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Non-technical summary

Research Question

Monitoring economic developments is often based on both seasonally adjusted and unad-

justed data. Testing observed time series for the presence of seasonality is therefore an

important part of economic analyses. Different seasonality tests agree in the majority of

cases but also give contradictory results for a non-negligible number of time series. This

raises the following questions: how can the conflicting results be settled, and how can the

most reliable tests be identified?

Contribution

We treat the identification of the seasonal status of a given time series as a classifica-

tion task and the outcome of the different seasonality tests as predictors. Therefore, we

can use machine learning methods for this classification task and compare them to find

the one which best balances high accuracy, high interpretability and availability of unbi-

ased variable importance measures. The methods are applied to simulated data that are

representative of the Bundesbank’s macroeconomic time series database.

Results

Our analysis reveals tree-based methods in general and random forest variants in partic-

ular to be the most appropriate methods. The latter especially stand out due to mis-

classification rates which are acceptably low as well as barely affected by the time series’

lengths, as opposed to some single seasonality tests. However, only one random forest

variant is capable of providing unbiased variable importance measures even for correlated

predictors. This variant finally identifies the modified QS and Friedman tests as the most

informative seasonality tests among the considered candidates.



Nichttechnische Zusammenfassung

Fragestellung

Konjunkturbeobachtungen beruhen oft sowohl auf saisonbereinigten als auch auf unbe-

reinigten Daten. Die Anwendung verschiedener Tests zur Erkennung saisonaler Muster

in diesen Daten ist daher ein wichtiger Bestandteil volkswirtschaftlicher Analysen. Diese

Saisontests liefern meistens übereinstimmende Ergebnisse, kommen aber bei einer nicht

unerheblichen Zahl von Zeitreihen auch zu widersprüchlichen Einschätzungen. Dies wirft

folgende Fragen auf: Wie können solche verschiedenen Testergebnisse sinnvoll zusammen-

gefasst werden, und wie lassen sich die zuverlässigsten Saisontests identifizieren?

Beitrag

Wir betrachten die Erkennung saisonaler Muster in Zeitreihen als Klassifikationsproblem

und die Ergebnisse der verschiedenen Saisontests als Prädiktoren. Wir können daher

Methoden des maschinellen Lernens zur Klassifikation verwenden und vergleichen ihre

Fähigkeiten hinsichtlich eines möglichst ausgewogenen Verhältnisses zwischen hoher Ge-

nauigkeit, guter Interpretierbarkeit und Verfügbarkeit unverzerrter Maße zum Informati-

onsgehalt der Prädiktoren. Die Methoden werden dabei auf simulierte Daten angewendet,

die repräsentativ für die makroökonomische Zeitreihendatenbank der Bundesbank sind.

Ergebnisse

Als geeignete Verfahren erweisen sich im Allgemeinen auf Klassifikationsbäumen aufbau-

ende Methoden und im Speziellen Random-Forest-Varianten. Letztere zeichnen sich im

Vergleich zu einzelnen Saisontests vor allem durch geringere und gegenüber der Zeitrei-

henlänge robustere Fehlklassifikationsraten aus. Allerdings kann nur eine Variante den

Informationsgehalt auch für korrelierte Prädiktoren unverzerrt quantifizieren. Diese Va-

riante identifiziert schließlich den modifizierten QS- und den Friedman-Test als aussage-

kräftigste unter allen berücksichtigten Saisontests.



Bundesbank Discussion Paper No 55/2020

A random forest-based approach to identifying the
most informative seasonality tests∗

Daniel Ollech
Deutsche Bundesbank

Karsten Webel
Deutsche Bundesbank

Abstract

Virtually each seasonal adjustment software includes an ensemble of seasonality
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popular methods with respect to accuracy, interpretability and availability of unbi-
ased variable importance measures and find random forests of conditional inference
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1 Motivation

To judge current economic developments and to forecast important target variables,
such as quarterly gross domestic product, economists usually monitor a broad and well-
established set of trustworthy key time series on a regular basis. Usually, some time series
will enter this set in unadjusted form while some other series will enter it in seasonally
adjusted form, depending on the seasonal status of the particular time series. Examples
include the data sets used by the Bundesbank for short-term forecasting of economic ac-
tivity in Germany and other countries (Götz and Hauzenberger, 2018; Pinkwart, 2018).
Thus, seasonal adjustment is an integral part of many economic analyses and business
processes, including in particular case-by-case decisions on whether or not observed time
series are in fact seasonal and should or should not be seasonally adjusted.

A variety of statistical tests has been developed over time to answer the latter question
(e.g. Busetti and Harvey, 2003; Franses, 1992; Ghysels and Osborn, 2001) and virtually
each seasonal adjustment software that is currently available contains at least some of
them. For example, in release version 2.2.2 of JDemetra+ (JD+), the output’s diagnostics
section reports the results of six different seasonality tests. However, any set of such tests
is certain to give either concurring or conflicting outcomes in the sense that the tests agree
or disagree, raising different questions in either case. The following example illustrates
this point.

Example 1 (potential conflicts between seasonality tests). Figure 1 shows sub-samples of
four monthly macroeconomic time series for Germany, which, amongst other things, differ
substantially in terms of their seasonal behaviour. Retail trade turnover for games and
toys displays a strong seasonal pattern which primarily originates from Christmas-related
spikes in December figures. In contrast, the harmonised index of consumer prices (HICP)
for tobacco clearly lacks such strong (and probably any other) seasonal movements as
the series is dominated by a slowly rising trend that is interrupted quite frequently by
aperiodic level shifts associated with VAT increases. Finally, neither the consumer price
index (CPI) for energy nor the number of persons employed in the manufacturing of
wearing apparel reveal their seasonal status as immediately as the turnover and HICP
series. On the one hand, either series appears to be driven mainly by trend-cyclical and
irregular movements, leaving any seasonal behaviour far less distinctive compared to the
turnover series. On the other hand, some recurring intra-year movements, such as the
minor V -shaped troughs in the employment series in the middle of the years 2012 to
2014 and 2016, can still be eye-balled, rendering any seasonal behaviour less ignorable
compared to the HICP series.

Table 1 reports the outcomes of the six JD+ seasonality tests, which will be described
in detail in Section 2. As opposed to Figure 1, the tests are calculated over the entire
data spans which all end in March 2020 but start in January of different years: 1991
(CPI), 1994 (turnover), 1996 (HICP), and 2009 (employment). The tests confirm the
first impression gained from Figure 1 that the turnover series is seasonal and the HICP
series is not. However, their outcomes conflict for the other two series, in line with visual
inspection. For the CPI series, the Friedman, Kruskal-Wallis and periodogram tests as
well as the F -test on seasonal dummies reject the null hypothesis of absence of seasonality
at the 1% level of significance, while the modified QS test barely fails to do so, which is
also supported by the test for seasonal peaks. For the employment series, the Friedman
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Figure 1: Four macroeconomic time series for Germany.

and Kruskal-Wallis tests provide strong evidence in favour of presence of seasonality at
the 1% level of significance. The modified QS test provides mild evidence at the 5% level
of significance, whereas the remaining tests do not reject the null hypothesis of absence
of seasonality at this level. �

Example 1 illustrates two issues which arise in general for any set of seasonality tests.
First, for some series the tests reach the same decision and we may ask whether the set is
too large and if it can be reduced by eliminating seemingly non-informative tests. Second,
and more importantly, for some other series the tests reach different decisions and we may
ask how their outcomes can be aggregated. Of course, we could simply stick to a majority
vote. In our example, this would identify the CPI series as seasonal at any conventional
level of significance and classify the employment series as non-seasonal at the 1% level of
significance but end in a tie at the 5% level of significance. Also, some tests may be more
informative than others and, as a consequence, some tests overruled by the majority vote
may still carry relevant information that should not be ignored. Thus, a weighted vote
of those tests which can be identified reliably as most informative will probably provide
a better aggregator of the test outcomes than a simple majority vote.

Essentially, the question whether a given time series is seasonal or non-seasonal can
be viewed as a classification problem with only two classes. Since the two general issues,
i.e. elimination of seemingly non-informative tests and identification of most informative
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Table 1: Test statistics (TS) and p-values of the JD+ seasonality tests for the time series shown
in Figure 1.

Retail trade Employed persons:
turnover: games HICP: CPI: manufacture of
and toys tobacco energy wearing apparel

TS p-value TS p-value TS p-value TS p-value

QS 537.787 0.000 0.750 0.687 7.463 0.024 6.551 0.038
FT 236.337 0.000 13.031 0.291 29.804 0.002 46.864 0.000
KW 258.577 0.000 5.363 0.912 33.755 0.000 44.127 0.000
SP AT AT AT ?? a? ?? ?t ?? ?? ?? A? ??

