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Non-technical summary

Research Question

This paper analyses the drivers of macroeconomic dynamics in the US in the

Great Recession and at the zero lower bound for nominal interest rates through

the lens of estimated macroeconomic models. In recent years, the role of financial

frictions and household heterogeneity for business cycles has received heightened

attention in the theoretical literature. We therefore ask whether the inclusion of

these features into estimated macroeconomic models improves the models’ ability

to provide an account of the dynamics of macroeconomic variables following the

Global Financial Crisis.

Contribution

A binding zero lower bound represents a technical challenge for the estimation

of macroeconomic models. Therefore, it has become common practice to analyse

the consequences of the financial crisis for the US economy through the lens of

models that are estimated on pre-crisis data. In contrast, this paper is one of the

first, which explicitly includes the years after the financial crisis in the estimation.

This is rendered possible by our use of a nonlinear estimation approach that takes

account of the zero lower bound. We estimate several models and compare them

with regard to their ability to provide an account of the dynamics of macroeco-

nomic variables during the Great Recession, as well as in terms of their empirical

fit.

Results

Neither the inclusion of financial frictions nor that of hand-to-mouth households,

whose consumption only depends on their current income, improves the models’

empirical fit or their ability to provide a joint account of macroeconomic dynamics

in the Great Recession. Financial shocks that have been proposed in the literature

fail to generate the decline in consumption, which could be observed in the Great

Recession. The practice of using models, which are estimated on pre-crisis data,

overstates the role of disturbances to investment costs for post-crisis business cy-

cles. In contrast, our analysis highlights the role of elevated risk premiums for

households following the crisis.



Nichttechnische Zusammenfassung

Fragestellung

Dieses Paper untersucht die Triebkräfte makroökonomischer Dynamiken in den

USA in der Großen Rezession und an der Zinsuntergrenze im Rahmen verschie-

dener geschätzter makroökonomischer Modelle. In den letzten Jahren hat die Rol-

le von Finanzfriktionen und Haushaltsheterogenität für Konjunkturzyklen in der

theoretischen Literatur hohe Beachtung gefunden. Vor diesem Hintergrund gehen

wir der Frage nach, ob der Einbezug dieser Aspekte in geschätzten Modellen dazu

beiträgt, den Verlauf makroökonomischer Größen infolge der Globalen Finanzkrise

besser erklären zu können.

Beitrag

Eine bindende Zinsuntergrenze stellt eine hohe Hürde für die Schätzung makroöko-

nomischer Modelle dar. Daher ist es eine gängige Praxis, die Folgen der Finanzkri-

se auf die Realwirtschaft in den USA im Rahmen von Modellen zu untersuchen,

welche auf einen Zeitraum geschätzt sind, der die Jahre seit der Finanzkrise aus-

spart. Im Gegensatz dazu ist dieses Forschungspapier eines der ersten, welches

explizit auch den Zeitraum nach der Finanzkrise in der Schätzung der Modelle

miteinbezieht. Möglich macht uns das ein nichtlineares Schätzverfahren, welches

die bindende Zinsuntergrenze berücksichtigt. Wir schätzen mehrere Modelle und

vergleichen sie hinsichtlich ihrer Fähigkeit, die Dynamiken makroökonomischer Va-

riablen in der Großen Rezession auf eine gemeinsame Erklärung zurückführen zu

können, sowie hinsichtlich ihrer empirischen Güte.

Ergebnisse

Weder die Einbeziehung von Finanzfriktionen noch von sogenannten
”
hand-to-

mouth“-Haushalten, deren Konsum ausschließlich vom gegenwärtigen Einkommen

abhängt, verbessert den Erklärungsgehalt der Modelle. In der Literatur vorgeschla-

gene Finanzschocks implizieren Konsumdynamiken, die nur schwer mit den Beob-

achtungen in der Krise in Einklang zu bringen sind. Die Praxis, makroökonomische

Modelle zu verwenden, deren Parameterwerte auf Schätzungen der Modelle nur

auf Vorkrisendaten beruhen, führt dazu, dass die Rolle von Schocks auf Investiti-

onskosten für Nachkrisen-Konjunkturzyklen überschätzt wird. Im Gegensatz dazu

hebt unsere Analyse die Rolle von Schocks auf Risikoprämien auf Kredit- und

Sparzinsen für Haushalte hervor.
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1 Introduction

