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Advances in Technology and Inequality

- Machine learning has been rapidly adopted in many industries

- Central application: default prediction in credit markets
(e.g. Khandani, Kim, and Lo, 2010; Sirignano, Sadhwani, and Giesecke, 2017)

- This paper: What are the distributional effects of new technology?
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vs.

3 / 26



This Paper

Theory: Distributional implications of “better” statistical technology

Mortgage default prediction: Using US administrative data with traditional technology
(Logit) and Machine Learning

Distributional consequences of new technology
- Across racial groups: fewer winners in some minority groups; increased dispersion

Equilibrium implications in a model of competitive loan pricing
- Outcomes differ on both extensive and intensive margins
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A Lender’s Prediction Problem

Observe borrowers with characteristics x and default outcome y

Predict ŷ = P̂(x) to minimize MSE
- Old technology: Restricted class of functions P̂ (e.g. linear)
- New technology: Wider class of permitted functions

Lemma. Optimal predictions with new technology are a mean-preserving spread of
those with old technology⇒ There are winners and losers
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Winners and Losers

x

Default
Probability

P̂nl

P̂lin

βx+ γgr

βx+ γgb

a

Convex quadratic: “extreme” x lose, others gain
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Two groups: “blue” borrowers lose due to high variance
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Sources of Unequal Effects

- Previous example could arise from

y = P(x) + ε,

where P is nonlinear and the group g does not matter for y .
⇒Winners/losers arise from additional flexibility of new technology.
Effects across g depend on functional form of new technology, and the differences
in distribution of characteristics

- Alternative:
y = β · x + γ · g + ε,

i.e. true relationship is linear, but g predictive of default.
⇒ Effects of new technology arise due to “triangulating” g
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Triangulation
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- No linear correlation between x and g → linear model simply recovers average
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Triangulation
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- Blue borrowers more likely to have extreme x → nonlinear model penalizes.
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US Mortgage Data
HMDA

- Application date, applicant income,
loan type, size, purpose,

- race, ethnicity, gender

McDash (Black Knight)

- Underwriting, contract and
performance: e.g. FICO, LTV, interest
rate, default status

Linked Dataset

- 9.4m mortgage loans from 2009-2013
- Portfolio and GSE loans, < $1m
- Default: 90+ days delinquent within 3

years of origination
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Default Rates Across Race
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Mean FICO Across Race
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S.D. of FICO Across Race
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Interest Rates Across Race
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Estimating Probabilities of Default: Technologies
Traditional: Probability of Default = Logit(x ) (e.g. Demyanyk and Van Hemert, 2011; Elul et al., 2010)

- Using nonlinear “bin” dummies for FICO, LTV, income

Machine Learning: Decision trees estimate step functions

Figure 11: An example of a CART model for a discrete dependent variable with two out-
comes, good and bad, and two independent variables {x1, x2}.

increases the types of relations that can be captured and the number of independent variables

that can be used. Moreover, CART models produce easily interpretable decision rules whose

logic is clearly laid out in the tree. This aspect is particularly relevant for applications in

the banking sector in which “black-box” models are viewed with suspicion and skepticism.

CART models can easily be applied to problems with high-dimensional feature spaces.

Suppose we have N observations of the dependent variable {y1, . . . , yN} and its corresponding

D-dimensional feature vectors {x1, ..., xN}. We estimate the parameters of the CART model

on the training dataset by recursively selecting features from x ∈ {x1, ..., xD} and parameters

{Lj} that minimize the residual sum-of-squared errors. Of course, we must impose a “pruning

criterion” for stopping the expansion of the tree so as to avoid overfitting the training data.

One of the most widely used measures for pruning is the Gini measure:

G(τ) ≡
K∑

k=1

Pτ (k)(1 − Pτ (k)) (1)

where τ refers to a leaf node of a CART model and Pτ (k) refers to the proportion of training

data assigned to class k at leaf node τ . Then the pruning criterion for CART model T is

20

(from Khandani, Kim, and Lo, 2010)

1. Random forest
(w/cross-validation)

2. Calibration
(isotonic
regression)

- (Similar if use
“XGBoost”)
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Explanatory Variables
Logit Nonlinear Logit

Applicant Income (linear) Applicant Income (25k bins, from 0-500k)
LTV Ratio (linear) LTV Ratio (5-point bins, from 20 to 100%;

separate dummy for LTV=80%)
FICO (linear) FICO (20-point bins, from 600 to 850;)

separate dummy for FICO<600)
(with dummy variables for missing values)

Common Covariates
Spread at Origination “SATO” (linear)
Origination Amount (linear and log)
Documentation Type (dummies for full/low/no/unknown documentation)
Occupancy Type (dummies for vacation/investment property)
Jumbo Loan (dummy)
Coapplicant Present (dummy)
Loan Purpose (dummies for purchase, refinance, home improvement)
Loan Term (dummies for 10, 15, 20, 30 year terms)
Funding Source (dummies for portfolio, Fannie Mae, Freddie Mac, other)
Mortgage Insurance (dummy)
State (dummies)
Year of Origination (dummies)
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Model Performance More Detail

Estimate on training set (70%), evaluate on test set (30%).

Out-of-sample performance:
- R2 ↑ by 14.30%
- Precision Score ↑ by 5.1%

How many predicted defaults are true defaults?

