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Non-technical Summary

Research question

The so-called reversal puzzle describes a phenomenon according to which the macroeconomic

effect of forward guidance – technically implemented by a perfectly anticipated interest rate peg

– can switch from expansionary to contractionary, depending on the duration of the interest rate

peg. We ask whether the reversal puzzle still occurs if we leave the perfect foresight framework

and allow for varying degrees of anticipation.

Contribution

We show that the degree of anticipation of the interest rate peg plays a key role for the ap-

pearance of the reversal puzzle. We consider three different assumptions about the degree of

anticipation: perfect anticipation, no anticipation, and imperfect anticipation. We model the

case of imperfect anticipation by means of a Markov-switching approach in which the regime

of a pegged interest rate stochastically recurs.

Results

If agents perfectly anticipate an interest rate peg, the reversal puzzle is a robust phenomenon.

If the agents do not anticipate the interest rate peg, the reversal puzzle is absent. If agents

imperfectly anticipate an interest rate peg, the occurrence and the duration of each single peg

episode are stochastic, but – as the agents are aware of the transition probabilities between

the regimes – the frequency and the average duration of an interest rate peg are known. The

degree of anticipation then depends on the average duration and the frequency of the peg. For

the large range of average durations of the peg we consider, the reversal puzzle is absent, even

if the frequency of the peg takes on a value that is twice as large as an empirically plausible

value as measured by the post-WWII zero lower bound frequency in the US. Only for extreme

and arguably implausible assumptions about the frequency of the peg, reversals occur.



Nichttechnische Zusammenfassung

Fragestellung

Das sogenannte reversal puzzle beschreibt ein Phänomen, demzufolge der Effekt von forward

guidance – technisch implementiert als perfekt antizipierte Zinsbindung – von expansiv zu

kontraktiv wechseln kann, je nachdem wie lange die Zinsbindung anhält. Wir untersuchen,

ob das reversal puzzle noch immer auftritt, wenn wir die Annahme der perfekten Antizipation

aufgeben und unterschiedliche Grade der Antizipation zulassen.

Beitrag

Wir zeigen, dass der Grad der Antizipation für das Auftreten des reversal puzzles eine Schlüssel-

rolle spielt. Dafür analysieren wir drei unterschiedliche Annahmen über den Grad der Antizipa-

tion: perfekte Antizipation, keine Antizipation und unvollkommene Antizipation. Wir imple-

mentieren den Fall der unvollkommenen Antizipation mittels eines Markov-switching-Ansatzes,

in dem das Regime der Zinsbindung stochastisch wiederkehrt.

Ergebnisse

Antizipieren die Agenten die Zinsbindung perfekt, ist das reversal puzzle ein robustes Simu-

lationsergebnis. Wenn die Agenten eine zukünftige Zinsbindung nicht antizipieren, tritt kein

reversal puzzle auf. Wenn die Agenten eine Zinsbindung lediglich unvollständig antizipieren kön-

nen, ist das Auftreten und die Dauer einer einzelnen Zinsbindungsepisode stochastisch, aber

die Häufigkeit und die durchschnittliche Dauer des Regimes der Zinsbindung sind bekannt,

da die Agenten die Übergangswahrscheinlichkeiten von einem Regime zum anderen kennen.

Der Grad der Antizipation hängt dann von der durchschnittlichen Dauer und der Häufigkeit

des Zinsbindungsregimes ab. Für eine große Spannbreite der durchschnittlichen Dauer des

Zinsbindungsregimes tritt das reversal puzzle nicht auf, selbst wenn die Häufigkeit des Zins-

bindungsregimes doppelt so hoch ist wie ein empirisch relevanter Wert (gemessen an der Häu-

figkeit einer bindenden Zinsuntergrenze in den USA nach dem Zweiten Weltkrieg). Das re-

versal puzzle tritt nur für extreme und eher unplausible Annahmen über die Häufigkeit des

Zinsbindungsregimes auf.
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Abstract

We revisit the reversal puzzle: A counterintuitive contraction of inflation in response

to an interest rate peg. We show that it is intimately related to the degree of agents’

anticipation. If agents perfectly anticipate the peg, reversals occur depending on the

duration of the peg. If they do not anticipate the peg, reversals are absent. In the case of

imperfect anticipation, implemented by a Markov-switching framework, we measure the

degree of anticipation by the frequency of the peg regime. Even if the frequency of the

peg takes on a value twice as large as empirically observed, the reversal puzzle is absent.
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1 Introduction

In the wake of the financial crisis, major central banks adopted a series of unconventional

monetary policy measures both to restore the functioning of the monetary transmission mech-

anism and to provide further policy accommodation. In particular, central banks implemented

sovereign bond purchase programmes, often referred to as quantitative easing (QE), and forward

guidance as policy responses to anaemic growth and too low inflation rates. Such unconventional

measures are widely conceived as alternative instruments when central banks have reached the

effective lower bound on nominal short-term interest rates. While there is no consensus yet

about the strength of the effects of QE and forward guidance, the literature generally supports

the view that these policy measures are expansionary (see, for example, Carlstrom, Fuerst and

Paustian, 2017; Gertler and Karadi, 2013; Chen, Cúrdia and Ferrero, 2012, and the references

therein).

However, Carlstrom, Fuerst and Paustian (2015) describe the puzzling result that in standard

New Keynesian models the effect of forward guidance – technically implemented by a perfectly

anticipated interest rate peg – can switch from expansionary to contractionary for varying

durations of the interest rate peg. Carlstrom et al. (2015) call these counter-intuitive sign

reversals in the path of the endogenous variables for varying durations of the interest rate peg

the reversal puzzle.1

In this paper, we show that agents’ degree of anticipation of an interest rate peg is crucial for

the appearance of the reversal puzzle. First, we reproduce Carlstrom et al. (2015)’s result that

a perfectly anticipated interest rate peg leads to reversals, depending on the duration of the

peg. An increasing duration of an interest rate peg first increases the response of inflation and

then tends to make it explode as the duration of the peg approaches some critical value. If

the duration of the peg exceeds this critical value, the model predicts a counterintuitive sign

reversal (i.e., the reversal puzzle) or, put differently, a sizeable deflation instead of inflation. In

our baseline scenario, this critical value is eight quarters.2 If we continue to hold the interest

rate fixed beyond the critical value, the duration of the peg approaches another critical value

after which the sign of the inflation response changes once again. Thus, the qualitative response

of output and inflation oscillates as the duration of the peg expands more into the future. We

provide analytical intuition for reversals and show that their occurrence critically hinges on the

assumption that the interest rate peg is perfectly anticipated.

We then show that the reversal puzzle does not occur if agents take the nominal interest rate

peg into account only contemporaneously, but expect the peg to be absent in the future. In such

1Similarly, several studies, such as Lindé, Smets and Wouters (2016) and Binning and Maih (2017), document
the occurrence of such sign reversals when modelling scenarios in which the interest rate is constrained due to
the zero lower bound or an announcement to fix the interest rate for some periods (as is the case with forward
guidance).

2In the appendix, we document that the puzzle is not due to a specific calibration of the model. Under the
assumption of perfect foresight, different calibrations merely allow a longer duration of the interest rate peg
until the reversal first appears.
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a scenario there is effectively no anticipation of a future transient interest rate peg. Reversals

are absent irrespective of the peg duration. We conclude from this experiment that a sufficient

degree of anticipation is necessary for the occurrence of the reversal puzzle.

The polar cases perfect anticipation and no anticipation describe arguably unrealistic scenarios,

and the case of no anticipation is obviously not a suitable solution for the reversal puzzle. We

thus move beyond those polar cases and analyse a scenario where agents imperfectly anticipate

a transient interest rate peg. We do so using a Markov-switching framework (Maih, 2015) in

which agents attach non-zero transition probabilities to entering and exiting a prevailing regime

of pegged interest rates. The occurrence and the duration of each single episode of pegged

interest rates are then stochastic but – as the agents are aware of the transition probabilities –

the frequency and the average duration of an interest rate peg are known. Since for a higher

frequency agents consider an interest rate peg to be more likely, the frequency of the peg can

be interpreted as the degree of anticipation in the stochastic scenario. Given a sufficient degree

of anticipation, reversals can occur depending on the average duration of the peg. We find

that the reversal puzzle is absent for empirically plausible calibrations of the peg frequency. In

particular, even for frequencies that are much higher than 10 % — the post-WWII zero lower

bound experience in the US3 — reversals do not occur irrespective of the average duration of

the peg. Reversals may still occur under imperfect anticipation but only for implausibly high

frequencies of the peg. Thus, for realistic scenarios in which agents imperfectly anticipate an

interest rate peg, the reversal puzzle is absent. Intuitively, as long as it is sufficiently unlikely

to enter a peg episode, the degree of anticipation of a peg is small and no reversal occurs.

As it becomes more likely to enter a peg episode, at some point the degree of anticipation is

sufficiently strong for the possibility of reversals to occur. Whether they actually occur depends

on the average peg duration, similar as in the perfect foresight scenario.

For an interest rate peg to potentially produce the reversal puzzle, an initial impulse must hit

the economy. An interest rate peg has typically been associated with the zero lower bound on

interest rates and forward guidance. In such an environment, many central banks have reverted

to QE. Therefore, a natural choice of the initial impulse is the launch of a QE programme.

As a laboratory for our experiments we implement the by now well-known model of Carlstrom

et al. (2017) which features funding constraints and market segmentation, such that QE policies

have an effect on real economic activity and inflation. In the absence of the peg, the model

predicts the orthodox view, that is, an increase in inflation in response to the launch of a QE

programme. In the presence of an interest rate peg, however, it is possible that the model

implies a reversal puzzle.

Similarly to our work, other papers in the literature explicitly deal with the reversal puzzle.

Carlstrom et al. (2015) are the first to analyse the reversal puzzle and point out that a necessary

condition for the puzzle to occur in a perfect foresight setting is the existence of endogenous

3This value for the zero lower bound frequency is also used by Dordal-i-Carreras, Coibion, Gorodnichenko and
Wieland (2016).
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state variables which imply complex eigenvalues.4 They show that if they change the model

structure and switch from a sticky-price to a sticky-information framework, the reversal puzzle

disappears.5 Our paper is complementary to Carlstrom et al. (2015) in that we go beyond

the perfect foresight setting and show that the degree of anticipation plays a key role for the

occurrence of the reversal puzzle.

Several other papers that primarily analyse the effects of forward guidance also mention the

occurrence of the reversal puzzle (see De Graeve, Ilbas and Wouters, 2014; Maliar and Tay-

lor, 2019; Bundick and Smith, 2020). These authors argue that for an empirically realistic

calibration of their specific models, forward guidance is less effective and, as a byproduct, sign

switches in impulse responses are less likely to occur. Our approach differs in that we do not

only focus on a realistic calibration of our model to solve the reversal puzzle but rather refer

to a more realistic modelling of expectations. Similarly to our approach, de Groot and Mazelis

(2020) argue that empirically realistic forward guidance scenarios may imply less powerful for-

ward guidance, and counterintuitive reversals in response to forward guidance do not occur in

their analysis. However, in contrast to the Markov-switching framework we use, their proposed

method to implement forward guidance experiments does not imply that the interest rate peg is

a stochastic event that may reoccur in the future. In their analysis, agents are fully aware of the

interest rate peg and the authors propose to modify the solution of the linearised model so as to

mimic deviations from the standard rational expectations behaviour regarding announcements

of future monetary policy.