More than a decade ago, the Financial Crisis and the subsequent Great Recession
did not only wreak havoc on the US economy, but it also shook the macroeconomic
profession to the core. As a consequence, a plethora of approaches has been devel-
oped to enrich dynamic macroeconomic models with features conceived to enhance
our understanding of the dynamics during and after the Great Recession. While
progress flourished on the front of theoretical modeling, very few attempts have
been made to test these models empirically on the period including and following
the Great Recession. This is primarily due to the long-lasting binding zero-lower
bound on nominal interest rates (ZLB)1, which renders conventional econometric
methods unsuitable.

In this paper, we make a step towards closing this gap by providing an account
of the last two decades based on a set of models, which are estimated on data from
this period. Our sample extends to 2019, thereby including the exit from the ZLB.
As speed is a crucial feature with regard to Bayesian estimations, we develop a fast
piecewise-linear solution method and combine it with a nonlinear Bayesian filter
similar to Evensen (1994). This allows us to estimate even large macroeconomic
models while fully accounting for the effects of the ZLB. We take the standard
medium-scale representative agent new Keynesian model (RANK) of Christiano,
Eichenbaum, and Evans (2005) and Smets and Wouters (2007) as the starting
point to explore several recent model extensions. Motivated by the importance
of the interlinkages between the financial sector and the real economy during the
Great Recession, we consider the extension of the standard framework developed
by Del Negro, Giannoni, and Schorfheide (2015), who add financial frictions as in
Bernanke, Gertler, and Gilchrist (1999). Driven by the rising interest in the effects
of household heterogeneity on the macroeconomy we then expand our analysis
to include the effects of hand-to-mouth agents. The two agent new Keynesian
(TANK) model can be seen as a shortcut to the more thorough heterogeneous
agent new Keynesian (HANK) model which incorporates potentially important
additional channels in our investigation.2 Our analysis of the baseline RANK
model confirms previous findings of Gust, Herbst, López-Salido, and Smith (2017)
and Kulish, Morley, and Robinson (2017), who consider a binding ZLB within
comparable models, and lends plausibility to our analysis.

As a first key contribution of this paper, we study how the use of post-crisis
data affects the estimation outcome and hence our interpretation of the crisis. It

1Given the recent European and Japanese experience with slightly negative rates, the term
“effective lower bound” is more precise. Nevertheless we employ the term “zero lower bound”
throughout this text as it is used more frequently in the literature.

2See, e.g., McKay and Reis, 2016; Kaplan, Moll, and Violante, 2018; Auclert, 2019 on the
current stand of this literature.
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has become common practice to analyze the Great Recession and the ZLB period
through the lens of models that have been calibrated to or estimated on pre-crisis
data only (see, e.g., Gertler and Karadi, 2011; Christiano, Motto, and Rostagno,
2014; Christiano, Eichenbaum, and Trabandt, 2015; Del Negro et al., 2015; Carl-
strom, Fuerst, and Paustian, 2017). This approach has generated prominent results
that shape our profession’s understanding of the Great Recession, the role of finan-
cial frictions, and the effect of unconventional monetary policy measures. However,
we document that this practice can generate misleading conclusions. We illustrate
this by comparing the decompositon of macroeconomic dynamics derived from the
RANK model estimated on a sample, which includes post-crisis data, with a de-
composition of these dynamics as implied by the model estimated on pre-crisis data
only. This exercise reveals that the relative contribution of the different driving
forces in the model is substantially affected by the sample choice. In the post-
crisis sample, elevated risk premiums in household financing are the dominating
driver of the crisis. In contrast, the analysis based on pre-crisis data overstates
the importance of shocks to firms’ investment financing. This illustrates why pre-
vious studies that employed pre-crisis data for their empirical analysis focused on
disturbances to investment financing as a driver of the crisis. It furthermore clar-
ifies that the dominant role of the risk premiums for our interpretation of the last
decades is not hardwired into the model, but rather it is the interpretation of the
dynamics of the US economy, which is favored by the data.

