) (0.0001) (0.0002) (0.0007)

Beta Dispersion -0.0838 -0.1248 -0.1467 -0.1868
(0.0033) (0.0049) (0.0068) (0.0159)

R2
adj 0.0228 0.0234 0.0230 0.0210

Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0943 0.1055 0.1010 0.1019
(0.0000) (0.0000) (0.0003) (0.0016)

Beta Dispersion -0.1468 -0.2266 -0.2518 -0.3066
(0.0014) (0.0019) (0.0120) (0.0279)

R2
adj 0.0237 0.0252 0.0231 0.0198

Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.1547 0.1706 0.1677 0.1623
(0.0000) (0.0003) (0.0010) (0.0068)

Beta Dispersion -0.2216 -0.3390 -0.3898 -0.4424
(0.0001) (0.0107) (0.0248) (0.0841)

R2
adj 0.0204 0.0214 0.0204 0.0164

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, and Panel C) as the dependent variable. BD is the cross-sectional equal-weighted stan-
dard deviation of the individual stocks’ betas (compare Equation 2). Beta is estimated from daily
returns over a period of 3, 6, 12, and 36 months. The adjusted R2

adj of the predictive regressions
are given in the last row of the table. Overlapping periods of the dependent variable are addressed
by using the correction proposed by Britten-Jones et al. (2011). The calculations also use the
Newey–West estimator with corresponding lags to account for heteroscedasticity and autocorrela-
tion in the residuals. The p-value is given in parenthesis for every coefficient. Coefficients that are
significant at least at a 10% level are printed in boldface.
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For this estimation period, the calculated betas are relatively stable as around 125
data points are used for the estimation, and hence short-term disturbances disappear
during this period. All conclusions drawn from Table 1 are applicable for the other
two measures (BDVW and QBD). Nevertheless, the BDEW slightly outperform
BDVW and QBD for the long-horizon prediction. This finding is not surprising as
the BDEW , on the one hand, neglects firm characteristics (e.g. size) and, on the
other hand, includes information of all the stocks in the market, while the QBD
measure only focuses on the tails of the beta distribution. Owing to the similarity
in results, only the results of the equal-weighted BD measure are reported in the
following section.3

The rationale of the beta dispersion is based on the ability of the beta dispersion to
predict especially the magnitude of a market downturn due to the cascading effect,
but not be the trigger. Hence, a dummy will be included in the regression capturing
this cascading effect. The dummy measures whether the market has been already
hit by a systematic shock, observable through negative market returns in the month
prior to the estimation of the beta dispersion. The regression looks as follows:

RM,t = α + β1 ·Dt−2 ·BDt−1 + β2 ·BDt−1 + εt, (5)

where all variables correspond to Equation 4 extended by the dummy Dt−2 times the
beta dispersion. The dummy becomes one if the market return in t− 2 is negative
and becomes zero if it is positive. This explicitly measures the predictive efficiency
of beta dispersion after the market experiences a systematic shock and specifically
quantifies the described cascading effect. Table 2 shows the results.

The results reveal that the product of dummy and beta dispersion is meaningful.
The sign of the regression coefficient of this variable is negative in all cases and
mostly significant. This means that the beta dispersion in combination with a
market decline can help to evaluate how hard a market will be hit by a shock. The
results show that the shorter the estimation period of the betas, the more informative
would be the beta dispersion. Nevertheless, the actual level of the beta dispersion
still plays a role and its coefficients are still significantly negative. Therefore, the
idea of the cascading effect caused by a high beta dispersion intensifying a systematic
shock seems applicable.

Previous research has shown that the predictive efficiency of a variable can heavily
depend on the market regime (Baltas and Karyampas, 2018) and that predictive
power is higher in bad times (Garcia, 2013; Cujean and Hasler, 2017). In addition,
Tu (2010) introduces a bayesian switching approach to distinguish between market
regimes and shows how important it is for portfolio decisions to differentiate reli-
ably between regimes. To account for this, in a next step the univariate predictive
regression is performed for a good and a bad market regime separately. Two issues
are arising to implement this analyses. First, how should good and bad regimes be

3All analyses also apply for the value-weighted BD and the QBD measure. As they do not deliver
additional insights, the results are not displayed in this study, but are available upon request.
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Table 2: Predictive Regressions with Dummy for Negative Market Returns

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Dt−2 ·BDt−1 -0.0278 -0.0327 −0.0273 −0.0257
(0.0319) (0.0524) (0.1016) (0.1376)

Beta Dispersion -0.0736 -0.1094 -0.1324 -0.1679
(0.0057) (0.0180) (0.0182) (0.0250)

R2
adj 0.0253 0.0251 0.0231 0.0205

Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Dt−2 ·BDt−1 -0.0470 -0.0513 -0.0450 −0.0441
(0.0177) (0.0377) (0.0748) (0.1131)

Beta Dispersion -0.1300 -0.2029 -0.2282 -0.2748
(0.0014) (0.0024) (0.0098) (0.0380)

R2
adj 0.0270 0.0272 0.0237 0.0200

Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Dt−2 ·BDt−1 -0.0626 -0.0666 −0.0594 −0.0536
(0.0415) (0.0668) (0.1057) (0.1494)

Beta Dispersion -0.1989 -0.3081 -0.3590 -0.4050
(0.0074) (0.0083) (0.0160) (0.0847)

R2
adj 0.0219 0.0220 0.0203 0.0163

Note: This table shows the results of the predictive regressions comparable to Table 1, with an
additional dummy Dt−2 controlling for the market return of the period prior to the estimation
of the beta dispersion. The dummy variable should indicate a systematic shock in the prior
period and focus on the ability of the beta dispersion to predict how pronounced will be the
evolution of a market downturn, given a high beta dispersion. The adjusted R2

adj of the predictive
regressions are given in the last row of the table and the p-value is given in parenthesis for every
variable. The calculations use the Britten-Jones et al. (2011) correction for overlapping periods in
the dependent variable and use the Newey–West estimator with corresponding lags to account for
heteroscedasticity and autocorrelation in the residuals. Coefficients that are significant at least at
a 10% level are printed in boldface.
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determined and second, is beta dispersion able to predict the market return in both
regimes equally well. To distinguish between good and bad regime the dummy from
the preceding regression is used as a basic differentiation. For a more sophisticated
determination, the market regimes are identified with a markov switching model.
The results of the split regressions are reported in Table 3 and Table 4.4

The results align with the findings in the literature. The beta dispersion seems
to be a valuable predictor for future market return in bad regimes, but looses its
power in good regimes. The coefficients of beta dispersion in the bad regime are
all negative and significant at 5% level. This finding is not too surprising, since
the economic explanation of the beta dispersion is targeting at market downturns
and the presence of a previous systematic shock. Therefore, the predictor should be
especially accurate in bad regimes.

As beta dispersion, on a stand-alone basis, is a promising predictor of the market
return, it is tested whether the measure maintains its explanatory power if further
variables that have been found to be successful predictors in previous studies are
added to the Equation 4. Particularly, the dividend yield of the S&P 500 Index and
the short rate are used as these variables jointly predict market returns according
to Ang and Bekaert (2007). Moreover, the cay factor from Lettau and Ludvigson
(2001) and the average variance and average correlation (in the estimation period)
of all constituents of the market from Pollet and Wilson (2010) are used. Whaley
(2009) shows the predictive characteristics of the VIX in terms of a fear index for
market developments; thus, this index is also included. In addition, the return
dispersion (Maio, 2016) is included to control for redundant information in the two
dispersion measures. The aligned investor sentiment index by Huang et al. (2015)
is included to cover a different facet of successful predictors. Finally, three technical
indicators each in its most successful specification according to Neely et al. (2014)
are included: the moving average of the market return as the difference between the
2-month and 12-month moving average, the 12-month momentum and the difference
between the 1-month and 12-month moving average of on-balance volume. Only one
of these technical predictor is included in the regression at a time to prevent these
predictors to interfere with each other. Table 5 shows the results of the multiple
predictive regressions with the moving average as technical indicator.5

All coefficients of the beta dispersion measure retain their signs. For the 3-month
and the 6-month market return (Panel A and B), the beta dispersion adds value,
especially when it is estimated over a longer horizon. Concerning prediction for the
12-month market returns (Panel C), beta dispersion is considered one of the most
valuable contributors to the prediction accuracy, besides the VIX and the return
dispersion. The multiple prediction has a much higher predictive accuracy than
the simple regression, and the R2

adj are comparable to prior research. Nevertheless,
the beta dispersion captures specific information that cannot be covered by other

4The results from the alternative differentiation of regimes are comparable to the basic differ-
entiation. Hence, these results are only displayed in Appendix A.3

5The regression outputs with momentum and moving average of on-balance volume can be
found in Appendix A.4 and Appendix A.5. The results are comparable to the here described.
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Table 3: Linear Predictive Regressions with BDEW in Good Market Regimes

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0087 0.0082 0.0085 0.0067
(0.0009) (0.0032) (0.0020) (0.0031)

Beta Dispersion 0.0083 0.0133 0.0137 0.0318
(0.5502) (0.5031) (0.5244) (0.1916)

R2
adj −0.0002 0.0004 −0.0001 0.0033

Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0163 0.0165 0.0173 0.0134
(0.0001) (0.0002) (0.0002) (0.0026)