AT AT AT ?? ?? a? ?? a? ?? ?? ?? ??
PD 323.551 0.000 0.376 0.965 3.140 0.001 1.796 0.062
SD 364.898 0.000 0.359 0.970 3.031 0.001 1.747 0.071

Remarks: All series have been differenced once, the CPI series has additionally been logged, as suggested
by the automatic log-level-test (Gómez and Maravall, 2001). The tests are the modified QS test (QS),
Friedman test (FT), Kruskal-Wallis test (KW), test for seasonal peaks (SP), periodogram test (PD) and
F -test on seasonal dummies (SD). For the SP test, lower (upper) case letters refer to visually significant
peaks at the 10% (1%) level of significance in the Tukey (T) and AR(30) (A) spectra at the seasonal
frequencies corresponding to the letters’ positions, where visual significance is defined in Equation 7 and
Equation 8, respectively. For any other test, p-values smaller than 0.0005 are indicated by 0.000.

tests, are related, they can be tackled in theory using the same classifier. To this end,
low misclassification rates, high interpretability and the availability of unbiased variable
importance measures are key requirements that such a classifier has to satisfy. We show
by means of a large-scale simulation of representative seasonal and non-seasonal ARIMA
time series that (1) several machine learning algorithms provide acceptable seasonality
classifiers in terms of low error rates but (2) only random forests of conditional infer-
ence trees additionally provide unbiased variable importance measures, solving both the
elimination and identification issue. In this regard, it should be noted that they are also
capable of solving the aggregation issue – and we briefly demonstrate this later – but in
general this topic is rather the scope of companion research (Webel and Ollech, 2018).

The remainder of this paper is organised as follows. Section 2 provides basic theory
of the six seasonality tests implemented in JD+. Section 3 describes the data generation,
including in particular the identification and simulation of representative ARIMA time
series. Section 4 compares selected machine learning algorithms with respect to their
capability of meeting the key requirements stressed above. Section 5 elaborates on the
winner of this competition: random forests. Highlighting differences between forests based
on unconditional and conditional inference trees, it provides basic theory of the algorithms
and their respective variable importance measures. Section 6 uses both the simulated
ARIMA models and the four real-world time series from Example 1 for illustration. The
simulated data is also used in order to identify the most informative seasonality tests
among the JD+ candidates. Finally, Section 7 concludes.

3



2 Seasonality tests in JDemetra+

JD+ incorporates six seasonality tests, each of which tests the null hypothesis (H0) of
absence of seasonality. We provide basic information about these tests in the order of
their appearance in the JD+ output. To this end, let {zt} denote a weakly stationary
series of length T with τ observations per year. Also, let (pdq)(PDQ) abbreviate the
ARIMA model

φp(B) ΦP (Bτ )∇d
1∇D

τ xt = θq(B) ΘQ(Bτ ) εt, (1)

where B is the backshift operator, Bkxt = xt−k, ∇k = 1−Bk, d and D indicate the non-
seasonal and seasonal orders of differencing, φp and ΦP are the non-seasonal and seasonal
autoregressive (AR) operators of orders p and P , θq and ΘQ are the non-seasonal and
seasonal moving average (MA) operators of orders q and Q, and {εt} is white noise with
zero mean and finite variance.

2.1 Modified QS test

The modified QS test (QS) checks the series {zt} for significant positive autocorrelation
at seasonal lags.1 Let γ(h) = E (zt+h zt)− E2 (zt) and ρ(h) = γ(h)/γ(0) denote the lag-h
autocovariance and autocorrelation, respectively, of {zt}. Then, the null hypothesis is
specified as H0 : ρ(k) ≤ 0 for k ∈ {τ, 2τ}, and the QS-statistic is obtained as follows: if
ρ̂(τ) ≤ 0, then QS = 0; otherwise,

QS = T (T + 2)

(
ρ̂2(τ)

T − τ
+

[max {0, ρ̂(2τ)}]2

T − 2τ

)
, (2)

where ρ̂(h) is the estimated lag-h autocorrelation of {zt}. The exact null distribution
of the QS-statistic (2) is unknown but can be approximated reasonably well by a χ2-
distribution with two degrees of freedom (Maravall, 2011).

2.2 Friedman test

The Friedman test (FT) checks for significant differences between the period-specific mean
ranks of the values of {zt}, being essentially a one-way ANOVA with repeated measures
(Friedman, 1937). To see this, assume that each period i ∈ {1, . . . , τ} has n observations,
i.e. there are n complete years of observations.2 Furthermore, let rij be the rank of the
observation in the i-th period of the j-th year, where the ranks are assigned separately
for each year (i.e. 1 ≤ rij ≤ τ), and µi = E (rij). The null hypothesis is then given by
H0 : µ1 = µ2 = · · · = µτ , and the test statistic is defined as

FT =
τ − 1

τ

τ∑
i=1

n [r̄i − (τ + 1)/2]2

(τ 2 − 1)/12
, (3)

1Negative autocorrelations at seasonal lags reflect alternating patterns over time and, thus, do not rep-
resent seasonal behaviour.

2If necessary, excess months are removed from the beginning of the series to ensure T = n · τ .
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where r̄i = n−1
∑n

j=1 rij. Under H0, the FT -statistic (3) follows asymptotically a χ2-
distribution with τ − 1 degrees of freedom.

2.3 Kruskal-Wallis test

The Kruskal-Wallis test (KW) follows the idea of the Friedman test up to two modifi-
cations, being essentially a one-way ANOVA without repeated measures (Kruskal and
Wallis, 1952). First, period-specific numbers ni of observations are allowed, giving T =∑τ

i=1 ni; second, ranks are assigned over the entire observation span (i.e. 1 ≤ rij ≤ T ).
The null hypothesis again reads H0 : µ1 = µ2 = · · · = µτ , and, assuming absence of ties,
the test statistic is given by

KW =
T − 1

T

τ∑
i=1

ni [r̄i − (T + 1)/2]2

(T 2 − 1)/12
. (4)

Under H0, the KW -statistic (4) asymptotically follows a χ2-distribution with τ−1 degrees
of freedom.

2.4 Periodogram test

The periodogram test (PD) checks if a weighted sum of the spectral density of {zt}
evaluated at the seasonal frequencies is significantly different from zero. Let f(ω) =
(2π)−1

∑
h γ(h) e−ihω denote the spectral density, ω?j = 2πj/τ the j-th seasonal frequency

for j ∈ {1, . . . , τ/2}, S(τ) = {ω?1, . . . , ω?τ/2} the set of seasonal frequencies for τ , and

ΣS(τ) = 2

τ/2−1∑
j=1

f(ω?j ) + f(ω?τ/2)

the weighted sum of f(ω) evaluated over S(τ). The null hypothesis then reads H0 :
ΣS(τ) = 0, and the test statistic is given by

PD =
T − τ
τ − 1

·
Σ̂S(τ)∑T

t=1 z
2
t − I(0)− Σ̂S(τ)

, (5)

where

Σ̂S(τ) = 2

τ/2−1∑
j=1

I(ω?j ) + I(ω?τ/2) · 1{T even},

1{·} is the indicator function of the event in braces and

I(ωj) =

{∑
|h|≤T γ̂(h) e−ihωj , ωj 6= 0

T |z̄|2 , ωj = 0
, (6)

is the periodogram with ωj = 2πj/T being the j-th Fourier frequency for j ∈ {−b(T −
1)/2c, . . . , bT/2c}, bxc the largest integer not exceeding x, and z̄ = T−1

∑T
t=1 zt. Under
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H0, the PD-statistic (5) follows an F -distribution with τ−1−1{T even} and T−τ+1{T even}
degrees of freedom.3

2.5 Seasonal peaks

Since the test for seasonal peaks (SP) combines information from the Tukey and AR(30)
spectra of {zt}, we first introduce the two estimators of f(ω) as well as respective criteria
for calling a spectral peak visually significant.

2.5.1 Tukey spectrum

The Tukey spectrum is a non-parametric “lag window” estimator. To transform (6)
into a consistent estimator of f(ω), the general idea of “lag window” estimators is to
put relatively more weight on smaller lags of γ(h), which are considered to be more
reliable, and relatively less weight on higher lags of γ(h). For that purpose, an even
and piecewise continuous window function w(·) is introduced which satisfies the following
three conditions: (1) w(0) = 1, (2) |w(x) | ≤ 1 for all x ∈ R, and (3) w(x) = 0 for |x | > 1.
The Tukey spectrum is then defined as

f̂T (ω) =
1

2π

∑
|h|≤H

wa(h/H) γ̂(h) e−ihω,

where wa(·) is the Blackman-Tukey window given by

wa(x) =

{
1− 2a+ 2a cos (πx), |x | ≤ 1

0, |x | > 1

with a ∈ [0, 0.25] and H is any truncation lag, not necessarily T . A peak at any Fourier
frequency ωj is called visually significant at the α-level of significance if

2f̂T (ωj)

f̂T (ωj−1) + f̂T (ωj+1)
≥ Fd1,d2,1−α, (7)

where Fd1,d2,1−α is the critical value of the F -distribution with d1 and d2 degrees of freedom,
which are determined empirically via simulations described by Maravall (2011).

2.5.2 AR(30) spectrum

The AR(30) spectrum is a parametric “plug-in” estimator. The basic idea of this class of
estimators is to choose a particular time series model for {zt}, derive its theoretical spec-
trum f(ω), and replace the unknown parameters in f(ω) with well-established estimators.