From a methodological viewpoint, a paper that is close to ours is the one by Chen (2017).

She analyses the outcomes of implementing the zero lower bound under the perfect foresight

approach and compares them to the outcomes of implementing the zero lower bound under

a Markov-regime switching approach. Her focus is on the quantitative difference of the two

approaches regarding the predicted path of macro variables and the government spending mul-

tiplier, as well as the qualitative difference when positive supply shocks hit the economy at

the zero lower bound. Our paper is complementary to her analysis in that we compare the

perfect foresight and the Markov-switching approach regarding their qualitative differences in

producing the reversal puzzle. In line with Chen (2017), we find that the Markov-switching

approach delivers more plausible model outcomes than the perfect foresight approach.

We organize our paper as follows. In the next section, we sketch the model and briefly describe

the transmission channel through which a QE programme affects the economy. Section 3 then

illustrates the effects of QE in combination with an interest rate peg of variable duration.

Subsection 3.1 analyses the scenario of perfect anticipation, Subsection 3.2 the scenario of no

4Note that in models larger than the canonical 3eq. New Keynesian model, complex eigenvalues in the solution
of the model are only a necessary but not a sufficient condition for the reversal puzzle to occur. Already the
canonical model with price indexation, but with a price level targeting rule instead of a standard Taylor rule
might come with complex eigenvalues in its solution, but the reversal puzzle is absent. For a more detailed
exposition see also Gerke, Giesen, Kienzler and Tenhofen (2017), Section 6.2.

5Kiley (2016) also mentions that a sticky-information approach can mitigate the power of forward guidance.
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anticipation, and Subsection 3.3 the scenario of imperfect anticipation. Section 4 concludes.

2 Model and transmission of QE shock without interest

rate peg

In the standard New Keynesian model, asset purchases are neutral (the so-called Wallace

neutrality holds), in that they do not have an effect on real economic activity and inflation

(Eggertsson and Woodford, 2003). To assess the effects of QE, we therefore rely on a DSGE

model by Carlstrom et al. (2017), which features funding constraints and market segmentation

such that the Wallace neutrality breaks down. More precisely, in this model both households

and financial intermediaries (henceforth FIs) face financial constraints. The bond market is

segmented in that only FIs can purchase long-term debt instruments. These include public

(i.e., government) and private (i.e., investment) bonds. From the perspective of the FIs, these

bonds are perfect substitutes and, hence, yield the same returns. However, the ability of the

FIs to adjust their liability position is limited by two constraints. First, they are leverage

constrained because the amount of deposits they can attract is constrained by their net worth

(due to a hold-up problem). Second, FIs face net worth adjustment costs. Households need

to finance their investments by way of issuing (long-term) investment bonds and, thus, face a

funding restriction with respect to their investments (a so-called loan-in-advance constraint).

The purchase of government bonds increases the FIs’ demand for investment bonds since the

liability side of the FIs balance sheet cannot adjust easily due to the aforementioned constraints.

This in turn alleviates the households’ loan-in-advance constraint.

Otherwise, the model exhibits familiar New Keynesian features. It comprises households that

consume with habits, save in (short-term) deposits and supply labour. There is monopolistic

competition in intermediate goods production. Prices and wages are subject to rigidities as in

Erceg, Henderson and Levin (2000) and are indexed as in Christiano, Eichenbaum and Evans

(2005). Investment is subject to adjustment costs. If the interest rate is not pegged, monetary

policy follows a standard Taylor rule with some degree of interest rate smoothing. The non-

linear model equations are summarised in Table 1. A complete derivation of the model and the

corresponding estimation results are delegated to the Appendices A & B.

Table 1: Nonlinear model equations

Model equations:

HH cons. decision Λt = bt
Ct−hCt−1

− Et βhbt+1

Ct+1−hCt
Euler equation Λt = Etβ

Λt+1

Πt+1
Rdt

Wage curve (WC) wt
1+εwη = εw

εw−1
Xwnt
Xwdt

WC nominator Xwn
t = λw,tbtχw

εw(1+η)
t H1+η

t

+Et

{
θwβΠ

εw(1+η)
t+1 Π

−ιwεw(1+η)
t Xwn

t+1

}
WC denominator Xwd

t = Λtw
εw
t Ht + θwβΠ

−ιw(εw−1)
t Π

(εw−1)
t+1 Et

{
Xwd
t+1

}
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Table 1: continued

Model equations:

Wages law of motion wt
1−εw = (1− θw) (w∗t )

1−εw + θw

(
Πιwt−1wt−1

Πt

)1−εw

HH decision capital ΛtMtP
k
t = EtβΛt+1

[
Rkt+1 +Mt+1P

k
t+1 (1− δ)

]
HH decision inv. bonds ΛtMtQt = Et

βΛt+1(1+κQt+1Mt+1)
Πt+1

Welfare V ht = bt

{
ln (Ct − hCt−1)−Dw

t B
H1+η
t

1+η

}
+ βEtV

h
t+1

Price of capital Rkt = mctMPKt

Real wages wt = mctMPLt

Phillips curve (PC) Π∗t =
εp
εp−1

Xpnt
Xpdt

Πt

PC nominator Xpn
t = Ytλp,tmct(i) + Et

{
θp
βΛt+1

Λt
Π
−ιpεp
t Π

εp
t+1X

pn
t+1

}
PC denominator Xpd

t = Yt + Et

{
θp
βΛt+1

Λt
Π
ιp(1−εp)
t Π

εp−1
t+1 Xpd

t+1

}
Infl. law of motion (Πt)

1−εp = (1− θp) (Π∗t )
1−εp + θp

(
Π
ιp
t−1

)1−εp
Price dispersion Dp

t = Π
εp
t

[
(1− θp)Π∗t

−εp + θp
(
Π
ιp
t−1

)−εp
Dpt−1

]
Wage dispersion Dw

t = θw

(
Πt

Πιwt−1

)εw(
wt
wt−1

)εw
Dwt−1 + (1− θw)

(
w∗
t

wt

)−εw
Resource constraint Yt = Ct + It

Production function Yt = AtK
α
t H

1−α
t /Dp

t

Firm’s capital decision Kt = (1− δ)Kt−1 + µ

(
1− ψI

(
1
2

) (
It
It−1
− 1
)2
)
It

Investment decision P kt µt

{
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

}
=

1− βP kt+1
Λt+1

Λt
µt+1

{
−S′

(
It+1

It

)(
It+1

It

)2
}

FI’s balance sheet B̄t + F̄t = Nt + Lt

Leverage ratio Lt =
Et

Λt+1
Πt+1[

Et
Λt+1
Πt+1

+(Φt−1)Et
Λt+1
Πt+1

RL
t+1

Rdt

]
Loan in advance constraint P kt It = F̄t − κ F̄tΠt

Qt
Qt−1

FI’s net worth decision Λt [1 + f (Nt) +Ntf
′ (Nt)] =

EtΛt+1βζ
Pt
Pt+1

[(
RLt+1 −Rdt

)
Lt +Rdt

]
Long-term interest rate RLt = (1+κQt)

Qt−1

Yield to maturity R10
t = Q−1

t + κ

Marginal prod. of capital MPKt = αAtKt−1(i)
α−1

Ht(i)
1−α

Marginal prod. of labour MPLt = (1− α)AtKt−1(i)
α
Ht(i)

−α

Taylor rule Rt = (Rt−1)
ρ
(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ
εRt

Notes: bt = discount factor shock, Ct = consumption, Λt = Lagrange multiplier, Πt = inflation, Rt = nominal

interest rate, wt = real wage, Xwn
t = & Xwd

t = auxiliary variables for wage curve, Xpn
t = & Xpd

t = auxiliary

variables for Phillips curve, MPLt = marginal product of labour, MPKt = marginal product of capital, RLt =

Long-term rate, R10
t = yield to maturity, It = Investment, P kt = price of investment, F̄t = investment bonds,

B̄t = government bonds, Qt = price of bond, Ht = labour, At = technology shock, Nt = net worth, Lt =

leverage, Dp
t = price dispersion, Dw

t = wage dispersion, Kt = capital, mct = marginal costs, µt = investment

shock, Φt = financial shock, λw,t = wage markup shock, λp,t = price markup shock, Yt = output.

We assume that the government controls the supply of long-term bonds independently of

macroeconomic conditions. As in Carlstrom et al. (2017), a QE programme is implemented

by a persistent AR(2) process for the real market value of long-term bonds available to the
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financial intermediaries:

B̄t = B̄(1−ρ̄1+ρ̄2)
ss

(
B̄t−1

)ρ̄1
(
B̄t−2

)−ρ̄2 εB̄t . (1)

This assumption is useful for two reasons: First, the AR(2) process is part of the model’s

equilibrium conditions and therefore taken into account by every agent. Thus, agents perfectly

anticipate the path of the outstanding stock (value) of government bonds in the economy once

a QE programme has been started. This will help us focusing on the degree of anticipation of

the interest rate peg. Second, the (inverse) hump shape implied by an AR(2) process is well

suited to representing a plausible QE programme: During the phase of purchases, the total

value of outstanding bonds held by the public (i.e., excluding the central bank) declines, while

it returns only gradually to the steady state after the purchases stop eventually – in our case

after 6 quarters. Technically, the QE programme is triggered by a single shock, i.e., εB̄t , that

occurs in the first period of the model simulation (see Figure 1).

Figure 1: Total value of long-term bonds held by the public

5 10 15 20 25 30 35 40 45 50

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

p.
 d

ev
.

Market Value for Long-Term Bonds

Note: The solid line represents the evolution of B̄t (i.e., the market value of long-term bonds) in percentage

deviation from the steady state over 25 quarters.

We first consider a QE shock without considering an interest rate peg. This shows that the

model is perfectly able to reproduce the conventional result that QE has inflationary effects.
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Figure 2: Simulation of a QE shock without considering an interest rate peg
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Note: The figure shows responses of (quarterly) output, net worth, and leverage in percent deviations from the

steady state. Inflation, as well as the short- and long-term rates are measured in percentage point deviations

from the steady state.

Figure 2 shows the transmission of a QE shock in this model. The decreasing supply of long-term

government bonds available for FIs implies an upward pressure on its price and, correspondingly,

lowers its yield to maturity – moderately but persistently. The term premium, too, decreases

(which in the present model is essentially the distortion that is related to the loan-in-advance

constraint).6 The decrease in available bonds leads to a reduction in banks’ net worth and

leverage. Thus, the purchase of bonds shortens the FIs’ balance sheet, but net worth mobility

is limited due to portfolio adjustment costs. Correspondingly, FIs demand for investment

bonds increases (portfolio adjustment). Since investment bonds and government bonds are

perfect substitutes, the price of investment bonds also rises. Therefore, the households’ loan-in-

advance constraint is relaxed and, as a result, investment demand increases. Higher investment

demand, in turn, increases aggregate output and so does the inflation rate. As a response,

monetary policy increases its policy rate if it follows a Taylor rule.