Beta Dispersion 0.0204 0.0257 0.0255 0.0633
(0.3608) (0.4396) (0.5025) (0.1827)

R2
adj 0.0027 0.0021 0.0009 0.0079

Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0321 0.0322 0.0331 0.0266
(0.0000) (0.0000) (0.0001) (0.0006)

Beta Dispersion 0.0433 0.0565 0.0613 0.1288
(0.2526) (0.2939) (0.3531) (0.1148)

R2
adj 0.0076 0.0070 0.0055 0.0174

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, and Panel C) as the dependent variable during a good market regime. BD is the cross-
sectional equal-weighted standard deviation of the individual stocks’ betas (compare Equation 2).
Beta is estimated from daily returns over a period of 3, 6, 12, and 36 months. The differentiation
between a good and a bad market regime is based on a negative market return of the period prior
to the estimation of the beta dispersion. The adjusted R2

adj of the predictive regressions are given
in the last row of the table. Overlapping periods of the dependent variable are addressed by using
the correction proposed by Britten-Jones et al. (2011). The calculations also use the Newey–West
estimator with corresponding lags to account for heteroscedasticity and autocorrelation in the
residuals. The p-value is given in parenthesis for every coefficient. Coefficients that are significant
at least at a 10% level are printed in boldface.
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Table 4: Linear Predictive Regressions with BDEW in Bad Market Regimes

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0212 0.0219 0.0216 0.0213
(0.0003) (0.0001) (0.0001) (0.0004)

Beta Dispersion -0.0346 -0.0486 -0.0552 -0.0616
(0.0343) (0.0169) (0.0203) (0.0678)

R2
adj 0.0092 0.0117 0.0110 0.0089

Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0425 0.0436 0.0424 0.0415
(0.0002) (0.0001) (0.0005) (0.0005)

Beta Dispersion -0.0710 -0.0979 -0.1040 -0.1140
(0.0041) (0.0027) (0.0050) (0.0219)

R2
adj 0.0197 0.0237 0.0195 0.0152

Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0800 0.0813 0.0798 0.0769
(0.0001) (0.0001) (0.0001) (0.0004)

Beta Dispersion -0.1177 -0.1586 -0.1714 -0.1729
(0.0030) (0.0028) (0.0037) (0.0226)

R2
adj 0.0272 0.0311 0.0266 0.0175

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, and Panel C) as the dependent variable during a bad market regime. BD is the cross-
sectional equal-weighted standard deviation of the individual stocks’ betas (compare Equation 2).
Beta is estimated from daily returns over a period of 3, 6, 12, and 36 months. The differentiation
between a good and a bad market regime is based on a negative market return of the period prior
to the estimation of the beta dispersion. The adjusted R2

adj of the predictive regressions are given
in the last row of the table. Overlapping periods of the dependent variable are addressed by using
the correction proposed by Britten-Jones et al. (2011). The calculations also use the Newey–West
estimator with corresponding lags to account for heteroscedasticity and autocorrelation in the
residuals. The p-value is given in parenthesis for every coefficient. Coefficients that are significant
at least at a 10% level are printed in boldface.
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Table 5: Predictive Regressions with Additional Explanatory Variables

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0176 0.0225 0.0447 0.0778
(0.8048) (0.7518) (0.4716) (0.1679)

Beta Dispersion −0.0025 −0.0145 -0.0690 -0.1629
(0.9588) (0.8222) (0.0958) (0.0880)

DivY −0.0008 −0.0013 −0.0039 −0.0108
(0.9519) (0.9303) (0.7714) (0.4160)

SR 0.0374 0.0355 0.0257 −0.0066
(0.5770) (0.6091) (0.6996) (0.9190)

CAY −0.7653 −0.7569 −0.7650 −0.6429
(0.3723) (0.3705) (0.3639) (0.4609)

AV -0.6217 -0.6077 -0.5870 -0.6190
(0.0004) (0.0064) (0.0108) (0.0187)

AC 0.1356 0.1252 0.1071 0.1422
(0.3495) 0.3869) 0.4315) 0.2989)

RD -1.5903 -1.5645 -1.5415 −1.2666
(0.0655) (0.0692) (0.0745) (0.1277)

VIX 0.0037 0.0037 0.0037 0.0036
(0.0010) (0.0012) (0.0009) (0.0014)

Sentiment -0.0190 −0.0181 −0.0129 −0.0109
(0.0802) (0.1495) (0.2555) (0.3113)

MA (2,12) −0.0029 −0.0029 −0.0030 -0.0034
(0.1696) (0.1662) (0.1512) (0.0900)

R2
adj 0.0649 0.0654 0.0734 0.0842
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Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0969 0.1147 0.1285 0.2026
(0.5876) (0.5161) (0.4415) (0.1742)

Beta Dispersion −0.0860 −0.1575 -0.1992 -0.4142
(0.4192) (0.3471) (0.0740) (0.0079)

DivY −0.0013 −0.0046 −0.0082 −0.0245
(0.9717) (0.8969) (0.8246) (0.4851)

SR −0.0175 −0.0258 −0.0336 −0.1117
(0.9215) (0.8884) (0.8501) (0.5133)

CAY −0.2749 −0.2898 −0.4139 −0.1052
(0.8423) (0.8306) (0.7753) (0.9462)

AV −0.2128 −0.2134 −0.3142 −0.4097
(0.5681) (0.6200) (0.4738) (0.3812)

AC 0.0639 0.0369 0.0945 0.1949
(0.8232) (0.8991) (0.7131) (0.4371)

RD -2.7248 -2.5486 -2.7210 −2.0401
(0.0717) (0.0775) (0.0820) (0.2092)

VIX 0.0040 0.0042 0.0045 0.0044
(0.0097) (0.0037) (0.0020) (0.0017)

Sentiment −0.0374 −0.0317 −0.0248 −0.0218
(0.1031) (0.2652) (0.2601) (0.1867)

MA(2,12) −0.0039 −0.0039 −0.0044 −0.0053
(0.2714) (0.2585) (0.2461) (0.1606)

R2
adj 0.0513 0.0556 0.0604 0.0746
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Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD3M

EW

Intercept 0.2360 0.2455 0.2653 0.3558
(0.1825) (0.1587) (0.1176) (0.0529)

Beta Dispersion -0.2058 -0.3011 -0.3649 -0.6390
(0.0276) (0.0225) (0.0179) (0.0074)

DivY 0.0214 0.0160 0.0099 −0.0127
(0.4157) (0.5384) (0.7221) (0.6450)

SR −0.2142 −0.2207 −0.2329 −0.3431
(0.3816) (0.3820) (0.3418) (0.1477)

CAY 1.8984 1.7968 1.5583 2.0307
(0.3435) (0.3496) (0.4153) (0.4027)

AV 0.3223 0.2158 0.0136 −0.1679
(0.5746) (0.7062) (0.9825) (0.7897)

AC −0.2472 −0.2399 −0.1223 0.0593
(0.6984) (0.7095) (0.8411) (0.9256)

RD -4.9268 -4.6614 -5.0034 −3.9972
(0.0218) (0.0279) (0.0315) (0.1627)

VIX 0.0035 0.0041 0.0047 0.0045
(0.1479) (0.0882) (0.0483) (0.0555)

Sentiment −0.0535 −0.0451 −0.0334 −0.0340
(0.1174) (0.2037) (0.3211) (0.2949)

MA(2,12) −0.0041 −0.0041 −0.0051 −0.0064
(0.4281) (0.4203) (0.3352) (0.2978)

R2
adj 0.0645 0.0760 0.0796 0.0818

Note: This table shows the results of the predictive regressions with ten independent variables and
3-, 6-, and 12-month log excess return of the S&P 500 Index as dependent variables (Panel A, Panel
B, and Panel C). The regression equation has the following independent variables: beta dispersion,
dividend yield, short rate, cay factor, average variance, average correlation, VIX, return dispersion,
aligned sentiment, and moving average. Dividend yield, average variance, average correlation,
moving average, and return dispersion refer to the S&P 500 Index, and short rate is the 1-month
T-bill rate. Additionally, the cay factor is provided by Lettau’s database and the aligned sentiment
index by Zhou’s website, respectively. The beta dispersion is calculated based on 3, 6, 12, and
36 months. The in-sample, adjusted R2

adj , of the predictive regressions is given in the last row of
the table. Overlapping periods of the dependent variable are addressed by using the correction
proposed by Britten-Jones et al. (2011). The calculations of the significance levels use the Newey–
West estimator with corresponding lags to account for heteroscedasticity and autocorrelation in
the residuals and the p-value is given in parenthesis for every coefficient. Coefficients that are
significant at least at a 10% level are printed in boldface.
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predictors. The results and the interpretation also hold for the two alternative
technical predictors, momentum and moving average of on-balance volume.

4.3 Predicting Market Returns – Out-of-sample Evaluation

The in-sample evaluation of beta dispersion suggests that its level can be used, to a
certain extent, to predict future market returns and the extent of the market down-
turn. The economic concept would gain much more strength if the results also hold
in the out-of-sample evaluation. Two commonly used out-of-sample approaches are
performed. The cumulative sum of differences in the squared forecast errors (CS-
DFE), on the one hand, evaluates the superior prediction out-of-sample graphically
over time and the out-of-sample R2

OS, on the other hand, aggregates the evaluation
in one figure.