- Bootstrap analysis confirms significant differences

→ Random Forest method substantially better predictor of Pr(default|X )
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Unequal Effects of New Technology: Example
- Fix all characteristics but

income + FICO

- Compare distribution vs.
predictions by race

- Logit not very flexible

- RF much more flexible
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Unequal Effects of New Technology: Population
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Unequal Effects of New Technology: Alternative Approaches
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Predicting Race using Identical Observables

Model ROC AUC Precision Score Brier Score × 10 R2

Logit 0.7478 0.1948 0.5791 0.0609
Nonlinear Logit 0.7485 0.1974 0.5783 0.0622
Random Forest 0.7527 0.2110 0.5665 0.0813

−→ RF model is strikingly better at predicting black / hispanic borrowers
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Flexibility versus Triangulation

Decomposition of model improvements:
1. Add race as an explanatory variable to Logit
2. Allow use of ML technology to the model with race

(i.e. ”add” nonlinear functions / interactions of x as explanatory variables)

⇒ Improved performance mostly due to flexibility, not triangulation
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Flexibility versus Triangulation

Decomposition of model improvements:
1. Add race as an explanatory variable to Logit
2. Allow use of ML technology to the model with race

(i.e. ”add” nonlinear functions / interactions of x as explanatory variables)

Technology Race
ROC-AUC 89.77 10.23
Precision 94.14 5.86
R2 92.95 7.05

⇒ Improved performance mostly due to flexibility, not triangulation
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Interest Rates in Competitive Equilibrium
Simple 2-period model:

NPV (x ,R) =
1

1+ ρ

[
(1− P(x ,R))(1+ R)L+ P(x ,R)L̃

]
− L

- Equilibrium R?(x) solves NPV = 0

- Reject x-borrowers if NPV (x ,R) < 0 for all
feasible R

R

NPV

N(xL, R)

N(xH , R)

R(xL)

- Calibration:
- recovery: L̃ = min((1+ R)L, 0.75V )− 0.1L (second part: carrying costs, liquidation exp.)
- WACC: ρ = quarterly average interest rate −30bps
- 3-year PD to lifetime via “standard default assumption” (MBS mkt convention)
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Identification

In data, only observe one R per loan. But likely not randomly allocated.
→ bias in P̂ for counterfactual rates R

Proposed solution:
1. Restrict attention to GSE / full documentation loans
→ Likely selection on observable variables, not soft information (Keys et al., 2010)

2. Adjust ∂P̂
∂R downwards using ratio of causal to reduced-form estimates based on

Fuster and Willen (2017)
- Estimated ∂P̂

∂R over first 3 years ≈ 1.7× causal ∂P
∂R
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Model Outcomes
- Acceptance rates

- Average SATO
(= R − R̄t )

- S.D. of SATO
→ new technology
increases
dispersion across
and within groups
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Inclusion and Exclusion in Equilibrium
Average SATO: White + Asian Borrowers
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Inclusion and Exclusion in Equilibrium
Average SATO: Black + Hispanic Borrowers
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Inclusion and Exclusion in Equilibrium
SD of SATO: White + Asian Borrowers
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Inclusion and Exclusion in Equilibrium
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Conclusion

- Improvements in statistical technology creates
- Greater predictive power and gains for producers
- Increased disparity in outcomes for consumers

- Based on US mortgage data, black + hispanic borrowers bear larger changes
- First-moment effects: More likely to be perceived as high risk
- Second-moment effects: Greater increase in dispersion of outcomes
- Improvement comes from more than just “putting race in”

- Equilibrium effects
- Positive extensive-margin effect of new technology
- Unequal effects persist at intensive margin
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Performance of Different Statistical Technologies Predicting Default

ROC AUC Precision Score Brier Score × 100 R2

(1) (2) (3) (4) (5) (6) (7) (8)
Model No Race Race No Race Race No Race Race No Race Race
Logit 0.8522 0.8526 0.0589 0.0592 0.7172 0.7171 0.0245 0.0246
Nonlinear Logit 0.8569 0.8573 0.0598 0.0601 0.7146 0.7145 0.0280 0.0281
Random Forest 0.8634 0.8641 0.0630 0.0641 0.7114 0.7110 0.0323 0.0329
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Measuring Model Performance Return

MSE is one natural way to evaluate P̂ :

MSE (P̂) = n−1 ∑
n

(P̂(xi )− yi )
2

Can be decomposed into three components:

MSE (P̂) = n−1
K

∑
k=1

nk(ŷk − ȳk)
2

︸ ︷︷ ︸
Reliability

− n−1
K

∑
k=1

nk(ȳk − ȳ)2

︸ ︷︷ ︸
Resolution

+ ȳ(1− ȳ)︸ ︷︷ ︸
Uncertainty

- Brier Scores: RF 0.00711, Logit 0.00714, but overall uncertainty: 0.00735

- Reliability: Logit is 3500% worse than RF

- Resolution: Logit is 40% better than RF
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Isotonic regressions and calibration Return
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Decomposition of Performance Improvement Return

Race Technology
ROC-AUC 5.88 94.12
Precision 7.90 92.10
Brier 3.25 96.75
R2 2.04 97.96

Technology Race
ROC-AUC 91.16 8.84
Precision 77.21 22.79
Brier 90.63 9.37
R2 87.75 12.25

Panel A: Race Controls First Panel B: New Technology First

- Panel A: Nonlinear Logit→ add race dummies. Get less than 8% of fit
improvement that get from moving to Random Forest (w/o race)

- Panel B: Random Forest→ add race dummies. Slightly larger improvements from
having race but still much less important than benefit of flexibility
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Predicting Minority Status from x Return
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Model ROC AUC Precision Score Brier Score × 10 R2

Logit 0.7478 0.1948 0.5791 0.0609
Nonlinear Logit 0.7485 0.1974 0.5783 0.0622
Random Forest 0.7527 0.2110 0.5665 0.0813
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