3 The role of anticipation for the reversal puzzle

In this section, we analyse the effects of a QE programme when monetary policy pegs the

interest rate. We do so under three different assumptions about the degree of the anticipation

of the interest rate peg and show that this degree is crucial for the appearance of the reversal

puzzle.

6Accordingly, the QE programme reduces the distortion that is due to market segmentation.
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3.1 Perfect anticipation

We first conduct our analysis by solving the model under perfect foresight, such that the agents

in the economy perfectly anticipate a temporary interest rate peg.7 We implement the interest

rate peg via a sequence of future shocks that consist of binary dummy variables, εTRt ∈ {0, 1}.8

These are set to one for periods of pegged nominal rates and zero otherwise:

Rt = εTRt (Rss) +
(
1− εTRt

)
(Rt−1)ρ

(
RssΠ

τΠ
t

(
Yt
Yt−1

)τy)1−ρ

. (2)

If the interest rate is pegged, the central bank does not follow the Taylor rule but instead

keeps the short-term nominal interest rate unchanged for a pre-announced period of time, P

(alongside its QE programme) such that εTRt is equal to one for P successive quarters.

Figure 3 presents simulated time paths of inflation and the interest rate for different dura-

tions of the interest rate peg under the assumption of perfect foresight. Panel (a) shows out-

comes for an interest rate peg of up to eight periods, i.e., {P ∈ N0 | 0 ≤ P ≤ 8}, panel (b) for

{P ∈ N | 9 ≤ P ≤ 14}, panel (c) for {P ∈ N | 15 ≤ P ≤ 23}, and panel (d) for {P ∈ N | 24 ≤ P ≤ 50}.

For up to seven periods of interest rate peg, the QE programme leads to a comparatively

modest increase in inflation. For a duration of eight quarters, the responses of inflation increases

dramatically. If we increase the duration of pegged rates further, i.e., 9 ≤ P ≤ 14 (see panel

(b)), inflation reverses its sign, that is, it decreases after the inception of QE. If we further

increase the duration of the interest rate peg beyond 14 quarters (see panel (c)), the sign of

the inflation response switches once again, predicting an expansionary effect until a duration

of 23 periods. For durations of the peg from 24 to 50 periods, inflation responses turn negative

again. Thus, the model responses oscillate with the duration of the interest rate peg.

To gain some intuition why the simulations oscillate with the duration of the peg, we look at the

forward solution of the linearized model, for which we provide the derivation in Appendix C.

The solution of the forward-looking (explosive) variables of the system of equilibrium conditions,

w2,t, is essentially a function of future disturbances εt+n:

w2,t = −Et

{
∞∑
n=1

Jn−1Ω−1
22 Q2Φεt+n

}
. (3)

Under perfect foresight, the temporary interest rate peg is perfectly known to the agents in

the economy, such that Et [εt+n] (recall that εTR is the only shock in our simulations) will be

nonzero for the time period the central bank actually fixes the policy rate (i.e., P > 0) and

7A detailed description of the solution method we implement can be found in Adjemian and Juillard (2014).
8One could implement the transient interest rate peg via a non-differentiable function (i.e., a min- or max-
operator). However, this would render the peg endogenous with regard to its duration. Implementing the peg
via the dummy approach allows us to set the duration of the peg in a completely exogenous way.
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Figure 3: Simulation results of a QE shock in combination with an interest rate peg of variable
duration under perfect foresight

(a) Duration of interest rate peg: 0 to 8 periods
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(b) Duration of interest rate peg: 9 to 14 periods
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(c) Duration of interest rate peg: 15 to 23 periods
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(d) Duration of interest rate peg: 24 to 50 periods
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Note: The figure shows perfect foresight simulations for inflation and the short-term interest rate in response
to a QE shock in combination with an interest rate peg of duration P . In period zero, the system is in the
steady-state. Panel (a) shows results for 0 ≤ P ≤ 8, panel (b) shows results for 9 ≤ P ≤ 14, panel (c) shows
results for 15 ≤ P ≤ 23, and panel (d) shows results for 24 ≤ P ≤ 50. The vertical axis shows percentage point
deviations from steady state.
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zero afterwards.9 If some of the diagonal elements of J , which contains the unstable generalised

eigenvalues of the system, turn out to be complex, they can be written in polar form. Let zjj

denote these complex diagonal elements, so that we can write zjj = a + bi or in polar form

zjj = r (cosφ+ i sinφ).10 If now – because of known nonzero future εt+n – also powers of J

enter the solution for w2,t, we can write (by de Moivre’s formula):

zkjj = rk (cos kφ+ i sin kφ) , for k = 0, ..., P − 1. (4)

The forward solution of the system, thus, involves trigonometric functions, which depend on

the length P of a given interest rate peg. The longer the central bank keeps the policy rate fixed

(i.e., the bigger P is), the farther we ‘move’ along the trigonometric functions contained on the

diagonal elements of matrix J . As a consequence, with an increasing duration of pegged policy

rates, the simulations presented in Figure 3 first approach an asymptote (i.e., the effect of an

additional period of pegged policy rates grows exponentially) and afterwards the simulations

switch their sign before they reach another asymptote and switch their sign again, and so on.

The role of complex eigenvalues for the occurrence of the reversal puzzle has been made clear

by Carlstrom et al. (2015).11 Our exposition of the forward looking part of the system of

equilibrium conditions’ solution is meant to clarify the role of the degree of anticipation of the

peg for the reversal puzzle.

The results presented thus far are robust to different parameterisations of the model. Appendix

D provides an extensive grid search over the model’s structural parameters and shows that the

reversal puzzle is a very tenacious problem when the agents perfectly anticipate the peg.

3.2 No anticipation

Due to the presence of complex-valued eigenvalues, the model’s dynamics switch sign, depending

on the duration of a temporary interest rate peg. However, the complex eigenvalues on the

main diagonal of the matrix J only imply a sign switch in the model simulations if the agents

actually anticipate the interest rate peg (i.e., Et [εt+n] 6= 0). Accordingly, the reversal puzzle

should disappear when agents do not anticipate the interest rate peg at all. In such a scenario,

9The definitions of Ω−1
22 and Q2 can be found in Appendix C.

10a describes the real part of a complex eigenvalue and bi describes the imaginary part. While a and b are
real numbers describing a pair of numerical Cartesian coordinates, r and φ denote the corresponding polar
coordinates (i.e., distance and angle).

11While the reversal completely vanishes if one shuts down inflation indexation in the context of a small New
Keynesian model, as shown by Carlstrom et al. (2015), this should not be expected for the medium-sized
model presented here. It contains several other endogenous state variables (like capital, wages, net worth,
etc.), that can give rise to complex-valued eigenvalues and, thus, sign switches in the model’s simulations.
However, it should be noted that, even under perfect foresight, the mere existence of complex eigenvalues is
only a necessary but not a sufficient condition for the occurrence of the reversal puzzle. For example, the
model by Erceg et al. (2000) augmented with price indexation and habit persistence in consumption shows no
reversal puzzle even for very high degrees of indexation and consumption habit that imply complex eigenvalues
in the solution of the model.
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agents are surprised each period that the interest rate is still kept constant.

To implement this scenario, we solve and simulate the model with the extended path method,

a procedure that has recently also been employed by Adjemian and Juillard (2013), Arias,

Erceg and Trabandt (2016), and Christiano, Eichenbaum and Trabandt (2015). In contrast

to perfect foresight, the paths for the endogenous variables are now computed by running a

deterministic simulation for each period of the simulation horizon with the previous period as

an initial condition for the next period and the steady state as terminal condition. In each

period, agents now expect that the exogenous shocks will be zero for all future periods, i.e.,

they assume Et (εt+n) = 0. Thus, agents do not anticipate at all that monetary policy pegs the

interest rate for an extended period of time P . Figure 4 presents the time paths for inflation

and the policy rate for 0 ≤ P ≤ 50.

Figure 4: Simulation results of a QE shock in combination with an unanticipated interest rate
peg of variable duration
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Note: The figure shows extended path simulations for inflation and the short-term interest rate in response to

a QE shock in combination with an interest rate peg of duration P , where 0 ≤ P ≤ 50. In period zero, the

system is in the steady-state. The vertical axis shows percentage deviations from steady state.

In the absence of anticipation, the reversal puzzle is absent. The initial response of inflation

is always positive, irrespective of the duration of the peg. Consider once again equation (3),

which we show here again for convenience:

w2,t = −Et

{
∞∑
n=1

Jn−1Ω−1
22 Q2Φεt+n

}
. (5)

Recall that we solve the model in each period of the entire simulation horizon under the assump-

tion that εt+n = 0 for all n > 0. Thus, now the solution for w2,t does not depend anymore on

powers of the matrix J . As a consequence, the simulated time paths of the model will not ‘move’

along the trigonometric functions resulting from the complex elements on the main diagonal of

matrix J . Thus, the explosive complex eigenvalues cannot induce explosive or cyclical effects
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in the solution of w2,t. The model-implied dynamics following a QE shock together with the

implementation of a temporary interest rate peg therefore deliver orthodox results. Thus, the

mere occurrence of complex eigenvalues in the solution of the model do not necessarily imply

appearance of reversals. Without a sufficient degree of anticipation, reversals cannot occur.

3.3 Imperfect anticipation

The two polar cases in which agents either perfectly or not anticipate an announced interest rate

peg are arguably unrealistic. To analyse a more realistic scenario in which agents imperfectly

anticipate an interest rate peg, we turn to a stochastic scenario. We implement imperfect

anticipation by using a Markov-switching approach along the lines of Maih (2015) in which

agents attach non-zero transition probabilities to entering and exiting a regime of pegged interest

rates. The occurrence and the duration of each single episode of pegged interest rates are then

stochastic but – as the agents are aware of the transition probabilities – the frequency and the

average duration of an interest rate peg are known. As a higher frequency implies that the agents

consider an interest rate peg more likely, variations in the peg frequency can be interpreted as

variations in the degree of anticipation in the stochastic scenario. Given a sufficient degree of

anticipation, reversals can occur depending on the average duration of the peg.

In our Markov-switching framework there are two different regimes regarding the policy rule.

Regime 1 describes an economy in which the central bank follows the Taylor-type interest

rate rule as specified in Section 2, i.e., a regime without an interest rate peg. Regime 2 is

characterized by a central bank that does not respond to economic developments anymore, it

thus pegs the interest rate (similar scenarios have been analysed by, e.g. Bianchi and Melosi,

2017; Chen, 2017). The regime switching policy rule is written in the following form:

Rt = (Rt−1)ρ(St)

(
RssΠ

τΠ(St)
t

(
Yt
Yt−1

)τy(St)
)1−ρ(St)

, (6)

where all parameters are functions of the prevailing regime St. St = 1 denotes the regime in

which the central bank reacts to economic developments according to the Taylor-type rule and

St = 2 denotes the regime in which the central bank pegs the interest rate. Correspondingly, in

regime St = 1, the interest rate rule’s coefficients are ρ (St = 1) = 0.7409, τΠ (St = 1) = 1.5912,

and τy (St = 1) = 0.5725 according to the (single regime) estimation described in Appendix B,

whereas in regime St = 2 the coefficients take on the values ρ (St = 2) = 0, τΠ (St = 2) = 0,

and τy (St = 2) = 0.