Our second key contribution is to assess whether extending the standard model
with financial frictions or household heterogeneity improves the model’s perfo-
mance in terms of empirical fit or in terms of providing a narrative of the crisis.
With the Financial Crisis being one, admittedly complex, event, a good model
should be able to allot the bulk of the persistent effects of the crisis to a common
source within the model (Angeletos, Collard, and Dellas, 2018).3 However, we find
that all models that we consider fall short in accounting for the joint dynamics of
investment, consumption and inflation following 2008. Instead - in the extreme
case of the models with financial frictions - the downturns of consumption and
investment during the recession are almost entirely driven by disparate exogenous
forces. Strictly speaking, these models attribute the behavior of these variables to
two different crisis events instead of providing a joint propagation mechanism that
points towards a parsimonious interpretation of the Great Recession. We demon-
strate that the economic question of a joint propagation mechanism is closely
linked to the empirical fit of the model. This is intuitive as a joint driver that
moves the macroeconomic system as a whole reduces the need for several sepa-

3Angeletos et al. (2018) go even further and search for one shock as a main driver of business
cycles over a longer time-span. In their paper, they list, for instance, the TFP shock in Kydland
and Prescott (1982), the marginal efficiency of investment shock by Justiniano, Primiceri, and
Tambalotti (2010) and the risk shock by Christiano et al. (2014) as examples for similar endeavors.
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rate large shocks to generate the extreme dynamics in different variables observed
during the recession, thereby improving the likelihood of the model.

The simple RANK model outperforms its extended versions with financial fric-
tions or hand-to-mouth agents in terms of empirical fit. In this model, an exoge-
nous increase in the risk premium on households’ borrowing rate is the main driver
of macroeconomic dynamics following the Great Recession. Risk premium shocks
account for the drop in consumption and are responsible for the long duration
of the ZLB. However, they can only provide a partial explanation for the behav-
ior of investment and inflation during the recession. To generate the extent of
the collapse in investment, an extra driver, here shocks to the marginal efficiency
of investment (MEI), is needed. Similarly, the dip of inflation in that period is
associated with additional shocks to the price markup.

Financial frictions à la Bernanke et al. (1999) do not improve upon the RANK
model’s ability to provide a parsimonious explanation for the dynamics during and
after the Great Recession, nor do they enhance the empirical fit of the model.4

The reason for this is that the response of investment to risk premium shocks is
attenuated by the presence of financial frictions. Recessionary shocks only trigger a
short-lived contraction in entrepreneurial net worth, but a more persistent decline
in the capital stock. This causes the entrepreneurial leverage to actually decrease in
the medium run, which lowers the credit spread and hence the cost of investment.
The outlook of a favorable future investment climate actually dampens the decrease
in investment from the onset and impairs the ability of the shock to generate the
sharp drop of investment observed in the Recession. The financial sector attenuates
the effect of MEI shocks on investment in a similar fashion.

While financial shocks – shocks that target investment financing – can account
for the collapse of investment during the Great Recession in a similar fashion as
the MEI shock, they do not contribute to the substantial decline of consump-
tion in that episode. We illustrate this for the case of risk shocks in the spirit of
Christiano et al. (2014). Our estimates suggest that these shocks trigger a neg-
ative co-movement of household spending and investment, which is at odds with
observed dynamics. Consequently, we document that these shocks only play a
very minor role for macroeconomic dynamics in and after the Great Recession.
This somewhat inconvenient finding has implications for other financial shocks as
well, which have been proposed in the literature and do not lower consumption
on impact, such as the credit shock and the investment shock in Carlstrom et al.

4By considering the role of financial friction for the US economy in the Great Recession,
we touch upon an active literature. Meh and Moran, 2010; Gerali, Neri, Sessa, and Signoretti,
2010; Cúrdia and Woodford, 2011; Gertler and Karadi, 2011; Brunnermeier and Sannikov, 2014;
Christiano et al., 2014; Del Negro, Eggertsson, Ferrero, and Kiyotaki, 2017. Our analysis provides
an argument for the benefits of testing these models empirically on the period of the Great
Recession and the ZLB.
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(2017) or the wealth shock proposed in Carlstrom and Fuerst (1997).5 We con-
clude that a shock that affects borrowing rates of households and firms alike is a
more promising candidate for providing an account of the Great Recession.6