3To improve performance in small samples, S(τ) should be a subset of the set of Fourier frequencies. To
this end, T is made a multiple of τ by removing observations at the beginning of the series.
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In general, the spectrum of an AR process of order p > 0 is given by

f(ω) =
σ2
ε

2π

∣∣∣∣∣1−
p∑

h=1

φhe
−ihω

∣∣∣∣∣
−2

,

where σ2
ε is the variance of the white noise process driving the AR process. The estimated

AR(30) spectrum is then given by

f̂AR(ω) =
σ̂2
ε

2π

∣∣∣∣∣1−
30∑
h=1

φ̂he
−ihω

∣∣∣∣∣
−2

,

where σ̂2
ε and φ̂h are some estimators of the white noise’s variance and the AR coefficients

(Priestley, 1981). The choice of 30 as the truncation lag is justified pragmatically by
Soukup and Findley (1999) who argue that “this choice [...] can potentially produce the
largest number of peaks possible, i.e. 30, in a plot with 61 frequencies. Thus, it has the
greatest resolving power.” A peak at any Fourier frequency ωj is called visually significant

if (1) f̂AR(ωj) is larger than the median AR spectrum of all Fourier frequencies and (2)
the quantity

f̂AR(ωj)−max
{
f̂AR(ωj−1), f̂AR(ωj+1)

}
maxj f̂AR(ωj)−minj f̂AR(ωj)

(8)

is larger than some critical value which may be set to 6/52 for all frequencies (i.e. the
X-12-ARIMA default) or be chosen individually for each frequency ωj. As a compromise,
Maravall (2011) provides critical values based on a large-scale simulation of random walk
processes and suggests to universally use the critical value associated with ω = 0.696π,
i.e. the first trading day frequency for τ = 12.

2.5.3 Decision rule

For τ = 12, {zt} is now said to have seasonal peaks, giving SP = 1, if visually significant
peaks show up in4

(1) f̂T (ω) OR f̂AR(ω) at four or more frequencies ω?j ,

(2) f̂T (ω) OR f̂AR(ω) at three frequencies ω?j PLUS in f̂T (ω) AND f̂AR(ω) at one or
more frequency ω?j ,

(3) f̂T (ω) OR f̂AR(ω) at three frequencies ω?j PLUS there is no peak at ω?6,

(4) f̂T (ω) AND f̂AR(ω) at ω?6 and another frequency ω?j ,

(5) f̂T (ω) OR f̂AR(ω) at two or more frequencies ω?j INCLUDING in f̂T (ω) AND f̂AR(ω)
at one frequency ω?j PLUS there is no peak at ω?6.

Accordingly, the null hypothesis is specified as H0 : SP = 0. When assessing visual
significance of spectral peaks, α = 0.1 is always used for the Tukey and AR(30) spectra.

4For quarterly series, a similar but smaller set of rules applies (Maravall, 2011).
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2.6 Seasonal dummies

The F -test on seasonal dummies (SD) checks if the effects of the τ − 1 seasonal dummies
are simultaneously zero in a time series regression on {zt}. Dropping the stationarity as-
sumption on {zt} and assuming absence of additional regression variables, the (pdq)(000)
regARIMA model

φp(B)(1−B)d

(
zt −

τ−1∑
i=1

βiDi,t

)
= µ+ θq(B) εt

is considered, where

Di,t =


1, t ∈ Pi
−1, t ∈ Pτ
0, otherwise

, i ∈ {1, . . . , τ − 1},

and Pk is time index set of the k-th period for k ∈ {1, . . . , τ}. Let β = (β1, . . . , βτ−1)
>.

The null hypothesis is then specified as H0 : β = 0, and the test statistic is given by

SD =
β̂
>

Σ̂
−1
β̂ β̂

τ − 1
· T − d− p− q − τ − 1

T − d− p− q
, (9)

where β̂ is the OLS estimator of β and Σ̂β̂ is the estimated covariance matrix of β̂. Under
H0, the SD-statistics (9) follows an F -distribution with τ − 1 and T − d− p− q − τ − 1
degrees of freedom. Two variants of non-seasonal orders are considered: first, (pdq) =
(011) is used; second, (pdq) is determined via automatic model identification (Gómez and
Maravall, 2001).

3 Data generation

We aim at simulating “realistic” seasonal and non-seasonal time series that portray as
accurately as possible the macroeconomic monthly data analysed regularly by the Bun-
desbank. We therefore use the Bundesbank’s time series database and ARIMA models
as main building blocks of our data generating mechanism. The latter are chosen for two
reasons: first, ARIMA models cover a broad range of correlation structures and perform
very well in forecasting exercises; second, ARIMA models are an essential element of the
two seasonal adjustment approaches available in JD+.5

Section 3.1 first identifies the relevant seasonal and non-seasonal ARIMA model types.
Using notations from Equation 1, an ARIMA model is said to be seasonal (S) if (PDQ) 6=
(000) and non-seasonal (N-S) if (PDQ) = (000). Section 3.2 then introduces the core sim-
ulation algorithm which is capable of replicating any given dependence structure of ARMA
parameters from estimated ARIMA models. Finally, Section 3.3 applies this algorithm to

5JD+ implements the X-11 and ARIMA model-based (AMB) approaches to seasonal adjustment along-
side their respective regARIMA and TRAMO pre-processors, which are essentially linear time series
regression models with ARIMA errors.
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the ARIMA model types which have been identified as relevant, using appropriate simula-
tion weights. The simulated ARIMA processes are considered as being “realistic” if, after
fitting ARIMA models to the time series in the database, they resemble as closely as pos-
sible the estimated ARIMA models in terms of model shares and the ARMA parameters’
multivariate distribution for each model type.

The data generating mechanism is based on the Bundesbank’s time series database
as accessed in January 2017 and implemented using R (R Core Team, 2019) and the
{gsarima}, {logspline} and {MASS} R packages (Briët, Amerasinghe, and Vounatsou,
2013; Kooperberg and Stone, 1992; Venables and Ripley, 2002). It is still generic since the
feeding database can be changed easily and both ARIMA models and the core simulation
algorithm are generally applicable.

3.1 Model identification

The identification of seasonal ARIMA models is based on a set of 3,308 macroeconomic
time series which have been seasonally adjusted on a regular basis by the Bundesbank
for many years.6 All monthly series from this set are selected, amounting to 2,907 series
in total with lengths ranging from 6 to 67 years. This data set contains information on
a variety of key economic indicators, such as industrial production, orders received by
industry, turnover in industry and retail trade, labour market statistics and consumer
price indices, amongst others, and is referred to as set SA (“seasonally adjusted time
series”).

The identification of non-seasonal ARIMA models is based on a set of 10,635 macro-
economic time series which are not seasonally adjusted at all. This set is obtained after
cleaning the candidate data as described in Remark 1 below. These series have lengths
between 4 and 72 years, include information on national accounts, external sector and
money and capital markets, amongst others, and are referred to as set NA (“not seasonally
adjusted time series”).

Remark 1. The Bundesbank’s database stores about 12,000,000 time series which in
theory qualify as candidates for non-seasonal data. In practice, however, this set contains
a fair amount of time series which are inappropriate for our purpose for a variety of reasons.
Due to computational restrictions, we first draw a simple random sample of size 500,000
without replacement from the set of candidate series. We then remove series which are
not monthly OR have zero variance OR contain observations for periods past the year
2018 (as in January 2017 such series are usually regression variables used for calendar
adjustment or artificial data) OR contain more than two zero observations OR have less
than 36 observations excluding missing values and zeros (as such series are usually not
considered as candidates for seasonal adjustment). �

6The Bundesbank has been concerned with seasonal adjustment for more than 60 years, using moving
average-based methods such as X-11 and X-12-ARIMA for most of the time (Bank Deutscher Länder,
1957; Deutsche Bundesbank, 1970, 1999). The decision which series should be seasonally adjusted has
been clear in most cases. Unclear cases have usually been solved by inspection of seasonality diagnostics
and adjustment if at least one of them found (circumstantial) evidence of seasonality. In addition, expert
knowledge, e.g. on data collection, and experience of staff economists and statisticians has also been
considered in some cases.
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Table 2: Shares and simulation weights of the ARIMA models identified automatically by the
JD+ pre-processors TRAMO and regARIMA (REG).