We analyse the response of inflation to a QE shock for different combinations of the average

duration and the frequency of the peg, which are determined by the transition probabilities of

the model. The transition probability for going from regime 1, where the central bank follows

the Taylor-type rule, to regime 2, where the central bank pegs the interest rate, is denoted

12



Table 2: Mapping from transition probabilities to average duration and frequency of regime 2
(interest rate peg)

F2 = 10% F2 = 15% F2 = 20%
AD2 p12 p21 p12 p21 p12 p21

4 qrt. 2.78% 25.0% 4.41% 25.0% 6.25% 25.0%
11.5 qrt. 0.97% 8.70% 1.53% 8.70% 2.17% 8.70%
19 qrt. 0.58% 5.26% 0.93% 5.26% 1.32% 5.26%
37 qrt. 0.30% 2.70% 0.48% 2.70% 0.68% 2.70%
50 qrt. 0.22% 2.00% 0.35% 2.00% 0.50% 2.00%

F2 = 30% F2 = 40% F2 = 50%
AD2 p12 p21 p12 p21 p12 p21

4 qrt. 10.71% 25.0% 16.67% 25.0% 25.0% 25.0%
11.5 qrt. 3.73% 8.70% 5.80% 8.70% 8.70% 8.70%
19 qrt. 2.26% 5.26% 3.51% 5.26% 5.26% 5.26%
37 qrt. 1.16% 2.70% 1.80% 2.70% 2.70% 2.70%
50 qrt. 0.86% 2.00% 1.33% 2.00% 2.00% 2.00%

Note: p12 denotes the transition probability for going from regime 1 to regime 2; p21 denotes the transition
probability for going from regime 2 to regime 1; AD2 denotes the average duration of regime 2; F2 denotes the
frequency of regime 2. Regime 2 is the regime where the central bank pegs the interest rate.

by p12. The transition probability for going from regime 2 to regime 1 is denoted by p21.

The average duration of a peg episode, AD2, can be pinned down by a suitable choice of p21:

AD2 = 1
p21 . Given p21, the frequency of the peg regime, F2 can then be pinned down by p12:

F2 = AD2

AD1+AD2
, where AD1 = 1

p12 is the average duration of regime 1.

In the perfect foresight scenario of Section 3.1, the different durations of an interest rate peg

could be divided into four different sub-ranges of durations according to whether a reversal

occurs or not (see Figure 3): 0-8 periods (no reversal), 9-14 periods (reversal), 15-23 periods

(no reversal), 24-50 periods (reversal). For expositional reasons, in the stochastic scenario we

consider average durations of an interest rate peg that are in the middle of these sub-ranges,

i.e., average durations of 4, 11.5, 19, and 37 quarters. To cover an even wider range of average

durations in the stochastic scenario, we also consider 50 quarters. For each of these average

durations, we analyse the inflation response for different frequencies. An empirically relevant

frequency of an interest rate peg is based on the post-WWII zero lower bound frequency in

the US of around 10% (7 years at the zero lower bound in 73 years). We additionally consider

frequencies of 15%, 20%, 30% and 50% to cover a wide range of different frequencies and hence

degrees of anticipation. The transition probabilities that imply the various combinations of

average duration and frequency of the peg are shown in Table 2.

For each calibration of the transition probability matrix, we solve and simulate the regime-

switching model and calculate generalized impulse response functions (GIRFs) of inflation for
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a given QE shock.12 The results are presented in the left column of Figure 5. The different

rows show the GIRFs for different frequencies of the interest rate peg. The top graph of the

left column shows the response of inflation to the QE shock for the empirically relevant peg

frequency of 10% for the different average durations of the peg. For all average durations of

the peg, inflation increases after a QE shock, i.e., no reversals occur. The same is true for a

frequency of 15% (second row, left column), and even for a frequency of the peg of 20% (third

row, left column), reversals do not occur irrespective of the average peg durations. Thus, even

for frequencies of the peg as large as double the empirically relevant value, reversals are absent

for the large range of average peg durations we consider. Intuitively, if agents consider a peg

episode to be very unlikely, the degree of anticipation of the peg will be low. The absence of a

strong anticipation effect results in the absence of the reversal puzzle.

Only if the peg frequency is increased to large and arguably implausibly high values, we start to

see reversals in the stochastic scenario, depending on the average peg duration. For a frequency

of 30% (fourth row, left column in Figure 5), a reversal occurs for an average duration of four

quarters. For a frequency of 40% (fifth row, left column), average durations of the peg of 4,

11.5, and 19 quarters imply a reversal, and all average durations of the peg imply a reversal for

a frequency of 50% (sixth row, left column).

Compared to the case of perfect anticipation, the reversal pattern across the different average

durations seems to be different in the case of imperfect anticipation.13 Specifically, given a

frequency of 30% and 40%, a reversal occurs for the lowest average peg duration.14 Additionally,

reversals seem to be “grouped” in the sense that they occur for adjacent average durations.

Finally, for the frequency of 50%, all average durations display a reversal. Since the GIRFs

incorporate simulations of the model over both the regime with and without interest rate peg,

we look at the regime-specific IRFs to better understand these patterns.

The regime-specific IRFs of regime 2 (peg) are shown in the right column of Figure 5. Given

the peg regime, low frequencies (10%, 15%, and 20%, top three rows of right column) imply a

sufficient degree of anticipation for reversals to be possible. Specifically, given that the economy

is in a peg, higher average durations lead to a reversal and lower average durations do not. If

the frequency is increased to 30%, 40% or 50%, all average durations imply a reversal.

In contrast, as shown in the middle column of Figure 5, given regime 1 (no peg), low frequencies

do not imply a sufficient degree of anticipation for reversals to be possible, and hence no

12We use the RISE toolbox, described in Maih (2015), to implement the different scenarios for the regime-
switching model. The toolbox can be downloaded from https://github.com/jmaih/RISE_toolbox. For
each of the calibrations outlined in Table 2, we first check the mean square stability condition. We compute
the generalized impulse responses based on 50,000 draws.

13Recall that the average durations in the imperfect anticipation case were chosen so as to represent sub-ranges
of durations (according to whether a reversal occurs or not) in the perfect anticipation case. The comparison
is hence between the reversal pattern of the average durations in the imperfect anticipation case that represent
the respective sub-ranges of durations in the perfect anticipation case, and the reversal pattern of the sub-
ranges of durations in the perfect anticipation case.

14In the case of perfect anticipation, the lowest sub-range of durations did not show a reversal.

14
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Figure 5: Impulse responses for the Markov-switching model
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Note: The figure shows generalized and regime-specific impulse responses of inflation to a QE shock for five
different scenarios. F2 denotes the frequency of regime 2 (peg regime); AD2 denotes the average duration of
the interest rate peg. GIRF abbreviates generalized impulse response function; IRFSt=1 denotes
regime-specific impulse response function for regime 1; IRFSt=2 denotes regime-specific impulse response
function for regime 2. The vertical axis shows percentage point deviations from steady state.
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average duration displays a reversal. Only frequencies of 30% or beyond are sufficient for the

possibility of a reversal, but now, lower average durations lead to a reversal but not higher

average durations.

Hence, as in the case of perfect anticipation, the qualitative response of inflation in the case

of imperfect anticipation can alternate across the average durations we consider. However, the

regime-switching setup implies a more complex pattern of qualitative responses: it depends on

the regime, the peg frequency and the average peg duration. How this pattern is reflected in

the GIRFs, the ultimately relevant statistics of interest, depends on the frequency of regimes:

A relatively high frequency of regime 1 (regime 2) implies a high share of regime 1 (regime 2)

in the GIRF simulations and hence a high resemblance of the GIRFs with the regime-specific

IRFs for regime 1 (regime 2).

4 Conclusion

The reversal puzzle describes a counterintuitive contraction of inflation in response to a sup-

posedly expansionary interest rate peg in New Keynesian models. In this study, we show that

the reversal puzzle only occurs when agents exhibit a very high and arguably implausible de-

gree of anticipation. If agents have perfect foresight and, thus, fully anticipate an interest rate

peg, reversals are a robust phenomenon that occur for certain durations of the interest rate

peg. If the agents do not anticipate the interest rate peg at all, reversals are absent. If agents

imperfectly anticipate an interest rate peg in a Markov-switching framework, the occurrence

and the duration of a single peg episode are stochastic, and the degree of anticipation depends

on the frequency of the peg. For empirically relevant peg frequencies, reversals are absent for

the large range of average durations of the peg we consider. Only for extreme and arguably

implausible assumptions about the frequency and hence the degree of anticipation of the peg,

reversals occur.

Our results bear important implications for the analysis of policy scenarios. Due to the occur-

rence of the zero lower bound and forward guidance in recent times, there is a need to account

for those features in model simulations. Insofar as these features are addressed in the form of

an interest rate peg, policy evaluations might face the problem of reversals in model outcomes.

Our results show that a Markov-switching approach is a promising tool to circumvent this

pathology and provide qualitatively plausible model outcomes.
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A Model derivation

In our analysis we employ the model of Carlstrom et al. (2017).

A.1 Households and bond market structure

A.1.1 Households’ intertemporal consumption decision

Households maximise their intertemporal utility:

Et

∞∑
s=0

βsbt+s

{
ln (Ct+s − hCt+s−1)−B

H1+η
t+s (j)

1 + η

}
,

where Ct is consumption, h is habit formation, Ht(j) is the individual labour input from house-
hold j, and bt is a shock to the discount factor. Lifetime utility would evaluate to:

V h
t = bt

{
ln (Ct − hCt−1)−Dw

t B
H1+η
t

1 + η

}
+ βEtV

h
t+1

The law of motion for capital is:

Kt ≤ (1− δ)Kt−1 + It

Based on the households’ nominal liability,

Ft−1 = CIt−1 + κCIt−2 + κ2CIt−3 + ...,

one can show that CIt = (Ft − κFt−1), where CIt is the number of bonds newly issued, and
Ft is the households’ nominal liability on new issues. New investments must be financed by
issuing sufficient long term investment bonds which are purchased by the FI. Perpetual bonds
are used with cash flows of 1, κ, κ2, etc.

The loan-in-advance constraint can be written as:

P k
t It ≤

Qt (Ft − κFt−1)

Pt

(
=
QtCIt
Pt

)
,

where Qt is the time-t price of a new issue, Pt is the price level and P k
t is the real price of

capital. Moreover, the usual budget constraint is given by:
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Expenditure Side︷ ︸︸ ︷
Ct +

Dt

Pt︸︷︷︸
HH real
deposits

+P k
t It +

Ft−1

Pt︸︷︷︸
HH real liability
on past issues

≤ WtHt +Rk
tKt − Tt +

Dt−1

Pt
Rd
t−1 +

Qt (Ft − κFt−1)

Pt︸ ︷︷ ︸
HH newly issued real

investment bonds

+divt

A.1.2 Households’ Lagrangian

The corresponding Lagrangian maximising household utility is:

L = Et

∞∑
s=0

βs



bt+s

{
ln (Ct+s − hCt+s−1)−BH1+η

t+s (j)

1+η

}
−Λt+s

 Ct+s + Dt+s
Pt+s

+ P kt+sIt+s + Ft+s−1

Pt+s
−Wt+sHt+s −Rkt+sKt+s + Tt+s

−Dt+s−1

Pt+s
Rdt+s−1 −

Qt+s(Ft+s−κFt+s−1)
Pt+s

− divt+s


−ΛKt+s (Kt+s − (1− δ)Kt+s−1 − It+s)

−ϑt+s
(
P kt+sIt+s −

Qt+s (Ft+s − κFt+s−1)

Pt+s

)
︸ ︷︷ ︸

Loan in advance constraint



The first-order conditions evaluate to:

∂L
∂Ct

: Λt =
bt

Ct − hCt−1

− Et
βhbt+1

Ct+1 − hCt

∂L
∂Dt

: Λt = Etβ
Λt+1

Πt+1

Rd
t with Πt+1 =

Pt+1

Pt

∂L
∂It

: ΛK
t = ϑtP

k
t + ΛtP

k
t = (ϑt + Λt)P

k
t = MtΛtP

k
t

∂L
∂Ft

: ΛtMtQt = Et
βΛt+1 (1 + κQt+1Mt+1)

Πt+1

,

with Mt = 1 + ϑt
Λt

or ΛtMt = Λt + ϑt.