The inclusion of hand-to-mouth agents hardly affects aforementioned results.
Parameter estimates, the empirical fit and the transmission of risk premium shocks
are very similar for TANK and RANK models. Given our parameter estimates,
the direct effects and indirect effects of hand-to-mouth agents in response to a
risk premium shock roughly chancel out. A weakening link between consumption
and the risk premium is offset by a stronger connection between consumption and
movements in real activity. For a pre-crisis sample in which other shocks such as
MEI shocks and wage markup shocks play a more prominent role, we demonstrate
that the inclusion of hand-to-mouth agents actually lowers the models empirical
fit as they suggest a negative correlation of wages and investment in response to
a wage markup shock. This is hard to reconcile with the empirical evidence. We
conclude that in the context of the standard medium-scale model, which already
contains a host of bells and whistles, hand-to-mouth agents are not essential for
explaining business cycle dynamics.7

Across all models considered, the episode of missing disinflation is reflected by
an estimate of a flat Phillips curve.8 However, conducting estimates on a pre-crisis
sample that starts in the Great Moderation we find that the structural relationship
between nominal and real aggregates already weakens before the crisis. Our ob-
servation suggests that the link between inflation and economic activity is not well
captured in the workhorse models of contemporary monetary theory. Recently,
several paper have attempted to resuscitate the Phillips Curve by including fi-
nancial frictions. In Christiano et al. (2015) and Gilchrist, Schoenle, Sim, and
Zakraǰsek (2017), increased refinancing costs drive firms to raise their prices and
prevented a severe disinflation. While in our models, recessionary MEI and risk

5An exception is the capital quality shock proposed by Gertler and Kiyotaki (2010). This
shock hits the economy at very different points simultaneously to capture key features of the
crisis. Boehl, Goy, and Strobel (2020) document a low explanatory power to this shock as its
macroeconomic effects much depends on the actual calibration.

6A good example for this type of distortion is the collateral shock recently proposed by Becard
and Gauthier (2020). This shock directly affects both household and investment financing and
induces a co-movement of consumption and investment over the business cycle.

7This does not preclude that a more thorough modeling of microeconomic heterogeneity as
pursued by the HANK literature could improve upon the empirical performance. For instance,
Bayer, Born, and Luetticke (2019) recently estimate a HANK model on US data and stress
the importance of idiosyncratic income risk and portfolio liquidity for macroeconomic dynamics.
A TANK model naturally cannot capture these effects. However, in contrast to Bayer et al.
(2019), we include the ZLB into our estimation, thereby capturing a different key factor for
macroeconomic dynamics in our analysis.

8This observation fueled a literature on the Missing Deflation Puzzle. See, e.g., Hall (2011),
King and Watson (2012).
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shocks can in principle generate inflationary pressure, their weight in the estima-
tion of the crisis sample is not sufficient to address the missing disinflation puzzle.
Thus, the inclusion of financial frictions does not revive the Phillips curve, nor
does accounting for a binding ZLB.

A small number of papers has recently analyzed the Great Recession through
the lens of estimated macroeconomic models with an endogenously binding ZLB.
The estimation of DSGE models with a binding ZLB was pioneered by work on
small-scale NK models.9 The paper that comes closest to the work presented here
is Gust et al. (2017), who estimate a reduced version of the RANK model that is
solved via global methods. In contrast, we use a piecewise-linear solution method.
The associated speed of the model solution - and hence the model estimation -
enables us not only to use the full RANK model but to advance our analysis to a
broader class of models. Since, despite the methodological differences, our results
generally confirm the findings by Gust et al. (2017) in the context of the RANK
model, we conclude that any loss of precision that might incur due to the lack of a
fully non-linear solution is small. This notion is supported by Atkinson, Richter,
and Throckmorton (2019), who compare piecewise-linear solutions to models with
OBCs with fully global methods. They conclude that, while the fully nonlinear so-
lution entails some nice properties, the piecewise-linear solution is to be preferred
as it enables the use of larger and hence much less misspecified models. The work
of Guerrieri and Iacoviello (2015) is related as they provide the benchmark imple-
mentation of an algorithm to solve models with occasionally binding constraints
(OBCs). While our method will generally provide identical results, it is generally
several magnitudes faster. In particular, we transform the linearized equilibrium
conditions into an extended reduced-form system, which allows for a more effi-
cient computation of the solution, thereby providing the necessary improvement
in speed for the purpose of estimation.