k = SA k = NA

M(k) p
(TRAMO)
mk p

(REG)
mk wmk M(k) p

(TRAMO)
mk p

(REG)
mk wmk

(011)(011) 39.60 25.64 47.5 (011)(000) 23.35 19.27 22.8
(010)(011) 6.09 5.34 8.3 (311)(000) 9.46 11.01 11.0
(311)(011) 4.45 6.21 7.7 (110)(000) 9.31 9.96 10.3
(210)(011) 2.01 7.11 6.6 (100)(000) 9.73 6.22 8.5
(110)(011) 4.26 4.48 6.4 (211)(000) 4.64 5.62 5.4
(211)(011) 2.01 4.03 4.4 (001)(000) 4.91 3.95 4.7
(012)(011) 2.41 3.13 4.0 (010)(000) 7.33 0.49 4.2
(111)(011) 2.92 2.06 3.6 (111)(000) 2.45 5.14 4.0
(011)(111) 2.62 0.87 2.5 (012)(000) 3.94 2.93 3.6
(010)(100) 1.19 1.48 2.0 (210)(000) 3.51 3.19 3.6
(010)(101) 1.68 0.87 1.9 (000)(000) 2.60 2.56 2.8
(310)(011) 0.23 1.81 1.5 (301)(000) 1.97 2.56 2.5
(112)(011) 1.63 0.27 1.4 (021)(000) 1.46 2.76 2.3
(021)(011) 1.17 0.73 1.4 (212)(000) 0.34 3.76 2.2
(110)(101) 1.02 0.14 0.8 (101)(000) 0.90 2.97 2.1
(110)(000) 4.88 6.25 0.0 (200)(000) 2.41 1.34 2.0
(011)(000) 2.38 4.18 0.0 (310)(000) 2.60 0.67 1.8
(010)(000) 0.00 2.94 0.0 (112)(000) 0.22 2.71 1.5
(111)(000) 1.75 1.09 0.0 (300)(000) 1.42 1.37 1.5
(021)(000) 1.19 0.72 0.0 (201)(000) 0.56 1.37 1.1
(210)(000) 0.69 1.12 0.0 (002)(000) 1.19 0.49 0.9
(310)(000) 0.11 1.15 0.0 (102)(000) 0.16 1.26 0.8

(202)(000) 0.12 1.01 0.6

Remark: Shares pmk and weights wmk according to Equation 10 are reported as a percentage for models
which have been identified by at least one pre-processor for at least one percent of all time series in set

k, i.e. for models m ∈M(k) with p
(TRAMO)
mk ≥ 0.01 or p

(REG)
mk ≥ 0.01 (or both).

For each set of series, we run the automatic ARIMA model identification routines of
the TRAMO and regARIMA pre-processors as implemented in JD+, including automatic
detection and modelling of outliers. Let M(k) denote the join of identified models in set

k ∈ {NA, SA} and p
(TRAMO)
mk and p

(REG)
mk the set-k shares of model m ∈ M(k) identified

by the TRAMO and regARIMA pre-processors, respectively. Table 2 shows that mostly
seasonal but also some non-seasonal ARIMA models have been identified for the time
series in set SA, whereas only non-seasonal ARIMA models have been identified for the
time series in set NA.

For each identified ARIMA model m ∈ M(k) listed in Table 2, we calculate the

model’s overall set-k share as pmk =
(
p
(TRAMO)
mk + p

(REG)
mk

)/
2 and the model’s simulation
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weight7 as

wmk =
p̃mk∑
j p̃jk

, (10)

rounded to 1 decimal place, with p̃mk = pmk · 1{
p
(TRAMO)
mk ≥0.01OR p

(REG)
mk ≥0.01

}. Thus, we

intentionally exclude those models from subsequent simulations which have been identified
rather rarely, i.e. for less than one percent of all time series, narrowing our intended focus
on relevant models.

3.2 Simulation algorithm

Given a set of observed time series from the Bundesbank’s database that follow the same
ARIMA model, we aim at simulating versions of this model under the restriction that the
ARMA parameters of the simulated models should have the same multivariate distribution
as the estimated ARMA parameters of the models fitted to the observed data. As it is
usually difficult to determine the exact family of distributions of the latter parameters,
we impose the following three proxy restrictions: the ARMA parameters of the simulated
time series

(P1) do not induce (additional) unit roots in the model’s characteristic polynomial,

(P2) display the same correlation structure as the estimated ARMA parameters of the
ARIMA models fitted to the observed time series,

(P3) should have univariate distributions with the same shape as the univariate distri-
butions observed for the corresponding estimated ARMA parameters.

To meet these proxy restrictions, we combine the “NORmal-To-Anything” (NORTA) algo-
rithm (Cario and Nelson, 1997) with logspline density estimation according to a particular
knot addition and deletion algorithm (Stone, Hansen, Kooperberg, and Truong, 1997).

Algorithm 1 describes the technical details. Its basic idea is to initially draw sets
of ARMA parameters from a multivariate Gaussian distribution such that the depen-
dence structures of the simulated and estimated parameters are similar. The multivariate
Gaussian density is then transformed into a set of univariate logspline densities. After
elimination of ARMA parameters that induce additional unit roots, a random sample of
admissible parameters is drawn and their dependence structure is compared to that of
the ARMA parameters of the model fitted to the observed time series. In case of unac-
ceptably high differences, the entire algorithm is restarted with an appropriately modified
covariance matrix of the multivariate Gaussian distribution. Eventually, it yields simu-
lated ARIMA time series with parameters that mirror the dependence structure of the
estimated parameters as closely as possible.

3.3 Training and validation data

For each model m ∈ M(k) with k ∈ {NA, SA} and each length N ∈ {60, 120, 240}, we
run Algorithm 1 with ν̃ = 100,000 · wmk, ν = 100,000, ε = 0.02 and α = 0.5, yielding a

7The non-seasonal ARIMA models which have been identified for some time series that are seasonally
adjusted regularly are automatically given a simulation weight of zero.

11



Algorithm 1 NORTA algorithm with logspline density estimation

Let n be the number of observed time series which all follow the same ARIMA model of
order (pdq)(PDQ). Also, let ν̃ be the number of ARIMA time series to be simulated under
the proxy restrictions (P1) to (P3).

1: Set m = p + q + P + Q and let X ∈ Rm×n be the matrix of the estimated ARMA
parameters. Calculate ΣX ∈ Rm×m, the correlation matrix of the parameters.

2: Apply logspline density estimation to each row of X to obtain a non-parametric esti-
mate f̂j(·) of the density of the j-th ARMA parameter, where j ∈ {1, . . . ,m}.

3: Set Σ
(1)
Y = ΣX to initialise the simulation of ARMA parameters, where Y ∈ Rm×ν

denotes an empty matrix to be filled during the following loop.
4: repeat
5: In the i-th loop, simulate ν � ν̃ independent parameter vectors Yj ∈ Rm, where

Yj ∼ N
(
0m,Σ

(i)
Y

)
for each j ∈ {1, . . . , n}. Set Y = (Y1 . . .Yν).

6: Set Z = (zjk) ∈ Rm×ν , where zjk = F̂−1j [Φ(yjk)] for all (j, k) ∈ {1, . . . ,m} ×
{1, . . . , ν} and F̂j(·) and Φ(·) are the distribution functions of f̂j(·) and the standard
normal distribution, respectively.

7: Let l ∈ {0, . . . , ν} be the number of columns of Z which contain ARMA parameters
that induce additional unit roots. Remove the l columns from Z to obtain Z̃ ∈
Rm×(ν−l), the matrix of admissible ARMA parameters.

8: Select ν̃ columns from Z̃ according to simple random sampling without replacement,
where ν̃ ∈ {1, . . . , ν − l}. Store the sampled columns in Z̃(ν̃) ∈ Rm×ν̃ .

9: Calculate ΣZ̃(ν̃) ∈ Rm×m, the correlation matrix of the sampled admissible ARMA
parameters.

10: Calculate ∆ = |ΣX −ΣZ̃(ν̃)| = (δjk) and C∆ = (cjk), where cjk = 1{δjk>ε} for all
(j, k) ∈ {1, . . . ,m}2 and some ε > 0.

11: if C∆ 6= 0 then
12: Set Σ

(i+1)
Y = Σ

(i)
Y + α [ΣX −ΣZ̃(ν̃) ] � C∆, where α > 0 and � denotes the

Hadamard product of two matrices, i.e. A�B = (ajk · bjk).
13: end if
14: until C∆ = 0, or the maximum number of iterations is reached.
15: Simulate ν̃ ARIMA models of order (pdq)(PDQ) with the parameters stored in the

columns of Z̃(ν̃).

total of 600,000 simulated ARIMA time series with Gaussian innovations. In Step 2, we
use default settings for the logspline density estimation but have to restrict the density
support in some cases in order to ensure simulation of appropriate ARIMA models.8 This
is mainly done because the order of the finite AR representation, used as an approximation
to the infinite AR representation, of MA polynomials increases exponentially with the
absolute size of the MA parameters. This potentially results in computational issues due
to exceeding memory capacity. In Step 15, we let the length of the burn-in period for the
simulation depend on the order of the finite AR representation of the ARMA polynomial,

8The density support for parameters in seasonal or non-seasonal polynomials of order 1 is [−1; 0.975]
for AR parameters and [−0.99; 0.975] for MA parameters, whereas it is [−2; 2] for each parameter in
non-seasonal AR or MA polynomials of order 2 or 3.
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Figure 2: Kernel density estimates for the estimated MA parameters of model (11) and the
corresponding simulated MA parameters obtained from Algorithm 1, using Gaussian kernels.

as in Briët et al. (2013).