∂L
∂Kt

: ΛtMtP
k
t = EtβΛt+1

[
Rk
t+1 +Mt+1P

k
t+1 (1− δ)

]
,
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A.1.3 Financial intermediaries

The FI choose dividends divt and their net worth Nt to maximise the value function:

Vt = Et

∞∑
s=0

(βζ)sΛt+sdivt+s

where ζ is a parameter for additional impatience using the basic household kernel for discount-
ing.

This maximisation is subject to the budget constraint which represents the law of motion for
net worth, with

RL
t+1 ≡


Coupon︷︸︸︷

1 +

t + 1 Principal/face
value of issues from t︷ ︸︸ ︷

κQt+1

Qt︸︷︷︸
Market Price



divt +Nt [1 + f (Nt)]︸ ︷︷ ︸
Diminishing net worth

by adjustment costs

≤ Pt−1

Pt



(
RLt −Rdt−1

)
Lt−1︸ ︷︷ ︸

Earnings from leveraged net

worth: lending - deposits

+ Rdt−1︸ ︷︷ ︸
For own net worth

no interest on deposit

has to be paid



Nt−1

︸ ︷︷ ︸
Profit FI(Change in net worth)

The net worth adjustment costs which limit the ability of the FI to adjust their portfolio
deviating from its steady state are:

f (Nt) ≡
ψn
2

(
Nt −Nss

Nss

)2

The according Lagrangian becomes:

L = Et

∞∑
s=0

(βζ)s
[
Λt+sdivt+s − ΛN

t+s

{
divt+s +Nt+s [1 + f (Nt+s)]−
Pt+s−1

Pt+s

[(
RL
t+s −Rd

t+s−1

)
Lt+s−1 +Rd

t+s−1

]
Nt+s−1

}]
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This yields the following first-order conditions:

∂L
∂divt

: Λt+s = ΛN
t+s

∂L
∂Nt

: Λt [1 + f (Nt) +Ntf
′ (Nt)] = EtΛt+1βζ

Pt
Pt+1

[(
RL
t+1 −Rd

t

)
Lt +Rd

t

]
The FIs are subject to a simple hold-up problem which limits their ability to attract deposits.
When they choose to default they can seize a fraction µt from the household deposits. The
incentive constraint for the FI not to default, because their income is greater than the assets
they can keep in default, is:

EtVt+1︸ ︷︷ ︸
Expected
future income

≥ µtLtNt︸ ︷︷ ︸
Fraction of their
balance sheet

EtΛt+1
Pt
Pt+1

RL
t+1︸ ︷︷ ︸

Times next periods consumption
value plus earnings from lending

The model can be calibrated for it to be binding. By choosing the fraction of assets the FI can
keep in case of default to be

µt = Φt

[
1 +

1

Nt

Et

(
gt+1

Xt+1

)]
,

with Φt an exogenous stochastic process that represents exogenous changes in the financial
friction. It follows an AR(1) process:

Φt = (1− ρΦ) Φss + ρΦΦt−1 + εΦ,t.

Choosing this fraction ensures that leverage is a function independent of net worth. Hence, the
FIs take leverage as given and we can aggregate the firms as they are just scaled equivalents.
gt is a function of current and forecasted market spreads zt independent of Nt−1. Confirming
the leverage equation, it follows:

Et
Pt
Pt+1

Λt+1

[(
RL
t+1

Rd
t

− 1

)
Lt + 1

]
= ΦtLtEtΛt+1

Pt
Pt+1

RL
t+1

Rd
t

⇔ Lt =
Et

Λt+1

Πt+1[
Et

Λt+1

Πt+1
+ (Φt − 1)Et

Λt+1

Πt+1

RLt+1

Rdt

]

Using the derivation
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∂Lt
∂RL

t+1

=
− (Φt−1)

Rdt[
1 + (Φt − 1)

RLt+1

Rdt

]2 ≥ 0 for Φt < 1,

this can be simplified to

Lt =
1[

1 + (Φt − 1)Et
RLt+1

Rdt

] .
Regarding the balance sheet of the FI and its composition, leveraged net worth is divided into
holdings of long term government bonds and investment bonds:

NtLt = Bt + F t,

with Bt ≡ Qt
Bt
Pt

and F t ≡ QI
t
Ft
Pt
.

The time-t asset value of current and past issues of investment is:

QtFt = QtCIt + κQt

[
CIt−1 + κCIt−2 + κ2CIt−3

]
,

where the time-t price of the perpetuity issued in t-1 is κQt.

A.1.4 Term premium and price of capital mark-up

Rewriting the log-linearised version of the households’ first-order condition with respect to Kt

yields:

λt + pkt +mt = Et
{
λt+1 + [1− β (1− δ)] rkt+1 + β (1− δ)

(
pkt+1 +mt+1

)}
From the log-linearised version of the households first-order condition with respect to Dt, we
know that Etλt+1 − λt = Etπt+1 − rt, and hence

pkt +mt = Et
{

[1− β (1− δ)] rkt+1 − (rt − πt+1) + β (1− δ)
(
pkt+1 +mt+1

)}
.

Iterative substitution then yields the mark-up character of mt on the price of capital pkt :

pkt +mt = Et

∞∑
j=0

[β (1− δ)]j
{

[1− β (1− δ)] rkt+j+1 − (rt+j − πt+j+1)
}
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Similarly, one can show that iterative substitution can also be applied to the log-linearised form
of the households first-order condition with respect to Ft, which then can be written as:

mt = Et

∞∑
j=0

[βκ]j {βκqt+j+1 − qt+j − rt+j}.

And since rLt+1 = κqt+1

RL
− qt = βζ

Π
κqt+1 − qt ≈ βκqt+1 − qt, this can be written as the discounted

sum of future loan to deposit spreads:

mt ≈ Et

∞∑
j=0

[βκ]j
{
rLt+j+1 − rt+j

}
= Et

∞∑
j=0

[βκ]jΞt+j

Ξt+j ≡ βκqit+j+1 − qit+j − rt+j ≈ rLt+j+1 − rt+j

A.2 Labour agencies

Perfectly competitive labour agencies combine differentiated labour inputs into a homogenous
labour composite Ht according to the technology:

Ht =

 1∫
0

Ht(j)
εw−1
εw dj


εw
εw−1

where εw ≥ 1 is the elasticity of substitution between different varieties of labour. The labour
agencies purchase labour Ht(j) at a nominal wage Wt(j). Profit maximisation (i.e., cost min-
imisation) leads to the following problem:

min
Ht(j)

∫ 1

0

Wt(j)Ht(j)dj

subject to (at least obtaining a bundle Ht):

 1∫
0

Ht(j)
εw−1
εw dj


εw
εw−1

≥ Ht

The corresponding Lagrangian is:
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L=

∫ 1

0

Wt(j)Ht(j)dj − ψt


 1∫

0

Ht(j)
εw−1
εw dj


εw
εw−1

−Ht


∂L

∂Ht(j)
: Wt(j) = ψt

 1∫
0

Ht(j)
εw−1
εw dj


1

εw−1

Ht(j)
− 1
εw

⇔ Ht(j) =

(
Wt(j)

ψt

)−εw
Ht

Using the definition of Ht leads to:

Ht =

 1∫
0

((
Wt(j)

ψt

)−εw
Ht

) εw−1
εw

dj


εw
εw−1

⇔ 1 =

(
1

ψt

)−εw 1∫
0

Wt(j)
1−εwdj


εw
εw−1

⇔ ψt =

 1∫
0

Wt(j)
1−εwdj


1

1−εw

≡ Wt

Plugging this into the demand function results in:

Ht(j) =

(
Wt(j)

Wt

)−εw
Ht

A.2.1 Optimal wage

Households are monopolistic suppliers of differentiated labour inputs Ht(j) and set wages on a
staggered basis (à la Calvo). In each period, the probability of resetting the wage is (1− θw),
while with the complementary probability (θw) the wage is automatically increased following
the indexing rule:
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Wt(j) = Πιw
t−1Wt−1 (j)

The problem for a household j who can reset its wage at time t is:

max
Wt(j)

Et

∞∑
s=0

θswβ
s


−BHt+s(j)

1+ψ

1 + ψ︸ ︷︷ ︸
Disutiliy of labour at t + s

bt+s︸︷︷︸
discount
factor shock

λw,t+s︸ ︷︷ ︸
markup
factor

+Λt+s
Wt(j)

Pt+s
Ht+s(j)︸ ︷︷ ︸

real wage income at t + s︸ ︷︷ ︸
Utility consequence of this income


The maximisation problem follows as:

max
Wt(j)

Ωt = Et

∞∑
s=0

θswβ
s


−λw,t+sbt+s B

1+ψ

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s

1+ψ

+Λt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Pt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s


This can be rewritten in the following way:


−λw,t+sbt+s B

1+ψ

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s

1+ψ

+Λt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Pt+s

Wt(j)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s


= Et

∞∑
s=0

θswβ
s


−λw,t+sbt+s B

1+ψ
Wt(j)

−εw(1+ψ)

(
s∏

k=1
Πιwt+k−1

)
Wt+s

−εwHt+s

1+ψ

+Λt+sWt(j)
1−εw

(
s∏

k=1
Πιwt+k−1

)1−εw

Pt+s
W εw
t+sHt+s


∂Ωt

∂Wt(j)
: Et

∞∑
s=0

θswβ
s

Λt+s (1− εw)Wt(j)
−εw 1

Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw

W εw
t+sHt+s



= Et

∞∑
s=0

θswβ
s

λw,t+sbt+sB (−εw)Wt(j)
−εw(1+ψ)−1

(
s∏

k=1

Πιw
t+k−1

)−εw(1+ψ)

W
εw(1+ψ)
t+s H1+ψ

t+s
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⇔ Wt(j)
1+εwψEt

∞∑
s=0

θswβ
s

Λt+s
1

Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw

W εw
t+sHt+s



=
εw

εw − 1
Et

∞∑
s=0

θswβ
s

λw,t+sbt+sB
(

s∏
k=1

Πιw
t+k−1

)−εw(1+ψ)