The CSDFE is a useful tool for out-of sample investigation (Goyal and Welch, 2003;
Welch and Goyal, 2008). The resulting time series can be studied graphically and
is calculated as presented in Equation 6:

CSDFET =
∑T

t=1
((RM,t − R̄M,t)

2 − (RM,t − R̂M,t)
2). (6)

where RM,t is the actual observed market return in t, R̂M,t is the predicted market
return by the beta dispersion, and R̄M,t is the benchmark prediction. The CSDFE
shows the dynamics of the predictive performance over time and helps to distinguish
between periods where the beta dispersion is a more accurate predictor compared to
the benchmark prediction. Typically, the historical mean of the market return, which
is commonly seen as the most stringent benchmark for equity premium predictors
(Goyal and Welch, 2003; Welch and Goyal, 2008), is used. If the CSDFET is positive,
then the beta dispersion would be considered a superior predictor compared to the
benchmark and vice versa. To calculate the predictions, the data sample is divided
into two subsamples to estimate predictive regressions in the first and calculate
the return predictions and the R2

OS in the second. The choice of the split point
is based on the argumentation in Neely et al. (2014). The first subsample should
be long enough to estimate stable regression coefficients, but at the same time
the second subsample (i.e., the evaluation sample) should be large enough to have
sufficient data for the evaluation. This is because the power of the forecast tests
increases with this size (also see Hansen and Timmermann (2012)). I use the first
20 years as the first subsample to determine the initial regression coefficients and
extend this window monthly. At the end of every month, a predictive regression
with all available information at that point is performed to estimate the regression
coefficients. Together with the currently observed beta dispersion, the forecast of
the market return is calculated (also see Campbell and Thompson (2008)). This
forecast is compared to the prediction of the benchmark R̄t, calculated over the
same period as the regression coefficients, with Equation 6. The benchmark is the
mean of the market return and is estimated with data prior to the actual observed
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Figure 3: Cumulative Sum of Differences in the Squared Forecast Errors
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Note: This figure shows the time series of the CSDFE, following Goyal and Welch (2003) and
Welch and Goyal (2008), over the period April 1984 to December 2016. This period is shorter
than the total sampled period because the first 20 years of the sample are used to estimate the
initial regression coefficients. It shows the dynamic predictive performance over time and helps
to distinguish between periods where the beta dispersion is a superior predictor of future market
return when compared to the historical market risk premium and where the beta dispersion is an
inferior predictor. If the CSDFE are positive, it would indicate a superior performance of the beta
dispersion when compared to the historical market risk premium.

market return. In Figure 3, the time series of CSDFE for the 6-month market return
prediction is displayed.6

Figure 3 shows that the beta dispersion has been effectively predicting the market
return more recently, since the late 1990s. Especially, before market crises in 1987,
2001, and 2008, the beta dispersion seemed valuable.

A second way of analyzing the out-of-sample predictive efficiency of beta dispersion
is to examine the out-of-sample R2

OS. The calculation of this figure follows an
established approach (Campbell and Thompson, 2008; Neely et al., 2014). This
measure compares the forecast of a predictor to the forecast of a benchmark. The

6The time series of CSDFE based on other specifications of the beta dispersion do not vary
noticeably from Figure 3.
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Table 6: Results of the Out-of-sample R2
OS for BDEW

Panel A: 20-year Initial Estimation, Historical Mean of S&P 500

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

R
M

3 Months 0.0003 0.0074* 0.0178** 0.0110**
6 Months 0.0133** 0.0301*** 0.0425*** 0.0244**
12 Months 0.0215*** 0.0515*** 0.0545*** 0.0104***

Panel C: 20-year Initial Estimation, Fix Market Risk Premium of 5.1%

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

R
M

3 Months 0.0099** 0.0170** 0.0273*** 0.0205**
6 Months 0.0270*** 0.0436*** 0.0558*** 0.0380***
12 Months 0.0387*** 0.0682*** 0.0711*** 0.0278***

Note: This table shows the out-of-sample R2
OS for the prediction of the beta dispersion in com-

parison to the benchmark prediction for 3-, 6-, and 12-month log excess market return (RM,t).
The out-of-sample R2

OS is calculated via Equation 7. The forecasts are estimated by using the
predictive regression coefficients from a dynamically enlarged time series of beta dispersion and
market return, which includes the whole period prior to the currently observed dispersion. The
forecasts, taken from the monthly adjusted regression, are set in relation to different benchmark
forecasts of the market risk premium. These benchmarks are historical mean of the S&P 500 excess
returns and a commonly used constant of 5.1%. A positive out-of-sample R2

OS indicates a superior
forecasting performance of the beta dispersion. The significance level of the R2

OS is estimated
based on the Clark and West (2007) MSFE-adjusted statistic for testing the null hypothesis that
the benchmark forecast estimation error is less than or equal to the beta dispersion forecast error.
Significance level: *** 0.01, ** 0.05, and * 0.1.

out-of-sample R2
OS is calculated as shown in Equation 7:

R2
OS = 1−

∑T
t=1(RM,t − R̂M,t)

2∑T
t=1(RM,t − R̄M,t)2

. (7)

The value of the R2
OS ranges between (−∞, 1]. A positive out-of-sample R2

OS indi-
cates a superior forecasting performance of the tested measure against the bench-
mark. In contrast to the CSDFE calculation, an alternative benchmark is included
in the analysis. More recent research argues that the historical mean of the mar-
ket risk premium is not the most appropriate benchmark (Constantinides, 2002;
Ibbotson and Chen, 2003; Donaldson, Kamstra, and Kramer, 2010). Therefore, an
additional benchmark suggested in current literature is included. This benchmark
is a fixed market risk premium of 5.1% (Avdis and Wachter, 2017). The results of
the R2

OS calculation are shown in Table 6.

The R2
OS confirms the predictive dominance of the beta dispersion for mid- and long-

term predictions. This is represented by positive R2
OS. This out-of-sample predictive

efficiency applies for the two different benchmarks. This is remarkable because other
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predictors often lack out-of-sample predictive efficiency. The significance test of R2
OS

is estimated based on Clark and West (2007)’s MSFE-adjusted (mean square forecast
error) statistic for testing the null hypothesis that the benchmark forecast estimation
error is less than or equal to the competing forecast error. Convincingly, the R2

OS

are not only positive but also significant. This confirms the conclusion that the
beta dispersion is a reliable predictor of the market return, even in an out-of-sample
framework.

To strengthen this finding, two enhancements to the R2
OS calculation are studied.

First, constraints are applied to the predictive model before calculating the out-of-
sample R2

OS. Recent studies show that applying constraints to predictive regressions
(Campbell and Thompson, 2008; Pettenuzzo, Timmermann, and Valkanov, 2014)
can help to improve the prediction results. Following Campbell and Thompson
(2008), in a first step the sign of the regression coefficients of the beta dispersion
is restricted to the expected sign and in a second step the prediction of the market
return is restricted to positive values solely.

Campbell and Thompson (2008) show that forecasts and out-of-sample evaluation
can be improved if it is ensured that the regression coefficient has the expected
sign derived from the economic intuition of the relationship between predictor and
market return. For the beta dispersion the coefficient should be negative as a high
beta dispersion corresponds to a possible market downturn and, hence, supports the
economic idea why beta dispersion can contribute to the prediction of the market
return. This constraint is fulfilled for the whole sample for all combinations of
beta dispersion and market return. Therefore, no additional table with results is
provided, the results from Table 6 contain already these constrained results.

The second constraint, restricting the forecast of the market return to positive val-
ues, is based on the fact that investors would never expect a negative market risk
premium. Out of this follows that the prediction made with the help of the esti-
mated regression coefficients and the currently observed beta dispersion should not
indicate a following negative market return. This constraint is, in general, a reason-
able assumption and can improve the predictive power as shown by Campbell and
Thompson (2008). To calculate the R2

OS with this constraint, the prediction of the
beta dispersion is set to zero if it indicates a following negative market return. The
R2
OS with constraint is shown in Table 7.