Example 2 (application of Algorithm 1 for the (011)(011) model). Figure 2 shows the
estimated univariate densities of the estimated and simulated non-seasonal and seasonal
MA parameters of the model

(1−B)
(
1−B12

)
xt = (1− θB)

(
1−ΘB12

)
εt, (11)

where (θ,Θ) ∈ (−1; 1)×(−1; 1). The estimated densities of θ are almost indistinguishable
except for slightly different shapes over the range θ ∈ [0.2; 0.6]. The estimated densities of
Θ are also shaped similarly in general. However, the density of the simulated parameter
appears to be somewhat compressed in the range Θ ∈ [0.5; 1) and, what is more, exhibits
some unwanted ripples for Θ > 0.8, especially in the vicinity of 1. This is directly induced
by the technical necessity of narrowing slightly the support of Θ in the simulation (see
Footnote 8). Overall, Algorithm 1 still replicates very well the distributional properties
of the estimated MA parameters. �

For each of the 600,000 simulated ARIMA time series, we calculate the six seasonality
tests in JD+, where we restrict ourselves to the version (pdq) = (011) of the F -test on
seasonal dummies. By unchangeable default in JD+, the simulated series are differenced
once before the test calculation in order to ensure stationarity. Since the test on sea-
sonal peaks cannot be calculated for monthly time series with less than seven years of
observations, we use the p-values of the other five seasonality tests and a dummy for the
seasonality class as the set of predictors X and the categorical response Y, respectively,
of the “mother” training data L = (XY). We also randomly sample without replacement
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• 50 independent “daughter” training data sets L(i) of size 7,500 from L and

• 50 independent “sampled” validation data sets V(i)
s of size 10,000 from the non-

sampled data V(i) = L \ L(i), i.e. one V(i)
s is sampled from each V(i).

The sample sizes are chosen in order to meet computational restrictions imposed by the
complexity of some classification algorithms to be applied in Section 4 and Section 6.

4 Classification algorithms

Several machine learning (ML) and other – more traditional – classification methods
could be used in general to group the simulated ARIMA time series into seasonal and
non-seasonal models. Each of them has advantages and disadvantages, bearing in mind
different salient features of different types of predictors. To identify the one that best suits
our set of predictors X, we now compare popular methods with respect to the following
key requirements:

(1) High accuracy: The method should have low misclassification rates for both the
simulated non-seasonal and seasonal ARIMA time series.

(2) High interpretability: The method should be intrinsically transparent and pro-
vide useful output for practitioners, such as visualisation of results and quantification
of each predictor’s informational content.

Remark 2. Given that the high flexibility of most ML methods sometimes comes
at the cost of some opaqueness, interpretability refers to the extent to which the
choices and decisions made by the ML method can be understood by users. In this
sense, “intrinsic transparency” and “useful output” can be seen as quasi ex ante
and ex post interpretability, respectively. �

(3) Unbiasedness: The method should provide measures of the predictors’ informa-
tional content that are unbiased given the predictors’ statistical properties.

The set of candidate ML methods consists of the following nine classifiers: classical and
conditional random forests (Breiman, 2001; Hothorn, Hornik, and Zeileis, 2006), adaptive
and stochastic boosting (Freund and Schapire, 1997; Friedman, 2002), support vector
machines (Boser, Guyon, and Vapnik, 1992; Vapnik, 1995), feed forward neural networks
(Ripley, 1996), logistic regression, weighted K-nearest neighbours (Samworth, 2012) and
naive Bayes. Further details on these classifiers are also given by Breiman, Friedman,
Olshen, and Stone (1984), Hastie, Tibshirani, and Friedman (2009) and James, Witten,
Hastie, and Tibshirani (2013).

Each candidate ML method is trained on each “daughter” training data set L(i) using
essentially its default implementation in the respective R package (Alfaro, Gamez, and
Garcia, 2018; Breiman, Cutler, Liaw, and Wiener, 2001; Culp, Johnson, and Michailidis,
2016; Hechenbichler and Lizee, 2016; Hothorn, Hornik, Strobl, and Zeileis, 2015; Meyer,
Dimitriadou, Hornik, Weingessel, Leisch, Chang, and Lin, 2019; Ripley and Venables,
2016) and evaluated on each sampled validation data set V(i)

s . Table 3 summarises the
key results. Distinguishing broadly between tree-based methods (top four rows) and
other methods (bottom five rows), the following conclusions emerge with respect to our
key requirements:
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Table 3: Fulfilment of key requirements by candidate ML methods.

High accuracy High interpretability Unbiasedness

Misclassification rate in class Measures for informa-
Non-seasonal Seasonal Graphical output tional content

R package Availa- Availa- Correlated
Classifier (version) Mean? SD?? Mean? SD?? bility Type bility Type predictors

Conditional {party} Decision Variable
random forests (1.3-0) 0.77 0.17 2.13 0.24 Yes trees Yes importance Yes

Classical {randomForest} Decision Variable
random forests (4.6-14) 0.82 0.18 1.98 0.19 Yes trees Yes importance No

Stochastic {ada} Error Variable
boosting (2.0-5) 1.03 0.22 2.03 0.21 Yes plots Yes importance No

Adaptive {adabag} Error Variable
boosting (4.2) 1.07 0.22 1.98 0.23 Yes plots Yes importance No

Support vector {e1071} Scatter Variable
machines (1.6-8) 2.37 0.24 2.12 0.22 Yes plots Yes??? importance No

Feed forward {nnet} Connection
neural networks (7.3-12) 1.89 0.19 1.89 0.22 No Yes weights No

Logistic {stats} Standard Standardised
regression (3.4.4) 6.31 0.51 1.45 0.23 Yes plots Yes coefficients No

Weighted K- {kknn}
nearest neighbours (1.3.1) 1.17 0.18 2.13 0.19 No No

Naive {e1071}
Bayes (1.6-8) 1.98 0.49 2.67 0.21 No No

? As a percentage. ?? In percentage points. ? ? ? No implementation in the respective R package.
Remark: Regarding accuracy, means and standard deviations (SD) of misclassification rates have been calculated over the sampled validation data sets

V(i)
s , i ∈ {1, . . . , 50}.
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(1) The tree-based methods have universally lower average misclassification rates for the
non-seasonal models and competitive average misclassification rates for the seasonal
models, although they perform slightly less accurately in the latter class. Support
vector machines, feed forward neural networks, weighted K-nearest neighbours and
to a lesser extent naive Bayes also have acceptably low average misclassification rates
for both non-seasonal and seasonal models but do not universally outperform any
tree-based method. Logistic regression classifies the seasonal models extremely well
but fails to do so for the non-seasonal models, as it has by far the highest average
misclassification rate in this class. The standard deviations of the misclassification
rates are almost the same for all methods and classes, except for naive Bayes and
logistic regression in the class of non-seasonal models where they are more than
twice as high as in any other case. Overall, the tree-based methods seem to be
slightly preferable in terms of the “high accuracy” requirement.

Remark 3. Although being derived from analysing simulated data, the last conclu-
sion is in line with the general statement that random forests are highly competitive
in a broad range of real-world prediction and classification tasks, such as forecast-
ing stock price movements (Patel, Shah, Thakkar, and Kotecha, 2015), diagnosing
diseases (Hsieh, Lu, Lee, Chiu, Hsu, and Li, 2011), and detecting fraudulent emails
(Almomani, Gupta, Atawneh, Meulenberg, and Almomani, 2013). �

(2) The key principle of each tree-based method, which makes binary decisions (ei-
ther simultaneously in the random forest approaches or sequentially in the boost-
ing approaches), forms a sound basis for visualising and understanding the entire
decision-making process and the final classification. Besides graphical output, it
enables straightforward calculation of variable importance measures which basically
evaluate each predictor’s role in each binary decision and then derive its contribution
to the ensemble decision. The other ML methods yield output that is noticeably
less informative. Graphical output is available only for support vector machines
and logistic regression as scatter/contour plots for the final classification and stan-
dard regression plots, respectively. Information on the importance of predictors is
provided only for feed forward neural networks and logistic regression as “best”
connection weights between input, hidden and output layers and standardised esti-
mated regression coefficients, respectively. Overall, the tree-based methods appear
to be preferable in terms of the “high interpretability” requirement.

(3) Table 4 reveals that in general the p-values of the JD+ seasonality tests exhibit
high positive empirical correlations, as the latter exceed 0.81 for any pair of tests.
Therefore, correlation among predictors is a serious issue which the candidate ML
methods should be able to deal with, especially when quantifying variable impor-
tance. However, to the best of our knowledge, only conditional random forests
are capable of providing unbiased variable importance measures in the presence of
such correlations (Strobl, Boulesteix, Kneib, Augustin, and Zeileis, 2008; Strobl,
Boulesteix, Zeileis, and Hothorn, 2007; Webel and Ollech, 2017). Thus, this partic-
ular tree-based method is preferable in terms of the “unbiasedness” requirement.

Given our three key requirements and weighing the candidate ML methods’ respective
advantages against their disadvantages, we generally favour the random forest approaches
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Table 4: Spearman correlations between the p-values of the JD+ seasonality tests.