W
εw(1+ψ)
t+s H1+ψ

t+s



⇔ Wt(j)
1+εwψ =

εw
εw − 1

Et
∞∑
s=0

θswβ
s

λw,t+sbt+sB
[(

s∏
k=1

Πιw
t+k−1

)−εw
W εw
t+sHt+s

]1+ψ


Et
∞∑
s=0

θswβ
s

{
Λt+s

1
Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw
W εw
t+sHt+s

}

Rewritten in terms of real wages
(
wt = Wt

Pt

)
:

Wt(j)
1+εwψ 1

P 1+εwψ
t

=
εw

εw − 1

1

P 1+εwψ
t︸ ︷︷ ︸

= 1

P
1−εw+εw(1+ψ)
t

Et
∞∑
s=0

θswβ
s

λw,t+sbt+sB
[(

s∏
k=1

Πιw
t+k−1

)−εw
W εw
t+sHt+s

]1+ψ


Et
∞∑
s=0

θswβ
s

{
Λt+s

1
Pt+s

(
s∏

k=1

Πιw
t+k−1

)1−εw
W εw
t+sHt+s

}

⇔ wt(j)
1+εwψ =

εw
εw − 1

Et
∞∑
s=0

θswβ
s

λw,t+sbt+sB
 s∏

k=1
Πιwt+k−1

s∏
k=1

Πt+k

−εwwεwt+sHt+s

1+ψ


Et
∞∑
s=0

θswβ
s

Λt+s

 s∏
k=1

Πιwt+k−1

s∏
k=1

Πt+k

1−εw

wεwt+sHt+s


= wt

1+εwψ

All agents choose the same wt(j) as derived in the labour agencies first-order condition with
respect to Ht(j). Letting the numerator be Xwn

t and the denominator Xwd
t , then this equation

can be rewritten as:

wt
1+εwψ =

εw
εw − 1

Xwn
t

Xwd
t

,

27



where the numerator is:

Xwn
t =

λw,tbtBw
εw(1+ψ)
t H1+ψ

t +Et


θwβ Et+1


∞∑
s=1

θs−1
w βs−1λw,t+sbt+sB(

s∏
k=1

Πt+k

)εw(1+ψ)( s∏
k=1

Πιw
t+k−1

)−εw(1+ψ)

w
εw(1+ψ)
t+s H1+ψ

t+s


︸ ︷︷ ︸

=Xwn
t+1Π

εw(1+ψ)
t+1 Π

−ιwεw(1+ψ)
t



and the denominator:

Xwd
t = Λtw

εw
t Ht + Et


θwβ Et+1


∞∑
s=1

θs−1
w βs−1Λt+s


s∏

k=1

Πιw
t+k−1

s∏
k=1

Πt+k


1−εw

wεwt+sHt+s


︸ ︷︷ ︸

=Xwd
t+1Π

−ιw(εw−1)
t Π

(εw−1)
t



The equation for wt(i) = w∗t can be written in the following way:

(w∗t )
1+εwψ =

εw
εw − 1

Xwn
t

Xwd
t

The law of motion for wages then is:

Wt
1−εw = (1− θw) (W ∗

t )1−εw + θw
(
Πιw
t−1Wt−1

)1−εw

⇔ wt
1−εw = (1− θw) (w∗t )

1−εw + θw

(
Πιw
t−1wt−1

Πt

)1−εw

28



A.2.2 Wage dispersion

From the demand for differentiated labour, we have differentiated labour supply from household
j:

Ht(j) =

(
Wt(j)

Wt

)−εw
Ht

Taking the integral over households on both sides, we have:

∫ 1
0 Ht(j)dj︸ ︷︷ ︸

Hht

= Ht ∫ 1
0

(
Wt(j)

Wt

)−εw
dj︸ ︷︷ ︸

Dwt

= HtDwt

Now regarding the evolution of Dwt, the period-t wage dispersion is:

Dwt = W εw
t

[
θw
(
Πιw
t−1

)−εwDwt−1

W εw
t−1

+ (1− θw)(Wt
∗)−εw

]

⇔ Dwt = θw
(
Πιw
t−1

)−εw( Wt

Wt−1

)εw
Dwt−1 + (1− θw)

(
Wt
∗

Wt

)−εw

⇔ Dwt = θw

(
Πt

Πιw
t−1

)εw( wt
wt−1

)εw
Dwt−1 + (1− θw)

(
wt
∗

wt

)−εw

From the evolution of the aggregate wage index, we have:

Wt
1−εw = (1− θw) (W ∗t )1−εw + θw

(
Πιw
t−1Wt−1

)1−εw ⇔ (
W ∗t
Wt

)−εw
=

1− θw
(

Πιw
t−1

Wt−1

Wt

)1−εw

1− θw


−εw
1−εw

Substituting this into the evolution of wage dispersion yields:

Dwt = θw
(
Πιw
t−1

)−εw( Wt

Wt−1

)εw
Dwt−1 + (1− θw)

1
1−εw

[
1− θw

(
Πιw
t−1

Wt−1

Wt

)1−εw
] εw
εw−1
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Finally, rewriting this in terms of real wages:

Dwt = θw
(
Πιw
t−1

)−εw( wt
wt−1

Πt

)εw
Dwt−1 + (1− θw)

1
1−εw

[
1− θw

(
Πιw
t−1

wt−1

wtΠt

)1−εw
] εw
εw−1

A.3 Goods market

A.3.1 Final goods producers

Perfectly competitive final goods producers combine differentiated intermediate goods Yt(i) into
a homogeneous good Yt according to the technology:

Yt =

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

The final goods producers buy the intermediate goods on the market, package Yt, and resell
it to consumers. These firms maximise profits in a perfectly competitive environment. Their
optimisation problem (cost minimisation) is:

min
Yt(i)
∫ 1

0 Pt(i)Yt(i)di

subject to (at least obtaining a bundle Yt):

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

≥ Yt

Thus, the Lagrangian is:

L = ∫ 1
0 Pt(i)Yt(i)di−Ψt

([
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

− Yt

)

The first order condition w.r.t. Yt(i) is:

∂L
∂Yt(i)

= Pt(i)−Ψt

(
εp
εp−1

[
∫ 1

0 Yt(i)
εp−1

εp di

] εp
εp−1

−1
εp−1

εp
Yt(i)

εp−1

εp
−1

)
= 0

⇔ Pt(i)−Ψt


[
∫ 1

0 Yt(i)
εp−1

εp di

] 1
εp−1

︸ ︷︷ ︸
Y

1
εp
t

Yt(i)
− 1
εp

 = 0

⇔ Yt(i) =
(
Pt(i)
Ψt

)−εp
Yt,
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which is the demand function.

Using the definition of Yt leads to:

Yt =

∫ 1
0

((
Pt(i)

Ψt

)−εp
Yt

) εp−1

εp

di


εp
εp−1

⇔ Ψt =
[
∫ 1

0 Pt(i)
1−εpdi

] 1
1−εp ≡ Pt

Plugging this into the demand function results in:

Yt(i) =

(
Pt(i)

Pt

)−εp
Yt

A.3.2 Intermediate goods producers

A continuum of monopolistically competitive firms combines capital Kt−1 and labour Ht to
produce intermediate goods according to a standard Cobb-Douglas technology.

The production function is given by:

Yt(i) = AtKt−1(i)αHt(i)
1−α

The firms minimise their cost

min

{
Wt

Pt
Ht(i) +Rk

tKt−1(i)

}

subject to their production function, such that the corresponding Lagrangian reads:

L =
Wt

Pt
Ht(i) +Rk

tKt−1(i) + νt(i)
[
Yt(i)− AtKt−1(i)αHt(i)

1−α]
Thus, the firms choose labour and capital as follows:

∂ Lt
∂ Ht (i)

=
Wt

Pt
− νt (i) (1− α)AtKt−1(i)αHt(i)

−α︸ ︷︷ ︸
MPL(i)t

= 0
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∂ Lt
∂ Kt−1 (i)

= Rk
t − νt (i)αAtKt−1(i)α−1Ht(i)

1−α︸ ︷︷ ︸
MPK(i)t

= 0

As intermediate result we get the marginal product of labour (MPL) and capital (MPK),
respectively. Solving the derivative w.r.t. Kt−1 for νt(i) and putting the corresponding equation
into the derivative w.r.t. Lt yields:

Kt−1(i)

Ht(i)
=

α

(1− α)

Wt

PtRk
t

Real marginal costs are derived as the shadow price of production νt(i). From the derivative
w.r.t. Ht we have:

νt(i) =
1

(1− α)At

(
Kt−1(i)

Ht(i)

)−α
Wt

Pt

Then plugging in the optimal capital-labour ratio from above, we get:

νt(i) = α−α (1− α)−(1−α)

(
Wt

Pt

)1−α (
Rk
t

)α
At

= mct(i) =
MCt(i)

Pt

A.3.3 Optimal price setting

The intermediate goods producers set prices based on Calvo contracts. In each period firms
adjust their prices with probability (1− θp) independently form previous adjustments. However,
we depart from Calvo in the following way: For those firms that cannot adjust their prices in
a given period, prices will be reset according to the following indexation rule:

Pt(i) = Π
ιp
t−1Pt−1(i),

where Πt = Pt
Pt−1

is gross inflation.

The firms that adjust their prices face the following problem:

max
Pt(i)

Ωt = Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

Yt+s(i)−
Wt+s

Pt+s
Ht+s(i)−Rk

t+sKt−1+s(i)

 ,

with demand given by:
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Yt+s(i) =

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s


−εp

Yt+s.

The optimisation problem is:

max
Pt(i)

Ωt = Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

− λp,t+smct+s(i)

 Yt+s(i)

Plugged in aggregate demand:

Et
∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)( s∏
k=1

Π
ιp
t+k−1

)
Pt+s

− λp,t+smct+s(i)

 Pt(i)

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

−εpYt+s
= Et

∞∑
s=0

θsp
βsΛt+s

Λt

Pt(i)1−εp

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

1−εp

− λp,t+smct+s(i)Pt(i)−εp
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s

−εp Yt+s

and taking the derivative w.r.t. Pt(i) - this leads to:

Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s


−εp

Yt+s

(1− εp)


(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s




= Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s


−εp

Yt+s
[
λp,t+smct+s(i) (−εp)Pt(i)−1]

⇔ Pt(i) =

(
εp

εp − 1

) Et
∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
Pt+s

−εpYt+s
(

s∏
k=1

Π
ιp
t+k−1

)
Pt+s
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And since Pt+s = Pt
s∏

k=1

Πt+k:

Pt(i) = Pt

(
εp

εp − 1

)(
Pt
Pt

)−εpEt ∞∑s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+s
(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1
Πt+k

⇔ Pt(i)

Pt−1︸ ︷︷ ︸
=Π∗t

Pt−1

Pt︸︷︷︸
=Π−1

t

=

(
εp

εp − 1

) Et
∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1

Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+s
(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1
Πt+k

⇔ Π∗t =

(
εp

εp − 1

) Et
∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)
Et

∞∑
s=0

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

1−εp

Yt+s

Πt

Each of the parts of this equation can be defined as follows:

Xpd
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s,

Xpn
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


−εp

Yt+sλp,t+smct+s(i),

where, regarding Xpd
t :

Xpd
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s
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⇔ Xpd
t = Yt + Et