We proceed as follows: Section 2 sketches the model and the employed ex-
tensions. Section 3 briefly lays out the numerical methods and our choices on
data and priors. Section 4 provides the estimation results. Section 5 summarizes
the interpretation of the Great Recession within RANK. Section 6 demonstrates
the necessity of using post-crisis data. Section 7 discusses the role of the model
extensions. Section 8 concludes.

2 Models

We employ the canonical medium-scale framework by Smets and Wouters (2007) as
a baseline and allow for two model extensions: hand-to-mouth consumers that are

9See, e.g., Keen, Richter, and Throckmorton (2017), Borağan Aruoba, Cuba-Borda, and
Schorfheide (2018), Plante, Richter, and Throckmorton (2018).
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unable to save and only consume their current-period wage income and financial
frictions in the vein of Bernanke et al. (1999). We dub the model with only a
representative agent the RANK model to distinguish it from our two-agent new
Keynesian (TANK) model. The model vintage including financial frictions will be
referred to as financial representative agent NK model – FRANK.10 The full set
of linearized equilibrium conditions is delegated to the Appendix.

2.1 The TANK extension

The TANK model therefore features Ricardian and hand-to-mouth households.
We assume that, for any given reason, a share λ of households does not have any
savings technology at its disposal and therefore consumes whatever it earns from
its labor services provided.11 The linearized budget constraint of hand-to-mouth
consumers simply reads

cHt = wt + lHt , (1)

with cHt and lHt denoting hand-to-mouth agents’ consumption and labor supply,
and wt being the real wage. We assume that Ricardian and hand-to-mouth con-
sumers share the same preferences and are represented by the same labor unions
in the wage formation process. Aggregate consumption and labor hours can be
obtained in the linearized form as

ct = λcHt + (1− λ)cRt , (2)

lt = λlHt + (1− λ)lRt , (3)

where ct and lt are aggregate consumption and labor, and the superscript R denotes
the Ricardian type.

2.2 Financial Frictions

The second extension that we consider is the inclusion of frictions in financial
markets. Here, we adopt the modeling choices by Del Negro et al. (2015), who
build on the work of Bernanke et al. (1999), De Graeve (2008) and Christiano et al.
(2014). In this model, entrepreneurs obtain loans from frictionless intermediaries,
which in turn receive their funds from household at the riskless interest rate.
In addition to the loans, entrepreneurs use their own net worth to finance the
purchase of physical capital that they rent out to intermediate good producers.
Entrepreneurs are subject to idiosyncratic shocks to their success in managing

10In Appendix A.4 we additionally, we present estimation results for FTANK, a two-agent
version of FRANK.

11In contrast to HANK, the TANK model does not capture uncertainty effects or time-
variations of the share of constrained agents on consumption.
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capital. As a consequence, their revenue might fall short of the amount needed to
repay the loan, in which case they will default on their loan. In anticipation of the
risk of entrepreneurs’ default, financial intermediates pool their loans and charge
a spread on the riskless rate to cover the expected losses arising from defaulting
entrepreneurs. Crucially, the spread of the loan rate r̃kt over the risk free nominal
interest rate, rt, depends on the entrepreneurial leverage and can be written as

Et[r̃
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t. (4)

Here, ut is the risk premium shock on the housholds borrrowing rate, qt is the price
of capital, kt is the capital stock and nt denotes entrepreneurial net worth. σ̃ω,t
is a shock to the entrepreneurs’ riskiness and follows an AR(1) process - the risk
shock introduced by Christiano et al. (2014). Thus, the loan spread is defined as
a function of the entrepreneurs’ leverage and their riskiness, which is determined
by the dispersion of the idiosyncratic shocks to entrepreneurs. Note that if the
elasticity of the loan rate to the entrepreneurs’ leverage, ζsp,b, is set to zero, we are
back to the case without financial frictions.