With this constraint the beta dispersion is still able to beat the two benchmarks
in majority. All positive R2

OS are also significant. The beta dispersion is still pre-
dominantly superior to the benchmark of a fixed market risk premium of 5.1%.
Compared to the historical mean of the market return the beta dispersion looses
its dominance partly. Especially the 36-month beta dispersion seems to provide no
additional information to the benchmark. All in all, the R2

OS are slightly lower than
for the unconstrained version. This finding is less surprising: The beta dispersion as
vulnerability measure of a market aims especially at downturns of a market. By re-
stricting the predictions to a positive market return, the initial idea of the predictive
power of the beta dispersion is partially counteracted.
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Table 7: Results of the Out-of-sample R2
OS for BDEW with Constraints: Positive

Market Risk Premium

Panel A: 20-year Initial Estimation, Historical Mean of S&P 500

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

R
M

3 Months −0.0054 −0.0006 0.0079* −0.0059
6 Months 0.0044* 0.0197*** 0.0308*** −0.0031
12 Months 0.0132*** 0.0307*** 0.0283*** −0.0191

Panel C: 20-year Initial Estimation, Fix Market Risk Premium of 5.1%

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

R
M

3 Months 0.0043* 0.0090** 0.0175*** 0.0038*
6 Months 0.0183*** 0.0333*** 0.0442*** 0.0109***
12 Months 0.0305*** 0.0477*** 0.0454*** −0.0012

Note: This table shows the out-of-sample R2
OS for the prediction of the beta dispersion in com-

parison to the benchmark prediction for 3-, 6-, and 12-month log excess market return (RM,t).
The out-of-sample R2

OS is calculated via Equation 7. The forecasts are estimated by using the
predictive regression coefficients from a dynamically enlarged time series of beta dispersion and
market return, which includes the whole period prior to the currently observed dispersion. The
forecasts, taken from the monthly adjusted regression, are set in relation to different benchmark
forecasts of the market risk premium. Forecasts indicating a negative market risk premium are set
to zero, following Campbell and Thompson (2008). The benchmarks are historical mean of the
S&P 500 excess returns and a commonly used constant of 5.1%. A positive out-of-sample R2

OS

indicates a superior forecasting performance of the beta dispersion. The significance level of the
R2

OS is estimated based on the Clark and West (2007) MSFE-adjusted statistic for testing the null
hypothesis that the benchmark forecast estimation error is less than or equal to the beta dispersion
forecast error. Significance level: *** 0.01, ** 0.05, and * 0.1.
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Table 8: Results of the Out-of-sample R2
OS for BDEW in Good and Bad Market

Regimes

Panel A: 20-year Initial Estimation, Good Market Regime

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

R
M

3 Months 0.0103*** −0.0123*** 0.0095*** −0.0024
6 Months 0.0009 −0.0089*** 0.0327*** 0.0405***
12 Months 0.0104*** 0.0104*** 0.0533*** 0.0405***

Panel B: 20-year Initial Estimation, Bad Market Regime

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

R
M

3 Months 0.0295*** 0.0700*** 0.0770*** 0.0316***
6 Months 0.0205*** 0.0636*** 0.0799*** −0.0013
12 Months −0.0078 −0.0122* −0.0108* −0.0124*

Note: This table shows the out-of-sample R2
OS for the prediction of the beta dispersion in com-

parison to the benchmark prediction for 3-, 6-, and 12-month log excess market return (RM,t) in
a good and a bad market regime. The differentiation between a good and a bad market regimes
is based on a negative market return of the period prior to the estimation of the beta dispersion.
The out-of-sample R2

OS is calculated via Equation 7. The forecasts are estimated by using the
predictive regression coefficients from a dynamically enlarged time series of beta dispersion and
market return, which includes the whole period prior to the currently observed dispersion. The
forecasts, taken from the monthly adjusted regression, are set in relation to different benchmark
forecasts of the market risk premium. Forecasts indicating an negative market risk premium are
set to zero, following Campbell and Thompson (2008). The benchmarks are historical mean of
the S&P 500 excess returns. A positive out-of-sample R2

OS indicates a superior forecasting perfor-
mance of the beta dispersion. The significance level of the R2

OS is estimated based on the Clark and
West (2007) MSFE-adjusted statistic for testing the null hypothesis that the benchmark forecast
estimation error is less than or equal to the beta dispersion forecast error. Significance level: ***
0.01, ** 0.05, and * 0.1.

The second enhancement in the out-of sample evaluation is to calculate the out-of-
sample R2

OS in good and bad market regime separately analogously to the in-sample
evaluation. The result of this calculation can be found in Table Table 8.

In good regimes the R2
OS are mostly positive and significant. Consequently, the

forecast based on the beta dispersion seems to be more accurate than the forecast
of the benchmark in a good market regime. For the bad regime, the beta dispersion
is still the superior predictor for the mid-term market return (three and six month).
Surprisingly, for the 12-month market, the prediction of beta dispersion is worse
than the benchmark. Nevertheless, these figures are not significant and the effect
might be due to the much smaller sample. In general, the R2

OS are higher compared
to the results in Table 7.

Putting together the in-sample and out-of-sample evaluation of the beta dispersion,
the empirical results highlight the appropriateness of the economic idea of beta dis-
persion. The BD measure, which takes all stocks into account, delivers slightly more
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reliable and stronger results than the QBD measure, which is explicitly based on the
extreme tails of the beta distribution. In the initial predictive regression analyses, it
is accounted for the overlapping periods in two different ways that lead to identical
results. By including a dummy variable in the regression to study the applicability
of the cascading effect, it can be seen that the beta dispersion is especially impor-
tant in helping to determine the magnitude of a market downturn. The analysis of
the predictive behavior of beta dispersion in good and bad market regimes shows,
that beta dispersion is particularly valuable in bad regimes. The R2

OS calculated for
good and bad regimes fit into these conclusions. The multiple regressions show that
the proposed measures contain additional information compared to already studied
predictors. In addition, the time series analysis of the predictive efficiency of beta
dispersion confirms that the beta dispersion has been apparently superior to its
benchmark since the late 1990s. The computed out-of-sample R2

OS confirm that the
dispersion measure is valuable even when comparing the beta dispersion to stringent
benchmarks. The CSDFE enhances the results of the out-of-sample R2

OS because the
worse performance seems to be caused by earlier observations from the late 1980s
to the late 1990s. Also, applying constraints in the R2

OS calculation weakens the
predictive efficiency of the beta dispersion only slightly. The predictor suggested in
this study clearly complements and mostly outperforms already examined predic-
tors in the literature. This emphasizes the relevance of the beta dispersion being a
measure of market vulnerability.

4.4 Market Timing Strategies Using Beta Dispersion

To evaluate the usefulness of the beta dispersion for an investor and to show fur-
ther economic significance of the beta dispersion, market timing strategies based on
this measure are implemented to obtain a comprehensive view. Furthermore, this
section introduces distributional regressions to finance and shows their beneficial
contribution toward market timing strategies. Distributional regressions comprise
a new modeling approach for determining the probability distribution function of
a variable, conditional on another observable variable (Silbersdorff, 2017).7 The
market timing strategies use the probability distribution to trigger the investment
decision. If the probability that the market return will be positive, conditional on
the observed beta dispersion, is greater than 50%, the strategies would drive invest-
ments in the market portfolio. Two versions of implementing such a strategy are
explored. The first version involves the usual approach and shifts wealth between
money and stock market. This serves as reference point to evaluate the advanced
second market timing strategy. This second version makes a shift between short
and long position in the market with a fraction of the wealth, dependent on the
aforementioned probability. The possibility to be long and short in the market at
considerably low transaction costs is ensured by having highly liquid ETFs and short
ETFs on the S&P 500.

7Further information on the estimation of distributional regressions is provided in Appendix
A.6.
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Distributional regressions use the data sample to model a distribution of the depen-
dent variable, conditional on the explanatory variable. In this way, the empirical
distribution of the market return, conditional on the currently observed beta dis-
persion, can be determined. This approach has two major advantages compared
to other approaches for modeling joint distributions (e.g., bivariate distributions or
modeling a relation with copulas). First, it is not necessary to assume that the
explanatory variable (here: beta dispersion) must have a specific distribution, and
the distribution of the dependent variable (here: market return) can be flexibly tai-
lored to the empirical observations. Second, the effective direction of the predictive
relationship is studied in detail in the previous sections — the beta dispersion can
to some extent predict market returns. This information can be used and empowers
the modeling of the market return distribution via distributional regression. Beta
is calculated based on backward-looking information, and the market return is es-
timated with forward-looking information. Therefore, it is reasonable to observe
the beta dispersion and indicate the market return, and not the other way around.
The alternative ways of bivariate modeling make no assumptions about the effective
direction of a relationship between the variables, and this information is lost in these
approaches.

The conditional probability p of a positive market return can be determined by
p |BD = 1−F (0), where F (0) is the cumulative distribution function of the condi-
tional distribution of the market return. As mentioned, two different market timing
strategies, using this probability as an investment trigger or better timing indicator,
are introduced and studied. A probability higher than 50% for a positive market
return in the next period indicates that the market will rise. First, a basic ap-
proach representing common market timing strategies is adopted from literature.
Therefore, this strategy invests 100% in the market if the timing indicator signals
rising markets. Otherwise, an investment in the money market is made. Second, a
weighted long-short strategy is adopted, which invests in a weighted market position
proportional to the conditional probability of a positive market return. Formally,
the weighted strategy holds a position of XM = 2(p |BD − 0.5) in the market and
a position of XR = 1 − 2(p |BD − 0.5) in the money market. The transformation
of the conditional probability for the weighed strategy ensures that the maximum
investment that can be done in the market is 1 or 100% of the wealth and the min-
imum investment is -1, which corresponds to a 100% short position in the market.
Both strategies start with an initial standardized wealth of 1. This setting makes it
easy to compare the market timing strategies with an appropriate benchmark.