θp
βΛt+1

Λt

(
Π
ιp
t

Πt+1

)1−εp

Yt+1 +
∞∑
s=2

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s



⇔ Xpd
t = Yt + Et


θp
βΛt+1

Λt

Et+1


∞∑
s=1

θs−1
p

βs−1Λt+s

Λt+1


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


1−εp

Yt+s


︸ ︷︷ ︸

=Π
ιp(1−εp)
t Π

εp−1
t+1 Xpd

t+1



⇔ Xpd
t = Yt + Et

{
θp
βΛt+1

Λt

Π
ιp(1−εp)
t Π

εp−1
t+1 X

pd
t+1

}

and, considering Xpn
t :

Xpn
t = Et

∞∑
s=0

θsp
βsΛt+s

Λt


(

s∏
k=1

Π
ιp
t+k−1

)
s∏

k=1

Πt+k


−εp

Yt+sλp,t+smct+s(i)

⇔ Xpn
t = Ytλp,tmct(i) + Et


θp

βΛt+1

Λt

(
Π
ιp
t

Πt+1

)−εp
Yt+1λp,t+1mct+1(i)

+
∞∑
s=2

θsp
βsΛt+s

Λt

(
s∏

k=1
Π
ιp
t+k−1

)
s∏

k=1
Πt+k

−εpYt+sλp,t+smct+s(i)


⇔ Xpn
t = Ytλp,tmct(i) + Et

{
θp
βΛt+1

Λt

Π
−ιpεp
t Π

εp
t+1X

pn
t+1

}
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Thus, we can write the equation for Π∗t in the following way:

Π∗t =
εp

εp − 1

Xpn
t

Xpd
t

Πt

The law of motion for prices then is:

P
1−εp
t = (1− θp) (P ∗t )1−εp + θp

(
Π
ιp
t−1Pt−1

)1−εp

⇔ (Πt)
1−εp = (1− θp) (Π∗t )

1−εp + θp
(
Π
ιp
t−1

)1−εp

A.3.4 Price dispersion

From the demand for differentiated goods, we have:

Yt(i) =

(
Pt(i)

Pt

)−εp
Yt

Taking the integral on both sides, it follows:

∫ 1
0 Yt(i)di︸ ︷︷ ︸

Yht

= Yt ∫ 1
0

(
Pt(i)

Pt

)−εp
di︸ ︷︷ ︸

Dpt

Regarding the evolution of Dpt, the period-t price dispersion is:

Dpt = P
εp
t

[
θp
(
Π
ιp
t−1

)−εpDpt−1

P
εp
t−1

+ (1− θp)(Pt∗)−εp
]

⇔ Dpt = Π
εp
t

[
(1− θp)Πt

∗−εp + θp
(
Π
ιp
t−1

)−εp
Dpt−1

)
From the evolution of the aggregate price index, we have:

Pt
1−εp = (1− θp) (P ∗t )1−εp + θp

(
Π
ιp
t−1Pt−1

)1−εp

⇔
(
P ∗t
Pt

)−εp
=

1− θp
(

Π
ιp
t−1

Πt

)1−εp

1− θp


εp
εp−1

Substituting this into the evolution of price dispersion yields:
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Dpt = θp
(
Π
ιp
t−1

)−εp
Π
εp
t Dpt−1 + (1− θp)

1
1−εp

[
1− θp

(
Π
ιp
t−1

Πt

)1−εp
] εp
εp−1

A.3.5 Capital producers

The profits of the capital producers can be defined as follows:

P k
t µt

[
1− S

(
It
It−1

)]
It︸ ︷︷ ︸

Income

− It︸︷︷︸
Costs

The profit maximisation of the capital producers without constraint is described by:

L = Et

∞∑
s=0

βsΛt+s

[
P k
t+sµt+s

[
1− S

(
It+s
It+s−1

)]
It+s)− It+s

]

∂L
∂It

: P k
t µt

{
1− S

(
It
It−1

)
− S ′

(
It
It−1

)
It
It−1

}
= 1− βP k

t+1

Λt+1

Λt

µt+1

{
−S ′

(
It+1

It

)(
It+1

It

)2
}

A.4 Government policies

When the central bank does not peg the interest rate, it follows a standard Taylor rule:

ln (Rt) = (1− ρ) ln (R) + ρ ln (Rt−1) + (1− ρ) (τπ (πt − π) + τy(yt − yt−1)) + εrt

QE policies are implemented via the AR(2) process:

B̄ = (B̄ss)
(1−ρB1

+ρB2
) ∗ (B̄t−1)(ρB1

) ∗ (B̄t−2)(−ρB2
) ∗ εB

A.5 Resource constraints and exogenous shock processes

The resource constraint evaluates to:

Yt = Ct + It.

In addition to the equilibrium conditions, the model comprises seven exogenous processes.

1. Technology shock: At = (1− ρa) ∗ log(Ass) + ρa ∗ At−1 + εA,t.

2. Financial shock: Φt = (1− ρφ) ∗ log(Φss) + ρphi ∗ (Φt−1) + εΦ,t.
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3. Investment shock: µt = (1− ρµ) ∗ log(µss) + ρµ ∗ (µt−1) + εµ,t.

4. Wage markup shock: λw,t = (1− ρλw) ∗ log(λw,ss) + ρλw ∗ (λw,t−1) + ελw,t .

5. Price markup shock: λp,t = (1− ρλp) ∗ log(λp,ss) + ρλp ∗ (λp,t−1) + ελp,t .

6. Discount factor shock: bt = (1− ρb) ∗ log(bss) + ρb ∗ (bt−1) + εb,t.

7. Monetary policy residual: Rε
t = (1− ρm) ∗ log(Rε

ss) + ρm ∗Rε
t−1 + εR,t;
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B Data, Estimation and Calibration

B.1 Data

Definition of observables

Real per capita output growth: (Y ER/LFN)−(Y ER(−1)/LFN(−1))
(Y ER(−1)/LFN(−1))

Real per capita investment growth: (ITR/LFN)−(ITR(−1)/LFN(−1))
(ITR(−1)/LFN(−1))

Gross inflation: 1 + HICPSA−HICPSA(−1)
HICPSA(−1)

Employment growth: LNN−LNN(−1)
LNN(−1)

Real wage growth: (WRN/HICPSA)−(WRN(−1)/HICPSA(−1))
(WRN(−1)/HICPSA(−1))

First difference of short-term interset rate: STN − STN(−1)

First difference of long-term interest rate: LTN − LTN(−1)

Real bank net worth growth: (NWB/HICPSA)−(NWB(−1)/HICPSA(−1))
(NWB(−1)/HICPSA(−1))

Data description

All seasonal data are seasonally adjusted.

YER: Real GDP. Millions of ECU/euro corrected with reference year 1995. Source: Area-wide
Model (AWM) database.

LFN: Labor force (persons). Source: AWM database.

ITR: Gross investment. Source: AWM database.

HICPSA: Overall Harmonised Index of Consumer Prices. Base year 1996=100. Source: AWM
database.

LNN: Total employment (persons). Source: AWM database.

WRN: Nominal wage rate per head. Source: AWM database.

STN: Nominal net short-term interest rate in percent. Source: AWM database.

LTN: Nominal net long-term interest rate in percent. Source: AWM database.

NWB: Nominal capital and reserves of euro area monetary financial Institutions (excluding
eurosystem) in millions of euro. Source: European Central Bank, MFI Balance Sheet Items
Statistics.
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B.2 Estimation

As is common in the literature, we calibrate a subset of structural parameters to ensure iden-
tification. For the calibration, we rely on CFP. Table 3 gives the values for the calibrated
parameters. β is set to 0.99, yielding a steady state annual real interest rate of 4%. The
labour income share α is set to 0.33 and the capital depreciation rate per year to 10%, implying
δ = 0.025. A 20% mark-up in both prices and wages is assumed, leading to εp = εw = 5. A
leverage ratio of 6 leads to ζ = 0.9854. The other structural parameters are estimated using

Table 3: Calibrated parameters

Parameters Description Value
β Household discount factor 0.99
ψI Investment adjustment cost 2
κ Coupon payment 0.975
Lss Steady state leverage 6
εp Elasticity of substitution (goods) 5
εw Elasticity of substitution (labour) 5
α Capital share 0.33
δ Depreciation rate 0.025

Bayesian methods. For the estimation, we linearise the model around the steady state. We use
eight observables for the euro area: real per capita output growth, real per capita investment
growth, gross inflation, employment growth, real wage growth, the first difference of the short-
and long-term interest rate, and real bank net worth growth. Data on bank net worth are taken
from the European Central Bank’s MFI Balance Sheet Items Statistics. All the other variables
are taken from the Area-wide Model database.15 All variables are demeaned. Since we have
only seven structural shocks in the model, we add a measurement error to the observations
equation for bank net worth in order to avoid stochastic singularity. The sample period is from
1998Q1 to 2013Q4.

Table 4: Prior and posterior distributions of structural parameters

Prior distribution Posterior distribution
Param. Description Dist. Mean St. Dev. Median Mean HPD inf HPD sup
h Habit formation Beta 0.5000 0.2000 0.8642 0.8635 0.8193 0.9074
η Labor disutility Gamma 2.0000 0.5000 1.8101 1.8496 1.1055 2.5857
ιp Price indexation Beta 0.6000 0.1000 0.5261 0.5263 0.3658 0.6890
ιw Wage indexation Beta 0.6000 0.1000 0.3761 0.3786 0.2573 0.4991
θp Price rigidity Beta 0.7000 0.1000 0.8144 0.8139 0.7567 0.8676
θw Wage rigidity Beta 0.7000 0.1000 0.8211 0.8194 0.7641 0.8726
ρ Interest rate smoothing Beta 0.7500 0.1000 0.7409 0.7390 0.6850 0.7947
τpi Inflation coeff. in TR Normal 1.5000 0.1000 1.5912 1.5919 1.4333 1.7482
τy Output growth coeff. in TR Normal 0.5000 0.1000 0.5725 0.5723 0.4163 0.7270
ψN Net worth adjustm. costs Gamma 3.0000 1.0000 6.7634 6.8273 4.9522 8.7945

Notes: Results based on 4 chains with 500,000 draws each. HPD inf and HPD sup denote the lower and upper bound, respectively,

of the 90% highest posterior density interval.