QS FT KW PD SD SP

QS 1.000
FT 0.875 1.000
KW 0.849 0.942 1.000
PD 0.844 0.941 0.972 1.000
SD 0.844 0.921 0.946 0.944 1.000
SP 0.870 0.839 0.825 0.814 0.828 1.000

Remarks: The tests have been applied to the 600,000 simulated ARIMA time series (pairwise complete
cases). The color code, which indicates certain clusters of tests, is explained in Remark 13. Other
correlation measures, such as Bravais-Pearson coefficients, yield very similar results.

due to their competitive accuracy in classifying simulated non-seasonal and seasonal
ARIMA time series and the availability of interpretable visual aids and variable impor-
tance measures. In particular, we select random forests based on conditional inference
trees due to their unique capability of dealing with correlated predictors in the sense
of producing unbiased variable importance measures. Nevertheless, we will also consider
classical random forests in the subsequent analyses for the purpose of illustrating potential
differences from the conditional approach.

Remark 4. The above comparison of the candidate ML methods intentionally focussed
on those characteristics that are most relevant to the key requirements in our classification
context. A related comparison in the more general context of data mining is given by
Hastie et al. (2009, Chapter 10.7), who interestingly identify decision trees as preferable
off-the-shelf base learners, despite the predictive inaccuracy single trees tend to suffer
from. �

Remark 5. Our approach to combining several statistical tests for the same null hy-
pothesis is based on using the tests’ unadjusted p-values as predictors in a particular ML
exercise. From a conceptual point of view, it is thus different from the multiple hypoth-
esis testing procedures which are often applied in time series econometrics and usually
include some sort of p-value adjustment. Prime examples are resampling-based tests for
multiple structural breaks with uncertain break dates (Bergamelli, Bianchi, Khalaf, and
Urga, 2019; Bernard, Idoudi, Khalaf, and Yélou, 2007; Dufour, 2006) and cointegration
tests (Bayer and Hanck, 2013). �

5 Random forests

Section 5.1 briefly describes key ideas and concepts of the classical random forest (RF)
approach, putting special emphasis on measuring variable importance. Section 5.2 does
the same for the conditional RF approach.
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Algorithm 2 Classical random forest algorithm (Breiman, 2001)

Let L = (XY) be the training data, where X = (X1 . . .Xp) is a set of p predictors with
Xj = (x1j, . . . , xNj)

> for all j ∈ {1, . . . , p} and Y = (y1, . . . , yN)> is a vector of categorical
responses with yi ∈ {1, . . . , K} for all i ∈ {1, . . . , N}. A random forest of B classification
trees is grown on L as follows.

1: for b ∈ {1, . . . , B} do
2: Draw a bootstrap sample Lb of size N with replacement from L.
3: Grow a binary classification tree Tb on Lb. To this end, initialise the following loop

with a single root node, i.e. |M1(Tb)| = 1, where Mi(Tb) is the set of terminal
nodes, alias split candidates, at the i-th loop.

4: repeat
5: for each m ∈Mi(Tb) do
6: Draw a random sample X̃ of size p̃ < p without replacement from X.
7: for each X̃j in X̃ do
8: Determine the split which minimises the impurity of m among all possible

splits of m.
9: end for

10: Find X̃j∗ that generates the split which minimises the impurity of m among
all X̃j.

11: Use X̃j∗ to create a binary split of m.
12: end for
13: untilMi+1(Tb) = ∅, i.e. each terminal node at this stage has an irreducible impu-

rity, or contains a pre-specified minimum number of observations, nmin.
14: end for
15: Take the unweighted majority vote of the tree classifications as the forest classification.

5.1 Classical approach

The classical RF algorithm is an ensemble ML method that has been developed by
Breiman (2001). It is based on bootstrap aggregation (bagging) developed by Breiman
(1996a) and further analysed by Bühlmann and Yu (2002) and is applicable equally well
to regression and classification problems. Here, we restrict ourselves to the latter case.

5.1.1 Algorithm

The basic idea of the classical RF algorithm is to grow a large and diverse, i.e. decor-
related, set of unpruned binary classification trees built upon bootstrap samples of the
training data. The classifications made by the single trees are then aggregated in order
to smooth the hard cut decisions of the binary splits, which usually results in an im-
provement in classification accuracy. During tree growing, a fresh sample from the set of
available predictors is considered for each node splitting. This is done to prevent strong
predictors in the entire set from dominating all other predictors, which in turn increases
the diversity of the single trees compared to bagging, where all predictors are considered
at each split. Algorithm 2 formalises this basic principle.

Remark 6. Measuring node impurity, which in general can be done in a variety of ways, is
key to Algorithm 2. A popular measure is the Gini index. Let q̂mk = N−1m

∑
xi∈Rm 1{yi=k}
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be the proportion of training data in node m from class k, where Nm =
∑

i 1{xi∈Rm}
and xi = (xi1, . . . , xip) and Rm denote the i-th observation of the p predictors and the
classification region corresponding to node m, respectively. Then, the Gini index is given
by

Qm(Tb) =
∑
k

q̂mk (1− q̂mk) . (12)

The cross-entropy and misclassification error provide alternative impurity measures which
are also based on q̂mk (Hastie et al., 2009). �

Remark 7. A celebrated advantage of RFs is the possibility of using subsets of the
training data for validation purposes. Let Ob = L \ Lb be the “out-of-bag” (OOB) data
of the b-th bootstrap sample, i.e. the training data not selected in Lb. The forest’s
performance can then be judged by means of misclassification rates in the OOB samples.
Alternatively, external validation (VAL) data can be considered as usual. �

5.1.2 Variable importance

For a single classification tree, the importance of a given predictor Xj is determined di-
rectly by its position in the tree. However, this concept does not translate to the classical
RF algorithm in a straightforward way. Therefore, two types of variable importance mea-
sures have been suggested which essentially quantify the mean decrease in node impurity
and prediction accuracy caused by the predictor and its absence, respectively.

Mean decrease in node impurity. The basic idea of binary node splitting is to
separate a set of observations into two sets that are less heterogenous than the original
one. Since strong splitting variables should give greater reduction in heterogeneity, the
importance of any predictor can be quantified by its average contribution to the decrease
in node impurity. Let M(Tb,Xj) be the set of internal nodes in Tb that were split by
Xj and Mj =

∑
b |M(Tb,Xj)| the respective total number of internal nodes in the forest.

Measuring node impurity by the Gini index (12), the variable importance of Xj is given
by

VIG(Xj) =
1

Mj

B∑
b=1

∑
m∈M(Tb,Xj)

{
Qm(Tb)−

[
NmL

Nm

QmL(Tb) +
NmR

Nm

QmR(Tb)
]}

,

where mL and mR are the left and right descendent nodes of m. Essentially, this mea-
sure is the average difference between the impurities of the nodes split by Xj and the
weighted sum of the impurities of their descendant nodes. Its effectiveness has been stud-
ied by Archer and Kimes (2008) by means of a large-scale simulation study tailored to
the empirical characteristics of microarray gene expression data.

Mean decrease in prediction accuracy. Alternatively, variable importance can be
measured by the mean decrease in prediction accuracy after randomly permuting the
values of Xj in the OOB samples. The rationale of this approach is that random per-
mutation mimics absence of the predictor. Let ŷi(Tb,Xj) and ŷi(Tb,Xπ(j)) denote the
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predicted classes of yi obtained from Tb before and after random permutation of the val-
ues of Xj in Ob. The permutation-based variable importance of Xj is then given by

VIP (Xj) =
1

B

B∑
b=1

∑
i∈Ob

[
1{yi 6=ŷi(Tb,Xπ(j))}

|Ob|
−
1{yi 6=ŷi(Tb,Xj)}

|Ob|

]
. (13)

Sometimes, this measure is normalised using the standard deviation of the differences
between the misclassification rates in the OOB samples. However, Dı́az-Uriarte and
de Andrés (2006) find that the unscaled version (13) is preferable as it allows to compare
outcomes obtained from different parameter settings, especially the number of trees in
each forest and the number of predictors sampled at each split.

5.2 Conditional inference trees

RFs based on conditional inference trees deviate from the classical RF approach in two
respects: variable selection and variable importance measures.