The evolution of aggregate entrepreneurial net worth is described by

nt = ζn,r̃k(r̃
k
t −πt)−ζn,r(rt−1−πt)+ζn,qk(qt−1 +kt−1)+ζn,nnt−1−

ζn,σω
ζsp,σω

σ̃ω,t−1. (5)

where πt is the inflation rate. Equation (5) links the accumulated stock of en-
trepreneurial net worth to the real return of renting out capital to firms, the
riskless real rate, its capital holdings, its past net worth and variations in riski-
ness. The coefficients ζn,r̃k , ζn,r, ζn,qk, ζn,σω , and ζsp,σω are derived as in Del Negro
et al. (2015).

3 Methodology and Data

When including episodes of a binding ZLB in the sample, the estimation of DSGE
models poses a host of different technical challenges. These are related to the
solution, likelihood inference, and posterior sampling of models in the presence of
an occasionally binding constraint (OBC). While methods to solve models with
OBCs exists, and – likewise – nonlinear filters are available, the combination of
both is computationally very expensive for medium-scale models. Hence very few
examples in the literature where able to follow this approach (Gust et al., 2017;
Kulish et al., 2017). Before we turn to our estimation results, we briefly summarize
the set of novel methods that allow us to conduct an estimation of medium-scale
models in the presence of a binding ZLB. Secondly, this section describes our
choices with regard to the data, calibrated parameters, and priors used in the
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empirical analysis.

3.1 Econometric Methodology

We propose an alternative method to solve for the occasionally binding zero lower
bound. While it shares many features with the method introduced in Guerrieri
and Iacoviello (2015), and will generally return an identical solution, it comprises
a considerable advantage in computation speed. Linearizing the model around its
steady state balanced growth path and respecting the ZLB results in a piecewise-
linear model. The system in which the constraint is slack is taken as the terminal
condition. Our transformation of the dynamic system allows us to provide a closed-
form state-space representation, Ls, for the complete expected trajectories of the
endogenous variables as a function of the states and expected duration at the ZLB
(the “ZLB spell duration”):

Et [xt+s|(l, k)] = Ls(l, k, xt−1), (6)

where Et[xt+s|(l, k)] is the expected state x at the future period t+ s, conditional
on assuming the ZLB starting to bind in l periods for exactly k periods.

To find the expected ZLB spell duration (l, k) given the state of the economy,
we simply iterate over the sets of spell durations. Using the closed-form solution
together with the equilibrium conditions allows us to check for a model equilibrium
instantaneously instead of simulating a complete anticipated equilibrium path for
a given ZLB spell. The conditions for (l, k) to be an equilibrium are given by

mEt[xt+s|(l, k)] ≥ r̄ ∀s < l ∧ s ≥ k + l, (7)

mEt[xt+s|(l, k)] < r̄ ∀l ≤ s < k + l, (8)

where the vector m contains the constrained equation, i.e. rt = max{mxt, r̄}. This
enhances the computational speed of the algorithm substantially compared to the
methods by Guerrieri and Iacoviello (2015) and Holden (2016). We give a detailed
account of the soution method in A.1.12

Proper likelihood inference requires a Bayesian filter that allows for uncertainty
about initial states and potential measurement errors. For this purpose, we use the
Ensemble Kalman Filter (EnKF) introduced in Evensen (1994), which is a hybrid
of the particle filter and Kalman filter technology.13 Similar to the particle filter,
a set of points (the ensemble) is sent through the transition function during the

12The solution method – together with a parser and additional econometric tools – is imple-
mented in the pydsge package which is available at https://github.com/gboehl/pydsge.

13Although used in many applications ranging from weather forecasting to target tracking, as
Katzfuss, Stroud, and Wikle (2016) point out, the filter is remarkably unknown in the econo-
metrics community.
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prediction step. However, instead of re-sampling (as with the particle filter), the
EnKF approximates a state-dependent system matrix which can be used within
a Kalman-like updating step. The posterior ensemble of the states, Xt|t, is hence
given by