The choice of the prior distributions of the structural parameters to be estimated correspond
largely to those in CFP and Christiano, Motto and Rostagno (2010). In general, we use the
Beta distribution for parameters between zero and one. For the Taylor rule parameters we use

15We make use of the 14th update of the Area-wide Model (AWM) database from September 2014); see http:

//www.eabcn.org/sites/default/files/fck_uploads/awm_database_update_14.pdf.
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Table 5: Prior and posterior distributions of parameters in shock processes

Prior distribution Posterior distribution
Param. Description Dist. Mean St. Dev. Median Mean HPD inf HPD sup
ρA AR(1), productivity Beta 0.6000 0.2000 0.9719 0.9662 0.9342 0.9976
ρΦ AR(1), financial Beta 0.6000 0.2000 0.6628 0.6608 0.5719 0.7527
ρµ AR(1), investment Beta 0.6000 0.2000 0.8370 0.8347 0.7713 0.8980
ρλW AR(1), wage mark-up Beta 0.6000 0.2000 0.1741 0.1868 0.0420 0.3260
ρλP AR(1), price mark-up Beta 0.6000 0.2000 0.4542 0.4484 0.2351 0.6620
ρd AR(1), discount factor Beta 0.6000 0.2000 0.4945 0.4930 0.3297 0.6585
ρR AR(1), monetary Beta 0.6000 0.2000 0.5030 0.4993 0.3636 0.6366
εA SE, productivity Invgam 0.0100 1.0000 0.0056 0.0056 0.0048 0.0064
εΦ SE, financial Invgam 0.0500 1.0000 0.1882 0.1913 0.1419 0.2394
εµ SE, investment Invgam 0.5000 1.0000 0.0881 0.0887 0.0740 0.1028
ελW SE, wage mark-up Invgam 0.1000 1.0000 0.5742 0.6359 0.2132 1.0417
ελP SE, price mark-up Invgam 0.1000 1.0000 0.0528 0.0608 0.0240 0.0954
εd SE, discount factor Invgam 0.1000 1.0000 0.0300 0.0314 0.0206 0.0416
εR SE, monetary Invgam 0.0100 1.0000 0.0033 0.0033 0.0028 0.0038
εNW SE, M.E. bank net worth Invgam 0.0013 1.0000 0.0147 0.0148 0.0126 0.0171

Notes: Results based on 4 chains with 500,000 draws each. HPD inf and HPD sup denote the lower and upper bound, respectively,

of the 90% highest posterior density interval.

the normal distribution, which is typically used for unbounded parameters. For the financial
sector parameter ψN , which governs the importance of net worth adjustment costs, we use a
gamma distribution with mean 3 and standard deviation 1. The left parts of Tables 4 and 5
display the prior distributions of the estimated parameters.

Given the prior distributions of the parameters, we draw posterior distributions using the
Metropolis-Hastings algorithm. We run four chains, each with 500,000 draws.16 The right parts
of Tables 4 and 5 report the posterior median, the posterior mean, and the lower and upper
bounds of the 90% highest posterior density interval of the estimated parameters obtained by the
Metropolis-Hastings algorithm. Further information, such as convergence statistics proposed
by Brooks and Gelman (1998) as well as trace plots for the estimated structural parameters can
be obtained from the authors. The posterior means of the habit formation parameter (0.86),
the price rigidity parameter (0.81), and the price indexation parameter (0.53) are estimated
to be somewhat higher than in CFP. The posterior means of the wage rigidity (0.82), wage
indexation (0.38), and labour disutility (1.85) parameter are estimated to be somewhat lower
than in CFP. The posterior means of the Taylor rule parameters are in line with commonly
observed values in the literature. The most noticeable difference between our estimation result
and CFP’s is the posterior distribution for the net worth adjustment cost parameter ψN . Our
posterior mean for this parameter (6.82) is vastly higher than the one in CFP (0.79). This could
have several reasons: First, net worth elasticity could be different in Europe compared to the
USA. Second, our sample ends in 2013Q4 and thus includes data of the financial crisis. Third,
we use data on bank net worth to better identify the net worth adjustment cost parameter.
On average, financial frictions could thus be more severe in our sample than in CFP’s sample
which ends in 2008Q4. Figure 6 shows the prior and posterior distributions of the structural
parameters as well as their posterior modes.

16We use Dynare 4.5.4 for the estimation of the model, see Adjemian, Bastani, Karamé, Juillard, Maih, Mihoubi,
Perendia, Pfeifer, Ratto and Villemot (2018).
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Figure 6: Prior and posterior distribution of structural parameters
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Note: Dashed-dotted lines are prior distributions, solid lines are posterior distributions, and the vertical
dotted lines are the posterior modes.

C Forward solution of the linearized model

We consider the linearized version of the model, which we can write in the following general
form:

Γ0Yt = Γ1Yt−1 + Φεt + Ψηt. (C.1)

Yt denotes the endogenous variables, εt describes the fundamental shocks (for instance, the
QE shock or the shock governing the interest rate peg), and ηt indicates the forecast errors.
Following Sims (2001), we apply the QZ decomposition:

Q
′
ΛZ

′
= Γ0 (C.2)

Q
′
ΩZ

′
= Γ1. (C.3)
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As a result, we can rewrite equation (C.1) such that

Q
′
ΛZ

′
Yt︸︷︷︸
ωt

= Q
′
ΩZ

′
Yt−1︸ ︷︷ ︸
ωt−1

+Φεt + Ψηt. (C.4)

Premultiplying by Q and redefining Z
′
Yt ≡ wt implies

Λwt = Ωwt−1 +QΦεt +QΨηt. (C.5)

Partitioning equation (C.5) into explosive and nonexplosive parts yields

[
Λ11 Λ12

0 Λ22

] [
w1,t

w2,t

]
=

[
Ω11 Ω12

0 Ω22

] [
w1,t−1

w2,t−1

]
+

[
Q1

Q2

]
(Φεt + Ψηt) , (C.6)

where the second equation, i.e., the one containing the unstable eigenvalues, can separately be
written as

Λ22w2,t = Ω22w2,t−1 +Q2 (Φεt + Ψηt) . (C.7)

Multiply equation (C.7) by Ω−1
22 to obtain

Ω−1
22 Λ22w2,t = Ω−1

22 Ω22w2,t−1 + Ω−1
22 Q2 (Φεt + Ψηt) . (C.8)

Rewrite this expression as

Jw2,t = w2,t−1 + Ω−1
22 Q2 (Φεt + Ψηt) . (C.9)

In this expression, J ≡ Ω−1
22 Λ22 collects the ratios (i.e., the generalized eigenvalues) of the

diagonal elements of Λ and Ω. Thus, J contains the generalized eigenvalues on its diagonal
(i.e., when αjj denotes the diagonal elements of matrix Λ and δjj denotes the diagonal elements
of matrix Ω, then the generalized eigenvalues on the diagonal of matrix J are the ratios of these
diagonal elements of Λ and Ω), such that

J =


α11

δ11
∗

α22

δ22

. . .

∗ αjj
δjj

 . (C.10)

Shifting equation (C.9) one period forward and solving for w2,t, we finally obtain

w2,t = Jw2,t+1 − Ω−1
22 Q2 (Φεt+1 + Ψηt+1) . (C.11)
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Iterating forward yields:

w2,t = −
∞∑
n=1

Jn−1Ω−1
22 Q2 (Φεt+n + Ψηt+n) . (C.12)

Here, it is assumed that limn→∞ J
nw2,t+n = 0. Since equation (C.12) contains future funda-

mental shocks and forecast errors, taking expectations leads to

w2,t = −Et

{
∞∑
n=1

Jn−1Ω−1
22 Q2Φεt+n

}
. (C.13)

D Sensitivity analysis

One might conjecture that our results on the reversals depend very much on the specific param-
eterization of the model. In this section, we document that this is not the case. To this end,
we conduct an extensive grid search over the model’s structural parameters and illustrate for
which duration of the anticipated interest rate peg reversals in the initial response of inflation
occur. Specifically, we vary each parameter one-by-one, holding the other parameters constant
at their benchmark values, to document that the reversal does not arise only for a very specific
paramterisation of the model.

The household sector: Figure 7 shows that simply reducing the forward-lookingness of the
agents in the economy by decreasing the discount parameter β (see subpanel (a) in the upper
left), or increasing the backward-lookingness of the agents by increasing the consumption habit
parameter, does not prevent reversals from occuring. We only observe that the duration of the
peg that is required for the reversal to appear changes. For instance, if households discount
future consumption more heavily (a smaller value for β), the peg has to be a few quarters longer
in order for the reversal to appear (this is consistent with Carlstrom et al. (2015) who document
that the implementation of a discounted Euler equation, along the lines of McKay, Nakamura
and Steinsson (2016), does not resolve the reversal puzzle). In addition, variations in the
parameters determining the investment decision of the households (i.e., the capital depreciation
rate δ and the capital adjustment costs ψi shown in the subpanels (c) and (d)) do not prevent
sign switches.
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Figure 7: Duration of nominal interest rate peg for which the reversal puzzle occurs for different
values of the household sector’s structural parameters

(a) Discount parameter β
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(b) Habit parameter h
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(c) Capital depreciation δ
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(d) Capital adjustment cost ψi
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Note: The figure shows simulations for increasing durations of a pegged policy rate of up to thirty quarters for

different parameter values. The blue points indicate a different sign compared to the scenario without interest

rate peg. The red line marks the calibrated value for the respective parameters, which were used to carry out

the analysis in Subsections 3.2 and 3.1.

The firm sector: Figure 8 presents results from our grid search over the parameter values
which drive the behavior of the price and wage setters (i.e., the Calvo parameters for prices,
θp, and wages, θw, as well as the parameters for price and wage indexation, ιp and ιw). Once
again, we observe that the required duration of the interest rate peg in order for the reversal
to appear, varies with different parameter values. However, we observe that if firms behave in
a less forward-looking manner (i.e., for Calvo parameters for prices and wages > 0.9), the peg
has to be a few years longer in order for the reversal to appear.
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Figure 8: Duration of nominal interest rate peg for which the reversal puzzle occurs for different
values of the firm sector’s structural parameters

(a) Calvo parameter: prices θp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Values of 

p

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Le
ng

th
 o

f i
nt

er
es

t-
ra

te
 p

eg
s

(b) Calvo parameter: wages θw
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(c) Price indexation ιp
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(d) Wage indexation ιw
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Note: The figure shows simulations for increasing durations of a pegged policy rate of up to thirty quarters.

Again, the blue points indicate a different sign compared to the scenario without interest rate peg. The red

line marks the calibrated value for the respective parameters, which were used to carry out the analysis in

Subsections 3.2 and 3.1.

It should be noted that even if we shut down price and wage indexation jointly (i.e., ιp = 0
and ιw = 0) and re-run all the grids for all structural parameter values, sign reversals still
occur. Thus, beyond indexation, there remain elements in the present model that produce sign
switches.

Monetary policy: Figure 9, finally, presents the results from a grid search over the Taylor-
rule coefficients, which become active, of course, only after the peg has ended.17 As before,
the occurrence of sign switches in the simulations does not depend on individual parameter
values. Only the length of the peg, for which the reversal occurs, is affected by changes of the
parameters. In particular, a more aggressive inflation stabilization (i.e., a higher coefficient τπ)
requires a longer duration of the interest rate peg in order for the reversal to occur. Introduc-
ing history dependence by means of interest rate smoothing does not prevent reversals from
occurring, either; see upper left panel in Figure 9.

17Note that the agents perfectly anticipate the duration of forward guidance. Thus, they are perfectly aware of
the point in time at which the Taylor rule is in place again.
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Figure 9: Duration of nominal interest rate peg for which the reversal puzzle occurs for different
values of the Taylor-rule parameters

(a) Interest rate smoothing ρ
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(b) MP reaction coefficient on inflation τπ
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(c) MP reaction coefficient on output τy
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Note: The figure shows simulations for increasing durations of a pegged policy rate of up to thirty quarters.

Once more, the blue points indicate a different sign compared to the scenario without interest rate peg. The

red line marks the calibrated value for the respective parameters, which were used to carry out the analysis in

Subsections 3.2 and 3.1.
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