The analyses in the previous subsection showed that BD, based on beta dispersion
estimated for 6, 12, and 36 months, is most valuable for long-term prediction (6-
and 12-month market return). So only these combination are used for more clarity
of the timing strategies. Every month, these specifications of the BD are used to
estimate distributional regressions over an extending window including all months
prior to the month in which the portfolio is set up. It is assured that none of the
strategies uses any in-sample information. The first conditional distribution can
be determined in April 1984 to include a sufficient number of observations for the
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Figure 4: Weights of Market Timing Strategy
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Note: This figure shows the time series of the weights of the position held in the market (S&P 500
Index) over the period April 1984 to December 2016. This period is shorter than the total sampled
period because the first 20 years of the sample are used to have sufficient observations even for the
first distributional regression. The weights are derived from the probability that the subsequent
market return will be positive, calculated with distributional regressions. This probability is stan-
dardized between -1 and 1, with XM = 2(p |M − 0.5). A weight of 1 means a 100% long position
in the market and a weight of -1 implies a 100% short position in the market. The weights are
based on the regression of the 12-month beta dispersion on the yearly market return.

estimation.8 Depending on the forecasting horizon of the market return, the first
market timing strategy is set up in October 1984 (6-month market return) and April
1985 (12-month market return). Irrespective of the prediction horizon, the position
held in the market is rebalanced every month to adjust the weight in the market
portfolio to the most current information.

Figure 4 shows the development of the weights for the S&P 500 Index, based on the
distribution of the 12-month market return, conditional on the 12-month BD. The
level of the weights is important only for the weighted strategy. The basic strategy
is fully invested in the market when the weight is positive, and investments are
done in the money market, when the weight is negative. Notably, the conditional

8Compare the argumentation for the calculated out-of-sample R2
OS in Section 4.3.
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Figure 5: Increase in Total Wealth Resulting from Timing Strategies
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Note: This figure shows an increase in the total wealth for the market timing strategies, based
on the 12-month BD measure and a passive buy-and-hold strategy of the S&P 500 and a 60/40
portfolio as benchmarks. The period from April 1984 to December 2016 is displayed. This period
is shorter than the total sampled period because the first 20 years of the sample are used to have
sufficient observations even for the first distributional regression. An increase in the total wealth
comprises the currently earned return from the timing strategy as well as all previously earned
returns accrued at the risk-free rate.

weight is only negative9 twice, namely, for the two most recent market downturns
in the sample. After the results of Section 4.1 and Section 4.2, this new perspective
emphasizes the capability of the beta dispersion to serve as a measure of market
vulnerability.

Figure 5 compares the time series of the increase in the total wealth of the two
market timing approaches and corresponds to the weights shown in the Figure 4.
The increase in total wealth is calculated by adjusting the weight held in the market
portfolio every month and saving all earned returns in a money market account until
the end of the sampled period in December 2016.

The basic strategy imitates the market until around 2001. This is the first time that

9A negative weight in the market corresponds to holding a short position in the market portfolio
for the weighted timing strategy.

29



the timing indicator foreshadows a market downturn. The basic strategy shifts the
wealth from the market portfolio to a money market account, which is clearly visible
in Figure 5. The second market downturn is much less anticipated by this strategy,
and hence there is a decline in the performance. The weighted strategy falls short in
terms of an absolute increase in wealth, compared to the buy-and-hold strategy and
the basic timing strategy. The strength of the weighted strategy is seen in the lasting
reduction of return volatility in combination with only a slight decrease in return
performance. Compared to the more appropriate 60/40 benchmark10, the weighted
strategy is preferable. This is because the two large market downturns lead to much
less performance loss than for the 60/40 portfolio. Taking all together, the beta
dispersion can successfully discriminate between market up- and downturns, and,
therefore, it leads to a superior performance of timing strategies compared to the
two chosen benchmarks, either in terms of absolute wealth or volatility reduction.

The described results shown in Figure 5 hold for all implemented variations of the
market timing strategies, which can be seen in Table 9.

Table 9 reports the average return, standard deviation, Sharpe ratio, and maximum
drawdown (MDD) of all strategies. Irrespective of the strategy, all the average
returns are positive. The basic strategy does not seem preferable compared to the
buy-and-hold benchmark, although the average return and standard deviation are
slightly better and there is an improvement in the Sharpe ratio. Taking the costs for
implementing and monitoring this strategy into account, the additional work does
not seem to pay off. Contrarily, the weighted strategy has lower average returns,
but the return volatility reduces sharply, and hence the Sharpe ratio is the most
favorable. Even when comparing all described strategies to the 60/40 benchmark,
instead of the buy-and-hold benchmark, the weighted strategy provides the most
interesting risk-return characteristics.

The drawdown is calculated as the relative difference between the backward-looking
highest value of the total value to the current value at any point in time. In Table 9
the value MDD, which is the highest value in the time series of drawdowns, is
presented for the entire investigation period of every strategy. The MDD can confirm
the preferable characteristics of the weighted market timing strategy. The MDD of
this strategy does not exceed its yearly average return, and this emphasizes that the
weighted market timing strategy is relatively less risky.

Overall, the most striking result of the market timing strategies is that, owing to
the distributional regression approach, the weighted strategy reduces the standard
deviation of the returns.11 This leads to outstanding Sharpe ratios, which are consid-
erably higher than the Sharpe ratios of the benchmarks (buy-and-hold and 60/40).
With risk reduction as a reasonable target of investment strategies, the results of the

10Compared to the buy-and-hold benchmark, this benchmark is more appropriate because the
weighted strategy rarely invests 100% of the wealth in the market portfolio. The 60/40 benchmark
matches more or less with the mean investment of the weighted strategy in the market portfolio
and, therefore, reflects the risk characteristics of the weighted strategy.

11Reduction of the standard deviation refers to the comparison of the standard deviation of the
weighted strategy with the standard deviation of the benchmarks (buy-and-hold and 60/40).
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Table 9: Performance of Market Timing Strategies

Distributional Regression Av. Return SD SR MDD
RM BD

B
as

ic
S

tr
at

eg
y

6 Months 6 Months 0.1002 0.1348 0.5511 −0.1043
6 Months 12 Months 0.1060 0.1318 0.6080 −0.1043
6 Months 36 Months 0.1107 0.1301 0.6512 −0.1043

12 Months 6 Months 0.1017 0.1346 0.5629 −0.1043
12 Months 12 Months 0.1060 0.1318 0.6080 −0.1043
12 Months 36 Months 0.1096 0.1303 0.6420 −0.1043

W
ei

gh
te

d
S

tr
at

eg
y 6 Months 6 Months 0.0551 0.0469 0.6216 −0.0364

6 Months 12 Months 0.0610 0.0494 0.7125 −0.0332
6 Months 36 Months 0.0674 0.0547 0.7620 −0.0376

12 Months 6 Months 0.0708 0.0670 0.6711 −0.0385
12 Months 12 Months 0.0799 0.0721 0.7510 −0.0466
12 Months 36 Months 0.0853 0.0769 0.7754 −0.0723

Buy-and-hold Benchmark 0.1000 0.1373 0.5386 −0.1043
60/40 Benchmark 0.0705 0.0827 0.5386 −0.0737

Note: This table shows the average returns, standard deviations (SD), Sharpe ratios (SR), and
the maximum drawdown (MDD) of the basic and weighted market timing strategies. In the last
two rows, the figures of the two benchmark strategies (buy-and-hold and 60/40 portfolio split) are
presented. All values are annualized. The SR is calculated on the excess return of every strategy.
The drawdown represents the relative difference between the backward-looking highest value of
the total value compared to the current value at any point in time. The maximum drawdown
presented in the table is the maximum of this quantity.
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weighted market timing strategy should be highlighted as it reduces the standard
deviation by up to 65% compared to the buy-and-hold benchmark and up to 20%
compared to the 60/40 benchmark. The use of the probability from the distribu-
tional regression as timing indicator is an innovative and successful way of improving
the risk and return characteristics of market timing strategies. 12 There seems to be
a clear advantage in performance that arises from calculating the weights from the
conditional distribution and adjusting this for the newest information of the beta
dispersion by monthly rebalancing13.

Nevertheless, market timing strategies face some shortcomings that should be ad-
dressed. As per Zakamulin (2014), most market timing strategies lose their supe-
rior performance when realistic frictions are employed to the strategies. The most
fundamental friction are liquidity, transaction costs, and prediction accuracy. The
introduced strategies are based on investments in the S&P 500 Index, which repre-
sents a very actively traded market segment. Concerning this index, highly liquid
ETFs exist that facilitate the easy implementation of the strategies; hence, concerns
about liquidity are seemingly inapplicable in this case. Likewise, transaction costs
can be expected to be low. As trading frequency also influences the cost of trading,
the number of transactions for the basic strategy can be determined easily. The
weight (compare Figure 4) changes two times in 32 years from positive to negative
and the other way around. This means that the investor has to sell and rebuy in the
market only twice, which seems justifiable. For the weighted market timing strat-
egy, further analysis is necessary because this strategy has to be rebalanced every
month. Therefore, the performance decline in terms of the Sharpe ratio is mea-
sured when the weights of the strategy are only rebalanced when the weight change
exceeds specific limits, and hence the rebalancing frequency is reduced. Tests are
conducted to examine how rarely the weight can be changed without the Sharpe
ratio of the weighted strategy dropping below 0.60, which is still clearly above both
benchmarks’ Sharpe ratio (buy-and-hold and 60/40). Until the weight is only re-
balanced when the absolute change is greater than 25 percentage points, the Sharpe
ratio stays above 0.60, but the trading activities drop to 15 to 30 times (compared
to 390 times), depending on the exact specification of the distributional regression.
This is less than once a year. It illustrates that the transaction costs can be reduced
considerably without much decrease in performance and, especially, by not increas-
ing the return volatility. The third shortcoming of timing strategies — predictive
accuracy — is captured by the combination of the distributional regression and the
weighted strategy. A complete wealth shift between stock and money market is of
limited suitability, since the investor has to ensure that his prediction is sufficiently
accurate (Sharpe, 1975; Jeffrey, 1984; Bauer Jr and Dahlquist, 2001; Neuhierl and
Schlusche, 2011; Hallerbach, 2014). The weighted strategy can be considered as

12Unreported results show, that the idea of the weighted market timing strategy can be also
successfully implemented based on the earlier described additional predictors of the market return.
As the focus of this paper is on the beta dispersion and its applicability, the results are not
presented, but are available upon request.