5.2.1 Variable selection

In classical RFs, variable selection tends to be biased towards predictors with larger mea-
surement scales, higher numbers of categories and, sometimes, missing values (Hothorn
et al., 2006; Strobl et al., 2007). Variable importance measures are likely to be biased
in the same cases as well as in the presence of correlated predictors (Strobl et al., 2007,
2008; Webel and Ollech, 2017), which is a consequence of the linkage between variable
selection and node splitting. More precisely, in the absence of a truly influential predic-
tor in a sample X̃ of candidate predictors, a predictor that is highly correlated with the
truly influential predictor but not with the response may be selected as splitting vari-
able. In this case, the substitute only appears to be an effective splitting variable as the
true dependencies between the predictors are not taken into account appropriately. As a
consequence, its influence on the response is likely to be overestimated, regardless of the
considered variable importance measure.9

To overcome this drawback, Hothorn et al. (2006) develop a conditional inference
framework for decision trees which is based on the theory of permutation tests developed
by Strasser and Weber (1999) and avoids potential biases by untangling variable selection
and node splitting. The rationale of this separation is an ex ante exclusion of those
predictors which are not strongly related to the response. Using notation from Algorithm
2, let each split candidate m ∈ Mi(Tb) be represented by a N -dimensional vector wm =
(wm,1 . . . wm,N)> of integer case weights, where wm,i is positive if the i-th observation
(xi, yi) is an element of node m and zero otherwise. Then, they propose the following
generic 2-step algorithm which essentially replaces lines 7 to 11 of Algorithm 2:

1. Selection step: Test the global null hypothesis of no association between Y and
each X̃j in the sample X̃ given the node’s case weights wm. Stop if this hypoth-

9This effect tends to be higher/lower for lower/higher values of p̃, i.e. the number of candidate predictors
in the sample (Grömping, 2009; Strobl et al., 2008). However, increasing p̃ in order to remedy the bias
issue may again lead to an unwanted dominance of strong predictors.
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esis cannot be rejected. Otherwise, identify the predictor X̃j∗ with the strongest
association to Y.

2. Split step: Take X̃j∗ as splitting variable. Find the optimal binary split of node m
using a pre-specified splitting criterion. Calculate the case weights wmL and wmR

of the left and right descendent nodes of m.

Remark 8. In Step 1, the global null hypothesis of no association between Y and each
X̃j in node m can be written formally as

H
(m)
0 =

p̃⋂
j=1

H
(m,j)
0 with H

(m,j)
0 : D(Y|X̃j,wm) = D(Y|wm),

where D(Z) denotes the distribution of Z. This hypothesis is rejected if the minimum

of the (adjusted) p-values for rejecting the local null hypotheses H
(m,j)
0 is smaller than a

pre-specified nominal level α. In this case, X̃j∗ can be identified from standardised linear

statistics within the permutation test framework or from the local null hypothesis H
(m,j∗)
0

which has been rejected at the smallest (adjusted) p-value. �

Remark 9. In Step 2, any splitting criterion can be considered in principle. However,
Hothorn et al. (2006) suggest using two-sample linear statistics which are in line with the
criteria applied in Step 1. �

Remark 10. The key idea of Hothorn et al. (2006), i.e. separating variable and split point
selection, has also been considered in others approaches in order to deal with the selection
bias of classical RFs. Prime example are the QUEST and CRUISE methods suggested
by Loh and Shih (1997) and Kim and Loh (2001), respectively. Utilising conditional
independence tests, Lee and Shih (2006) extend the selection schemes of these methods
to classification trees with multivariate responses. �

5.2.2 Variable importance

Strobl et al. (2008) develop a conditional permutation scheme which avoids potential
biases by taking the correlation structure among the predictors into account. The aim
of this scheme is to prevent ex ante the overestimation of seemingly influential predictors
Xj that in fact are not strongly associated with Y but appear as such due to a high
correlation with a truly influential predictor, such as Xj∗. To this end, the original
permutation scheme π(·) which underlies Equation 13 is applied to the values of Xj

only within subgroups of observations of Xc
j = (X1 . . .Xj−1Xj+1 . . .Xp), resulting in the

conditional permutation scheme π(·)|Xc
· . The respective conditional permutation-based

variable importance measure is given by

VICP (Xj) =
1

B

B∑
b=1

∑
i∈Ob

[
1{yi 6=ŷi(Tb,Xπ(j)|Xc

j
)}

|Ob|
−
1{yi 6=ŷi(Tb,Xj)}

|Ob|

]
, (14)

where for each tree Tb the permutation grid for Xj is defined by the cut-points of Xc
j in

Tb. Thus, the conditional variable importance measure is feasible for both categorical and
continuous predictors.
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Remark 11. Conditioning on Xc
j, that is on all other predictors, in the permutation

scheme might be seen as a very cautious strategy. A slightly more incautious scheme
could consider only those predictors in Xc

j whose correlation with Xj exceeds a certain
threshold (Strobl et al., 2008). In this case, the association measures calculated in Step 1
of the generic algorithm developed by Hothorn et al. (2006) may give an intuition about
which predictors could be used. Either way, it should also be kept in mind that the
differences between classical and conditional RFs primarily concern variable importance
measures and tend to be negligible in terms of misclassification rates (Hothorn et al.,
2006; Webel and Ollech, 2017). �

6 Application

Section 6.1 applies the classical and conditional RF approaches to the training data that
was generated in Section 3 from the set of 600,000 simulated ARIMA time series and
identifies the most informative seasonality tests from the latter approach.10 Section 6.2
applies the conditional RF approach to the four time series from Example 1, disentangling
especially the conflicting test results for the CPI and employment series.

6.1 Simulated ARIMA time series

We run Algorithm 2 with B = 100, which was determined by cross-validation, p̃ =
b√pc = 2 and nmin = 1 in order to grow classical RFs. Essentially, we use the same
parameters in the conditional RF-modified algorithm (Remark 8 and Remark 9) alongside
α = 0.05. Employing univariate p-values, we thereby identify predictors with the strongest
association to the response according to the “smallest p-value”-approach. These choices
are in line with the suggestions of Dı́az-Uriarte and de Andrés (2006) and Strobl et al.
(2007).

6.1.1 Misclassification rates

Table 5 reports the misclassification rates of the candidate seasonality tests and of the
classical and conditional RFs. The key findings are that (1) each test shows non-ignorable
upward size distortions, especially for longer series, and (2) the performance of either
RF approach is, by construction, completely independent of any pre-specified level of
significance and barely affected by the length of the series.

Seasonality tests. The modified QS test has the lowest misclassification rates for sea-
sonal series regardless of the series’ length, whereas the Friedman test performs generally
well at correctly classifying non-seasonal series, especially at the 1% level of significance.
Interestingly, the misclassification rates of the modified QS, Friedman and Kruskal-Wallis
tests increase more or less noticeably with the length for non-seasonal series, while the
same is true for the misclassification rates of the periodogram test and F -test on seasonal
dummies for seasonal series.

10Recall that each training data set contains the p-values of five JD+ seasonality tests as predictors and
a seasonality dummy as categorical response. Also, recall that these predictors display high positive
empirical correlations (Table 4) and, thus, justify the consideration of conditional inference trees.
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Remark 12. Although the modified QS test has the lowest misclassification rate for
seasonal series among all competitors, it misclassifies non-seasonal series relatively often
compared to the other tests, especially for longer series. This discrepancy between the
“type I” and “type II” misclassification rates can in part be explained by the fact that the
modified QS test is probably most sensitive to under-differencing. For example, it falsely
classifies 64.2% of the (021)(000) models as seasonal at the 1% level of significance, which
accounts for 1.47 percentage points of the overall misclassification rate for non-seasonal
series. In contrast, the misclassification rates of the other tests range between 0.1% and
6.3% for this particular model class. �

Remark 13. The test for seasonal peaks combines two spectrum-based diagnostics and,

Table 5: Misclassification rates of the JD+ seasonality tests and the classical and conditional
RF approaches.

Simulated ARIMA series
All lengths 5-year 10-year 20-year

Classifier N-S S N-S S N-S S N-S S

Conditional OOB Mean? 0.76 2.08 0.63 2.38 0.83 1.99 0.82 1.87
RF SD?? 0.16 0.17 0.25 0.38 0.25 0.37 0.21 0.29

VAL Mean? 0.77 2.13 0.66 2.35 0.82 2.05 0.82 1.98
SD?? 0.17 0.24 0.22 0.33 0.24 0.39 0.28 0.42

Classical OOB Mean? 0.84 1.91 0.75 2.26 0.88 1.82 0.89 1.66
RF SD?? 0.16 0.16 0.27 0.35 0.22 0.34 0.25 0.29

VAL Mean? 0.82 1.98 0.74 2.25 0.85 1.90 0.88 1.77
SD?? 0.18 0.19 0.24 0.32 0.24 0.34 0.30 0.36

Seasonality α = 0.01 QS 4.84 1.49 2.48 1.75 4.99 1.41 7.07 1.29
tests FT 2.08 2.09 1.46 2.25 2.25 1.95 2.52 2.07

KW 2.37 3.78 1.86 3.90 2.56 3.68 2.70 3.75
PD 3.21 3.65 3.18 3.42 3.30 3.60 3.16 3.91
SD 4.04 2.70 4.35 2.50 4.09 2.69 3.67 2.91
SP ∗ ∗ ∗ ∗ 6.63 1.74 5.04 1.95

α = 0.05 QS 7.42 1.22 4.92 1.39 7.52 1.11 9.82 1.15
FT 6.64 1.58 5.63 1.62 6.96 1.50 7.33 1.64
KW 6.91 3.15 6.24 3.13 7.12 3.07 7.36 3.24
PD 8.14 3.16 8.31 2.84 8.15 3.11 7.95 3.51
SD 9.11 2.24 9.68 2.03 9.19 2.22 8.46 2.48
SP ∗ ∗ ∗ ∗ 6.63 1.74 5.04 1.95

? As a percentage. ?? In percentage points.
Remarks: N-S and S denote the classes of non-seasonal and seasonal series. Seasonality tests have been
applied to the “mother” training data L, whereas RF approaches have been applied to the “daughter”
training data sets L(i), i ∈ {1, . . . , 50}. Means and standard deviations (SD) of the misclassification rates

have been calculated over the respective OOB samples and sampled validation (VAL) data sets V(i)
s . The

color code, which indicates certain clusters of tests, is explained in Remark 13.
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thus, does not obey any traditional null distribution, including p-values. As a consequence,
its misclassification rates do not follow a pattern similar to any of the other tests. For
instance, the misclassification rates are not affected by the user’s choice of a significance
level. This distinctive feature is in line with grouping all seasonality tests into the following
three clusters, which are highlighted in Table 4 and Table 5 in different shades of grey:

• The dark grey cluster consists only of the modified QS test. It is able to handle
moving seasonality as well as volatile seasonal patterns. This results in particularly
low misclassification rates for seasonal time series.