13Other rebalancing frequencies are tested, which lead to comparable results. Nevertheless, the
presented findings for the monthly rebalancing are the most striking.
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relying on less predictive accuracy. It is because this strategy decreases the weight
in the market portfolio only gradually when the likelihood of a market downturn
rises and vice versa. The more uncertain the prediction about the future market
return, the lesser the total weight that is invested in the market. This ensures that
if the indicator points in the wrong direction, the consequences (negative returns
of the timing strategy) would be as small as possible. Hence, predictions that do
not turn out to be true are not as harmful as strategies that involve a total wealth
shift. The weighted strategy overcomes this shortcoming and benefits from its more
careful investment approach.

5 Conclusion

This study introduces the beta dispersion as a measure of market vulnerability. A
high heterogeneity between betas in a market reduces the ability of that market
to cope with systematic shocks. A high beta dispersion makes the market highly
vulnerable, and the crash of high-beta companies is more likely to spill over to
other firms, thereby increasing the overall financial distress risk, which can be inter-
preted as a second-round endogenous shock. Hence, the beta dispersion measures
the probability and extent of a severe market decline. The economic and statis-
tical significance show the suitability of this economic idea. In addition, the beta
dispersion complements well-known predictor of the market return and adds to the
accuracy of the prediction. By conducting comprehensive empirical analyses, it is
confirmed that the economic idea and argumentation of the beta dispersion seems
to be applicable. Furthermore, the study presents an innovative way of setting up
market timing strategies by conducting distributional regressions to determine the
timing indicator. This way of modeling is newly introduced to finance and seems to
be convincing, based on the performance of the market timing strategies. The care-
ful investment approach of the weighted market timing strategy delivers a promising
risk and return characteristics that coincide with addressing usual shortcoming of
market timing strategies.

The comprehensive findings of the study can be valuable for different stakeholders.
For investors, the improved accuracy of market risk premium prediction and the in-
troduction of distributional regression to timing strategies can be worthwhile. Both
can enhance the implementation and performance of market timing strategies. Par-
ticularly, the distributional regression approach can be extended to other predictors
(macroeconomic as well as technical) to enhance the performance of such strategies.
For supervisors monitoring the financial stability of a market, the beta dispersion
might serve as an additional indicator for measuring the market’s vulnerability. It
can complement and extend the possibilities of measuring and quantifying systemic
risk in the stock market.

While it is intuitive that a group of stocks with extremely large betas can indicate
a higher likelihood of systemic problems in the following periods, we certainly need
a better understanding of why the beta dispersion carries information about future
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market movements and how this information is processed in the market. Especially,
an in-depth analysis of the cascading effect should be conducted along with a spe-
cific focus on the spillovers and contagion of high-beta stocks during a systematic
shock. A link of the beta dispersion to systemic risk measures and financial stabil-
ity can give interesting insights about market characteristics that favor crisis-prone
developments.
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A Appendix

A.1 Calculated Variables

Some variables for the predictive regressions are calculated based on the price infor-
mation of the S&P 500 and all its constituents:

• Log return of the market for 1, 3, 6, and 12 months:
RM,t = ln(Pt+s

Pt
),

where P is the price of the market index at time t and s is 1, 3, 6, and 12
months.

• Average variance following Pollet and Wilson (2010):
AVt =

∑N
j=1wj,tσ̂

2
j,t,

where N is the number of stocks traded at the market, w is the weight of the
stock j at time t, and σ̂2

j is the estimated volatility of stock j.

• Average correlation following Pollet and Wilson (2010):
ACt =

∑N
j=1

∑
j 6=k wj,twk,tρ̂jk,t,

whereN is the number of stocks traded at a market, w is the weight of the stock
j or k, respectively, at time t, and ρ̂jk is the correlation coefficient between
stock j and stock k.

• Moving average following Neely et al. (2014):
MA(2, 12) = MA2,t −MA12,t where MAT,t = (1

s
)
∑s−1

i=0 Pt−i for T = 2, 12,
where s is the number of trading days in the following T months for which the
average is calculated and P is the price of the market index at time t.

• Momentum following Neely et al. (2014):
MOM(12) = Pt − Pt−m where P is the price of the market index at time t
and m equals 12.

• Moving average of on-balance volume following Neely et al. (2014):
MAOBV (1, 12) = MAOBV1,t −MAOBV12,t where MAOBVT,t = (1

s
)
∑s−1

i=0 OBVt−i for
T = 1, 12,
where s is the number of trading days in the following T months for which the
average is calculated and OBV is the on-balance volume of market index at
time t. This volume is calculated as OBVt =

∑t
k=1 V OLkDk with V OLk is a

measure of the trading volume during period k and Dk has the value of 1 if
Pk − Pk−1 ≥ 0 and -1 otherwise.

• Return dispersion following Maio (2016):

RDt =
√

1
N

∑N
i=1(Ri,t − R̄M,t)2,

where N is the number of stocks traded at a market, Ri is the discrete return
of stock i, and R̄M,t is the weighted mean of the returns of all stock at the
market.
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A.2 Linear Predictive Regressions with BDVW and QBD10%

Linear Predictive Regressions with BDVW

Panel A: 3-Month Market Returns

BD3M
VW BD6M

VW BD12M
VW BD36M

VW

Intercept 0.0533 0.0582 0.0603 0.0623
(0.0000) (0.0001) (0.0002) (0.0008)

Beta Dispersion -0.0688 -0.0979 -0.1189 -0.1420
(0.0067) (0.0067) (0.0075) (0.0175)

R2
adj 0.0200 0.0197 0.0199 0.0190

Panel B: 6-Month Market Returns

BD3M
VW BD6M

VW BD12M
VW BD36M

VW

Intercept 0.0932 0.1072 0.1085 0.1087
(0.0000) (0.0000) (0.0001) (0.0010)

Beta Dispersion -0.1205 -0.1860 -0.2174 -0.2475
(0.0038) (0.0027) (0.0041) (0.0202)

R2
adj 0.0207 0.0216 0.0209 0.0189

Panel C: 12-Month Market Returns

BD3M
VW BD6M

VW BD12M
VW BD36M

VW

Intercept 0.1597 0.1832 0.1880 0.1816
(0.0001) (0.0001) (0.0005) (0.0051)

Beta Dispersion -0.1962 -0.3044 -0.3626 -0.3897
(0.0049) (0.0049) (0.0129) (0.0601)

R2
adj 0.0193 0.0201 0.0195 0.0166

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 1-, 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, Panel C, and Panel D) as the dependent variable. BD is the cross-sectional value-weighted
standard deviation of the individual stocks’ betas (compare Equation 2). Beta is estimated from
daily returns over a period of 3, 6, 12, and 36 months. The adjusted R2

adj of the predictive re-
gressions are given in the last row of the table. Overlapping periods of the dependent variable are
addressed by using the correction proposed by Britten-Jones et al. (2011). The calculations also
use the Newey–West estimator with corresponding lags to account for heteroscedasticity and au-
tocorrelation in the residuals. The p-value is given in parenthesis for every coefficient. Coefficients
that are significant at least at a 10% level are printed in boldface.
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Linear Predictive Regressions with QBD10%

Panel A: 3-Month Market Returns

QBD3M
10% QBD6M

10% QBD12M
10% QBD36M

10%

Intercept 0.0977 0.1005 0.0981 0.0862
(0.0004) (0.0016) (0.0018) (0.0193)

Beta Dispersion -0.0380 -0.0425 -0.0467 -0.0569
(0.0062) (0.0129) (0.0135) (0.0722)

R2
adj 0.0234 0.0221 0.0213 0.0171

Panel B: 6-Month Market Returns

QBD3M
10% QBD6M

10% QBD12M
10% QBD36M

10%

Intercept 0.1649 0.1790 0.1573 0.1401
(0.0002) (0.0006) (0.0048) (0.0294)

Beta Dispersion -0.0635 -0.0795 -0.0731 −0.0673
(0.0033) (0.0061) (0.0291) (0.1018)

R2
adj 0.0232 0.0235 0.0197 0.0160

Panel C: 12-Month Market Returns

QBD3M
10% QBD6M

10% QBD12M
10% QBD36M

10%

Intercept 0.2302 0.2364 0.2080 0.1949
(0.0045) (0.0124) (0.0382) (0.1078)

Beta Dispersion -0.0943 -0.1618 −0.0850 −0.0826
(0.0375) (0.0695) (0.1517) (0.2819)