• The grey cluster contains the Friedman, Kruskal-Wallis and periodogram tests and
the F -test on seasonal dummies. This set is designed to identify stable seasonality,
e.g. by checking differences between period-specific means. They tend to have lower
misclassification rates for non-seasonal series and slightly higher misclassification
rates for seasonal series compared to the modified QS test.

• The light grey cluster consists only of the test for seasonal peaks that directly
classifies a series as seasonal or non-seasonal instead of yielding p-values. As opposed
to the modified QS test, the overall misclassification rate slightly improves with the
time series length so that the test has particularly low misclassification rates for
longer seasonal series. �

Classical RF. Based on the OOB data, the average misclassification rates are univer-
sally lower than the respective rates of the seasonality tests for the non-seasonal series
and slightly higher than the rates of the best tests for seasonal series. Compared to this
data, the average misclassification rates on the sampled VAL data are even marginally
smaller for the non-seasonal series but slightly higher for the longer seasonal series. Also,
the respective standard deviations are slightly lower for shorter series and slightly higher
for longer series, regardless of seasonality class.

Conditional RF. Compared to classical RFs, the average misclassification rates on
both the OOB and sampled VAL data are slightly smaller for the non-seasonal series
and visibly higher for the seasonal series, especially the longer ones. In contrast, the
standard deviations of the misclassification rates are almost the same for either method.
The only exception are the longer seasonal series in the sampled VAL data for which a
slight increase in the standard deviations can be observed for the conditional RF approach
compared to classical RFs.

6.1.2 Variable importance measures

Figure 3 shows boxplots of the mean decrease in accuracy (Equation 13 and Equation 14)
for the five JD+ seasonality tests whose p-values have been involved in tree growing. The
left panel reveals that in the conditional RF setup the modified QS test eventually turns
out to win the race for the most informative test by a narrow margin over the Friedman
test. The F -test on seasonal dummies and the Kruskal-Wallis and periodogram tests
finish far behind at third, fourth and fifth place, although the dispersion of the mean
decrease in accuracy is remarkably lower for these tests. The right panel shows that the
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Variable importance measures
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Figure 3: Variable importance measures for five JD+ seasonality tests based on the conditional
and classical RFs grown on the 50 independent “daughter” training data sets.

Friedman test and the F -test on seasonal dummies appear much more important in the
classical RF setup, which does not properly take into account the p-values’ correlations.

Remark 14. The identification of the modified QS and Friedman tests as the most
informative JD+ seasonality tests may be explained intuitively by the fact that the two
tests complement each other well with respect to the different types of seasonal pattern
they are designed to capture. While the Friedman test mainly covers stable seasonality,
the modified QS test can also cope with seasonal patterns that change gradually over
time. This is in line with the test clusters discussed in Remark 13. �

Remark 15. The informational content of the Friedman and Kruskal-Wallis tests is
noticeably different, although their test statistics are structurally quite similar. This
suggests that intra-year ranks seem to be more informative than intra-span ranks. The
reason could be that intra-year ranks are more robust against non-monotonous trend-like
behaviour that may still remain in the input series even after first-order differencing. �

6.2 Real-world time series

To demonstrate the benefits of the conditional RF approach, we return to the four time
series discussed in the introductory Example 1, i.e. retail trade turnover for games and
toys, the HICP for tobacco, the CPI for energy, and the number of persons employed in
the manufacture of wearing apparel. Table 6 recalls that the seasonality tests in JD+
unanimously classify the first series as seasonal and the second series as non-seasonal,
whereas they disagree for the other two series.

Table 6 also shows the aggregated classification of each series based on the conditional
RF approach. This first confirms the two concurrent decisions of the JD+ tests, i.e. the
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Table 6: Test statistics (TS) and p-values of the JD+ seasonality tests and conditional RF
classification for the time series shown in Figure 1.

Retail trade Employed persons:
turnover: games HICP: CPI: manufacture of
and toys tobacco energy wearing apparel

TS p-value TS p-value TS p-value TS p-value

QS 537.787 0.000 0.750 0.687 7.463 0.024 6.551 0.038
FT 236.337 0.000 13.031 0.291 29.804 0.002 46.864 0.000
KW 258.577 0.000 5.363 0.912 33.755 0.000 44.127 0.000
SP AT AT AT ?? a? ?? ?t ?? ?? ?? A? ??

AT AT AT ?? ?? a? ?? a? ?? ?? ?? ??
PD 323.551 0.000 0.376 0.965 3.140 0.001 1.796 0.062
SD 364.898 0.000 0.359 0.970 3.031 0.001 1.747 0.071

RF Seasonal Non-seasonal Non-seasonal Seasonal

Remark: See Table 1 for further details and note that the conditional RFs yield an unanimous classification
of each series.

turnover series is classified as seasonal and the HICP series as non-seasonal. Regarding the
conflicting results, the CPI series is classified as non-seasonal, in contrast to the majority
vote of the tests, and the employment series as seasonal, in line with the Friedman and
Kruskal-Wallis test results. The decision in favour of absence of identifiable seasonality
in total energy prices seems reasonable given that slightly more than 60% of the subcom-
ponents, such as fuels and lubricants for personal transport equipment, heat energy and
liquid fuels, are classified as non-seasonal by all JD+ seasonality tests.

7 Summary

We argued that the identification of the seasonal status of observed data is essentially a
classification task and can thus be performed by machine learning (ML) methods, using
the outcomes of single seasonality tests as predictors that are potentially subject to pos-
itive correlations. Hence, ML methods may also help to eliminate seemingly redundant
tests and to identify the most informative tests within a given set. Working with the
seasonality tests implemented in JD+ and asking for high accuracy, high interpretability
and availability of unbiased variable importance measures in the presence of correlated
predictors, we compared selected ML methods in terms of their capability to balance these
key requirements and identified random forests (RF) of conditional inference trees as the
best method in that sense. Thereby, each method was trained and evaluated on a large
set of simulated monthly seasonal and non-seasonal ARIMA time series which was ob-
tained from combining the “NORmal-To-Anything” (NORTA) algorithm with logspline
density estimation in order to be as representative of the Bundesbank’s macroeconomic
time series database as possible. Utilising RFs of conditional inference trees, we finally
identified the modified QS and Friedman tests as the most informative seasonality tests
among the ones implemented in JD+. An intuitive explanation may be that the two tests
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together cover a broad range of seasonal patterns as the Friedman test mainly captures
stable seasonality while the modified QS test allows seasonality to gradually change over
time.

Our RF-based approach to assessing the informational content of seasonality tests can
be extended in a variety of ways. For example, the representative training data could be
improved further by (1) becoming also unbalanced with respect to seasonality classes and
time series lengths, (2) adding quarterly, outlier-prone and/or borderline seasonal series, or
(3) using models other than ARIMA and/or algorithms and methods other than NORTA,
such as copulas, in the simulation process. Future research could also consider seasonality
tests currently not implemented in JD+ as additional candidate predictors and other RF-
based methods as additional classifiers. Since obtaining results from conditional RFs is
still time-consuming, drawing also random samples of split points during tree growing as
in extremely randomised trees (Geurts, Ernst, and Wehenkel, 2006) could help to save
computing time. Also, combining classifications of different (not necessarily RF-based)
methods trained on the same data as in stacking (Breiman, 1996b; Wolpert, 1992) could be
beneficial, especially in terms of accuracy. In general, considering further methods could
provide a starting point for transferring our approach from supervised to unsupervised
learning, working entirely with real-world data. Apart from that, changing our approach’s
attention to tests for residual seasonality, which is sometimes even more difficult to detect
(Findley, Lytras, and McElroy, 2017), may also be worthwhile.

Putting some of the above ideas into practice, we are currently elaborating on the
work of Webel and Ollech (2018) as we are using the conditional RF-based approach as
a main building block for deriving an overall seasonality test by repeatedly eliminating
“weak” (alias less informative) predictors from a larger initial set of candidate seasonality
tests.
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Briët, O. J., P. H. Amerasinghe, and P. Vounatsou (2013). Generalized Seasonal Au-
toregressive Integrated Moving Average Models for Count Data with Application to
Malaria Time Series with Low Case Numbers. PloS ONE 8 (6), 1–9.
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