R2
adj 0.0175 0.0169 0.0149 0.0132

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 1-, 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, Panel C, and Panel D) as the dependent variable. BD is the difference between the mean
beta of the high-beta quantile and the low-beta quantile (compare Equation 1). Beta is estimated
from daily returns over a period of 3, 6, 12, and 36 months. The adjusted R2

adj of the predictive
regressions are given in the last row of the table. Overlapping periods of the dependent variable are
addressed by using the correction proposed by Britten-Jones et al. (2011). The calculations also
use the Newey–West estimator with corresponding lags to account for heteroscedasticity and au-
tocorrelation in the residuals. The p-value is given in parenthesis for every coefficient. Coefficients
that are significant at least at a 10% level are printed in boldface.
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A.3 Linear Predictive Regressions with BDEW in Good and
Bad Market Regimes: Alternative Specification of Regimes

Panel A: Good Regime - 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0181 0.0172 0.0177 0.0143
(0.0002) (0.0013) (0.0010) (0.0022)

Beta Dispersion 0.0112 0.0184 0.0194 0.0450
(0.4681) (0.4224) (0.4814) (0.1456)

R2
adj 0.0009 0.0019 0.0011 0.0072

Panel B: Good Regime - 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0300 0.0279 0.0294 0.0243
(0.0022) (0.0160) (0.0092) (0.0147)

Beta Dispersion 0.0177 0.0318 0.0305 0.0683
(0.5789) (0.5434) (0.6010) (0.3421)

R2
adj 0.0013 0.0034 0.0015 0.0080

Panel C: Good Regime - 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0537 0.0506 0.0502 0.0420
(0.0081) (0.0119) (0.0097) (0.0210)

Beta Dispersion 0.0213 0.0411 0.0510 0.1122
(0.7214) (0.6076) (0.5789) (0.3363)

R2
adj 0.0001 0.0017 0.0019 0.0086

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, and Panel C) as the dependent variable during a positive market regime. BD is the cross-
sectional equal-weighted standard deviation of the individual stocks’ betas (compare Equation 2).
Beta is estimated from daily returns over a period of 3, 6, 12, and 36 months. The differentiation
between a good and a bad market regime is based on a negative market return of the period prior
to the estimation of the beta dispersion. The adjusted R2

adj of the predictive regressions are given
in the last row of the table. Overlapping periods of the dependent variable are addressed by using
the correction proposed by Britten-Jones et al. (2011). The calculations also use the Newey–West
estimator with corresponding lags to account for heteroscedasticity and autocorrelation in the
residuals. The p-value is given in parenthesis for every coefficient. Coefficients that are significant
at least at a 10% level are printed in boldface.

38



Panel A: Bad Regime - 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0010 0.0007 0.0002 0.0001
(0.5193) (0.5993) (0.8889) (0.9366)

Beta Dispersion -0.0873 -0.1014 -0.1087 -0.1245
(0.0209) (0.0059) (0.0023) (0.0008)

R2
adj 0.0461 0.0382 0.0274 0.0169

Panel B: Bad Regime - 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0047 0.0052 0.0039 0.0029
(0.1253) (0.1116) (0.2950) (0.4624)

Beta Dispersion -0.1152 -0.1465 -0.1466 −0.1488
(0.0719) (0.0563) (0.0965) (0.1812)

R2
adj 0.0249 0.0327 0.0130 0.0324

Panel C: Bad Regime - 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0092 0.0100 0.0091 0.0061
(0.0367) (0.0337) (0.1090) (0.2060)

Beta Dispersion -0.1064 -0.1423 −0.1483 −0.1107
(0.0986) (0.0588) (0.1251) (0.3485)

R2
adj 0.0269 0.0353 0.0273 0.0128

Note: This table shows the results of the predictive regressions, with the beta dispersion as inde-
pendent variable and the 3-, 6-, and 12-month log excess return of the S&P 500 Index (Panel A,
Panel B, and Panel C) as the dependent variable during a positive market regime. BD is the cross-
sectional equal-weighted standard deviation of the individual stocks’ betas (compare Equation 2).
Beta is estimated from daily returns over a period of 3, 6, 12, and 36 months. The differentiation
between a good and a bad market regime is based on a negative market return of the period prior
to the estimation of the beta dispersion. The adjusted R2

adj of the predictive regressions are given
in the last row of the table. Overlapping periods of the dependent variable are addressed by using
the correction proposed by Britten-Jones et al. (2011). The calculations also use the Newey–West
estimator with corresponding lags to account for heteroscedasticity and autocorrelation in the
residuals. The p-value is given in parenthesis for every coefficient. Coefficients that are significant
at least at a 10% level are printed in boldface.
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A.4 Regression with Additional Explanatory Variables - Al-
ternative Technical Predictors: Momentum

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept −0.0311 −0.0230 0.0013 0.0299
(0.6873) (0.7755) (0.9834) (0.7134)

Beta Dispersion −0.0091 −0.0259 -0.0808 -0.1723
(0.8872) (0.7509) (0.0768) (0.0836)

DivY 0.0065 0.0052 0.0015 −0.0055
(0.7309) (0.8077) (0.9395) (0.7959)

SR 0.0669 0.0661 0.0625 0.0370
(0.4442) (0.4840) (0.5119) (0.7246)

CAY 0.1218 0.1104 0.1071 0.3232
(0.7182) (0.7590) (0.7616) (0.4396)

AV -0.6465 -0.6574 -0.7076 -0.7952
(0.0523) (0.0947) (0.0526) (0.0075)

AC 0.0519 0.0402 0.0227 0.0535
(0.7403) (0.8023) (0.8900) (0.7381)

RD -1.7202 -1.6998 -1.7440 −1.5103
(0.0887) (0.0995) (0.0912) (0.1747)

VIX 0.0036 0.0037 0.0038 0.0037
(0.0058) (0.0056) (0.0044) (0.0034)

Sentiment −0.0213 −0.0201 −0.0151 −0.0142
(0.1368) (0.2244) (0.2429) (0.2597)

MOM(12) 0.0000 0.0000 0.0000 0.0000
(0.8687) (0.7612) (0.5926) (0.5448)

R2
adj 0.0618 0.0628 0.0709 0.0785
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Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept −0.0067 0.0233 0.0206 0.0761
(0.9578) (0.8605) (0.8116) (0.5598)

Beta Dispersion −0.0713 −0.1444 -0.1662 -0.3461
(0.5573) (0.4106) (0.0489) (0.0873)

DivY 0.0156 0.0099 0.0086 −0.0051
(0.5712) (0.7268) (0.7440) (0.8736)

SR 0.0083 0.0067 0.0068 −0.0442
(0.9592) (0.9666) (0.9671) (0.7999)

CAY 1.0637 0.9937 1.0168 1.4515
(0.0656) (0.0926) (0.0549) (0.0300)

AV −0.0424 −0.1282 −0.2312 −0.4048
(0.9164) (0.7627) (0.5654) (0.3791)

AC −0.0150 −0.0510 −0.0019 0.0620
(0.9630) (0.8716) (0.9947) (0.8237)

RD −2.7461 −2.6488 −2.8371 −2.3668
(0.1089) (0.1130) (0.1200) (0.2619)

VIX 0.0039 0.0041 0.0044 0.0043
(0.0251) (0.0077) (0.0034) (0.0018)

Sentiment −0.0408 −0.0355 −0.0311 −0.0297
(0.1077) (0.2479) (0.1235) (0.0485)

MOM(12) 0.0001 0.0000 0.0000 0.0000
(0.4541) (0.6687) (0.7703) (0.9530)

R2
adj 0.0573 0.0676 0.0671 0.0801
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Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD3M

EW

Intercept 0.0712 0.0872 0.0810 0.1233
(0.5187) (0.4265) (0.3995) (0.4064)

Beta Dispersion -0.1543 -0.2277 -0.2581 -0.4261
(0.0923) (0.0768) (0.0861) (0.0929)

DivY 0.0495 0.0430 0.0413 0.0282
(0.1493) (0.2227) (0.2942) (0.5815)

SR −0.2091 −0.2057 −0.2053 −0.2644
(0.3189) (0.3263) (0.3067) (0.1298)

CAY 3.4930 3.3695 3.4066 3.9494
(0.0001) (0.0001) (0.0000) (0.0003)

AV 0.8113 0.6260 0.4660 0.2855
(0.1769) (0.3260) (0.4972) (0.7063)

AC −0.2760 −0.2745 −0.1951 −0.0888
(0.6850) (0.6808) (0.7598) (0.8890)

RD -4.7117 -4.5918 -4.8879 −4.2980
(0.0196) (0.0243) (0.0267) (0.1109)

VIX 0.0031 0.0037 0.0041 0.0040
(0.1560) (0.0910) (0.0524) (0.0524)

Sentiment -0.0574 −0.0516 −0.0449 -0.0476
(0.0714) (0.1088) (0.1225) (0.0718)

MOM(12) 0.0002 0.0002 0.0002 0.0002
(0.1170) (0.1870) (0.2304) (0.4109)

R2
adj 0.0645 0.0782 0.0770 0.0787

Note: This table shows the results of the predictive regressions with ten independent variables and
3-, 6-, and 12-month log excess return of the S&P 500 Index as dependent variables (Panel A, Panel
B, and Panel C). The regression equation has the following independent variables: beta dispersion,
dividend yield, short rate, cay factor, average variance, average correlation, VIX, return dispersion,
aligned sentiment, and momentum. Dividend yield, average variance, average correlation, return
dispersion, and momentum refer to the S&P 500 Index, and short rate is the 1-month T-bill rate.
Additionally, the cay factor is provided by Lettau’s database and the aligned sentiment index by
Zhou’s website, respectively. The beta dispersion is calculated based on 3, 6, 12, and 36 months.
The in-sample, adjusted R2

adj , of the predictive regressions is given in the last row of the table.
Overlapping periods of the dependent variable are addressed by using the correction proposed by
Britten-Jones et al. (2011). The calculations of the significance levels use the Newey–West estimator
with corresponding lags to account for heteroscedasticity and autocorrelation in the residuals and
the p-value is given in parenthesis for every coefficient. Coefficients that are significant at least at
a 10% level are printed in boldface.
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A.5 Regression with Additional Explanatory Variables - Al-
ternative Technical Predictors: Average of On-Balance
Volume

Panel A: 3-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0376 −0.0343 −0.0195 −0.0017
(0.6122) (0.6674) (0.7271) (0.9759)

Beta Dispersion −0.0103 −0.0215 -0.0652 -0.1335
(0.8733) (0.8109) (0.0724) (0.0934)

DivY 0.0074 0.0069 0.0050 0.0006
(0.6601) (0.7120) (0.7614) (0.9684)

SR 0.0710 0.0695 0.0633 0.0415
(0.3812) (0.4194) (0.4682) (0.6584)

CAY 0.1398 0.1392 0.1660 0.3540
(0.6599) (0.6643) (0.5999) (0.3685)

AV -0.6473 -0.6437 -0.6373 -0.6716
(0.0165) (0.0566) (0.0854) (0.0737)

AC 0.0756 0.0700 0.0582 0.0849
(0.6238) (0.6418) (0.6975) (0.5663)

RD -1.6613 -1.6344 −1.6325 −1.4240
(0.0817) (0.0972) (0.1034) (0.1662)

VIX 0.0036 0.0037 0.0037 0.0036
(0.0045) (0.0043) (0.0023) (0.0023)

Sentiment −0.0200 −0.0191 −0.0148 −0.0142
(0.1341) (0.2394) (0.2465) (0.2068)

VOL(1,12) 0.0001 0.0001 0.0001 0.0001
(0.1070) (0.1135) (0.1006) (0.0790)

R2
adj 0.0667 0.0674 0.0739 0.0796
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Panel B: 6-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD36M

EW

Intercept 0.0244 0.0409 0.0382 0.0809
(0.8570) (0.7915) (0.7384) (0.4293)

Beta Dipersion −0.0931 −0.1638 -0.1891 -0.3592
(0.4382) (0.3705) (0.0693) (0.0355)

DivY 0.0098 0.0064 0.0049 −0.0064
(0.7413) (0.8468) (0.8729) (0.8213)

SR 0.0226 0.0147 0.0148 −0.0418
(0.8905) (0.9337) (0.9327) (0.8155)

CAY 0.9511 0.9295 0.9551 1.4530
(0.0895) (0.1072) (0.1020) (0.0497)

AV −0.2261 −0.2354 −0.3533 −0.4530
(0.5110) (0.5396) (0.3841) (0.3011)

AC −0.0375 −0.0608 −0.0056 0.0727
(0.9197) (0.8727) (0.9864) (0.8188)

RD -2.8636 -2.6870 −2.9015 −2.3508
(0.0805) (0.0974) (0.1018) (0.2317)

VIX 0.0040 0.0042 0.0045 0.0044
(0.0211) (0.0132) (0.0065) (0.0052)

Sentiment -0.0400 −0.0343 −0.0292 -0.0287
(0.0710) (0.2159) (0.1442) (0.0627)

VOL(1,12) 0.0000 0.0000 0.0000 0.0000
(0.6944) (0.7366) (0.7220) (0.6504)

R2
adj 0.0523 0.0665 0.0660 0.0805

44



Panel C: 12-Month Market Returns

BD3M
EW BD6M

EW BD12M
EW BD3M

EW

Intercept 0.1574 0.1634 0.1574 0.2068
(0.2098) (0.1252) (0.0619) (0.0336)

Beta Dispersion -0.2176 -0.3113 -0.3573 -0.5800
(0.0507) (0.0262) (0.0149) (0.0324)

DivY 0.0330 0.0278 0.0251 0.0089
(0.2813) (0.3702) (0.4383) (0.8108)

SR −0.1656 −0.1714 −0.1709 −0.2544
(0.4032) (0.3938) (0.3767) (0.1510)

CAY 3.1784 3.0909 3.1384 3.9121
(0.0001) (0.0002) (0.0001) (0.0004)

AV 0.2814 0.1629 −0.0625 −0.2519
(0.5866) (0.7582) (0.9114) (0.6566)

AC −0.3276 −0.3189 −0.2128 −0.0618
(0.6536) (0.6440) (0.7496) (0.9318)

RD -5.0179 -4.7607 -5.1700 −4.3197
(0.0228) (0.0228) (0.0267) (0.1389)

VIX 0.0034 0.0041 0.0047 0.0045
(0.1471) (0.0761) (0.0442) (0.0484)

Sentiment −0.0546 −0.0465 −0.0370 -0.0408
(0.1016) (0.1487) (0.1904) (0.0970)

VOL(1,12) 0.0002 0.0002 0.0002 0.0002
(0.3503) (0.3587) (0.3203) (0.3006)

R2
adj 0.0676 0.0783 0.0768 0.0714

Note: This table shows the results of the predictive regressions with ten independent variables
and 3-, 6-, and 12-month log excess return of the S&P 500 Index as dependent variables (Panel
A, Panel B, and Panel C). The regression equation has the following independent variables: beta
dispersion, dividend yield, short rate, cay factor, average variance, average correlation, VIX, return
dispersion, aligned sentiment, and moving average of on-balance volume. Dividend yield, average
variance, average correlation, return dispersion, and moving average of on-balance volume refer
to the S&P 500 Index, and short rate is the 1-month T-bill rate. Additionally, the cay factor is
provided by Lettau’s database and the aligned sentiment index by Zhou’s website, respectively.
The beta dispersion is calculated based on 3, 6, 12, and 36 months. The in-sample, adjusted
R2

adj , of the predictive regressions is given in the last row of the table. Overlapping periods of the
dependent variable are addressed by using the correction proposed by Britten-Jones et al. (2011).
The calculations of the significance levels use the Newey–West estimator with corresponding lags
to account for heteroscedasticity and autocorrelation in the residuals and the p-value is given in
parenthesis for every coefficient. Coefficients that are significant at least at a 10% level are printed
in boldface. 45



A.6 Distributional Regressions

The idea of structured additive distributional regressions is to aim explicitly at the
complete distribution of the dependent variable and not only on the expected value
of the dependent variable (Klein, Kneib, Lang, and Sohn, 2015; Silbersdorff, 2017).
Conditional on the explanatory variable, a conventional linear regression model fo-
cuses on the description of the dependent variable by its expectation. Therefore,
information about the dependent variable is lost. The structured additive distri-
butional regression estimates all parameters of the conditional distribution of the
dependent variable and, therefore, describes the relationship between dependent and
explanatory variable in detail. Unlike quantile regressions, which are distribution-
free, distributional regressions are a parametric yet flexible way of modeling a re-
lationship. The assumption of the distribution of the dependent variable survives,
and all parameters of its distribution are estimated regarding the covariates of the
regression. Applied to this study, the assumption of a normal distribution for the
log market return (yi) seems a reasonable starting point, thus yi ∼ N(µi, σi). In a
conventional regression, only the expected value of the market return, conditional
on the observed beta dispersion (xi), is estimated. Here, in addition, the variance of
the market return, conditional on the observed beta dispersion, is estimated as well.
Both parameters are estimated simultaneously via a back-fitting algorithm (Rigby
and Stasinopoulos, 2005; Stasinopoulos, Rigby, et al., 2007). This algorithm uses
penalized likelihood estimation to obtain unbiased estimates of the expected value
and the standard deviation of the normal distribution that characterizes the market
return. First, for each instance i, the distribution parameters are described with the
following equations:

µi = βµ0 + βµ1 xi (8)

σi = βσ0 + βσ1 xi. (9)

Equation 8 represents the mean of the conditional normal distribution of yi, and
Equation 9 represents the standard deviation of this distribution. The intention
is to identify βµ0 , βµ1 , βσ0 and βσ1 such that the likelihood of obtaining the yi is
maximized. To this end, these two equations are used to replace µi and σi in the
density function of the normal distribution for each instance i:

fyi(y) =
1√

2π(βσ0 + βσ1 xi)
e
− 1

2

(
y−βµ0 +β

µ
1 xi

βσ0 +βσ1 xi

)2

. (10)

Subsequently, the algorithm estimates the beta coefficients via penalized maximum
likelihood in such a manner that, under the joint distribution, the observed market
returns (yi) are the most likely outcomes. To ensure that the standard deviation is
positive, σi is replaced by log(σi) in the Equation 9. The estimation procedure leads
to a response function of yi with the parameters µi and σi, which depend on the
observed beta dispersion (xi) and the corresponding estimated coefficients (βµ0 , βµ1 ,
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βσ0 , and βσ1 ). Subsequently, the distribution of the market return can be expressed
by yi ∼ N(βµ0 +βµ1 xi, exp(β

σ
0 +βσ1 xi)). This distribution can be used to estimate the

probability of the market return being positive, conditional on the observed beta
dispersion, which is used as a trigger for the market timing strategies.
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