Xt|t = Xt|t−1 + X̄t|t−1Z̄
ᵀ
t|t−1

(
Z̄t|t−1Z̄

ᵀ
t|t−1

)−1 (
zt1

ᵀ − Zt|t−1

)
, (9)

where Xt|t−1 is the prior state ensemble, Zt|t−1 is the ensemble of the prior-implied
observables, and zt the observables vector. A.2 contains further details. The EnKF
allows to efficiently approximate the state distribution of large-scale nonlinear
systems with only a few hundred particles.14

Counterfactual simulations require that the smoothened series of shocks can
exactly reproduce the filtered data. We utilize a procedure of nonlinear path-
adjustment to calculate the smoothed/historic shock innovations, building two
steps on top of the EnKF: the first step is an ensemble version of the Rauch-
Tung-Striebel smoother (Rauch, Striebel, and Tung, 1965; Raanes, 2016). In a
second step, iterative global optimization methods are used to maintain that the
shock innovations fully respect the nonlinear transition function while taking the
approximated distribution of smoothed states into account. Again, A.2 provides
details.

Compared with the particle filter, the EnKF also works with a small number
of particles thereby reducing computational costs. Additionally, it also works
with very small measurement errors. In contrast to the inversion filter used in
Guerrieri and Iacoviello (2017), the EnKF is a full Bayesian filter. As such the
inversion filter does not allow for uncertainty on the initial states, and its strict
construction leaves no leeway in interpreting the data. This has the drawback that
bad initial values or big jumps in the observables can result in large approximation
errors.15 Compared to the Unscented Kalman Filter (Julier and Uhlmann, 1997),
the EnKF does not rely on parameterized deterministic sampling techniques and
is hence parameter-free.

For posterior sampling we apply differential evolution ensemble Monte Carlo
Markov chain methods (ter Braak, 2006; ter Braak and Vrugt, 2008, DE-MCMC).
The DE-MCMC method is a class of ensemble MCMC methods which, instead
of relying on a single or small number of state-dependent chains (as e.g. in the
Metropolis algorithm), uses a large number of chains (also called the “ensemble”,
but in the context of sampling). Similar ensemble methods have been extensively
applied in particular in astrophysics. The main advantage of these methods is

14For all estimations and for the numerical analysis we use an ensemble of 400 particles.
15A learning period will not change this property as, in the absence of potential measurement

errors, the course of the dynamics is deterministic.

9



that they are self-tuning, easy to parallelize, and robust against local maxima,
which allows to use them to sample from oddly-shaped and potentially multimodal
distributions. They even work well if large regions of the parameter space do not
have a likelihood due to indeterminacy or explosive dynamics. This is of particular
importance as we use quite short data samples which may not be free of systemic
breaks. For each estimation, we initialize an ensemble of 200 particles with the
prior distribution and run 2500 iterations. Of these, we keep 500 as a representation
of the posterior distribution. The posterior is hence represented by a sample of
200× 500 = 100.000 parameter vectors.

3.2 Data and Priors

For the quantitative analysis of the Great Recession and its aftermath, our baseline
sample ranges from 1998:I to 2019:III. To our best knowledge, we are the first to
include the late 2010’s in the sample, which also contains the exit from the ZLB at
the end of 2015. Our benchmark sample is shorter than, e.g., in Gust et al. (2017),
or Fratto and Uhlig (2020), who as well analyze the Great Recession in estimated
models. The reason is that we want our estimation to capture idiosyncrasies
of the episode in which the effective lower bound was binding, in particular the
persistence of endogenous and exogenous variables, the role of policy, and the
slope of the Phillips Curve. We find that using a longer sample bears the risk of
misspecification.16 An particular drawback of a longer sample that would include
the Great Moderation is a downward trend in the nominal interest rate, which
distorts the results. Figure 21 in A.12 shows that the downward trend in the
nominal rate is associated with an upward trend in consumption, which even in
the Great Recession does not drop below steady state. This issue is shared by
the sample choices made by Gust et al. (2017) and Fratto and Uhlig (2020), and
similarly by our the pre-crisis sample. As contemporary DSGE models are unable
to account for the negative trend in the nominal rate, they will fall short to provide
a realistic account of the dynamics of consumption, thereby biasing the parameter
estimates. Throughout our analysis we also refer to alternative data vintages.

We conduct estimations with seven and eight observables. The seven observ-
ables that are used throughout all estimations in the paper are real GDP growth,
real consumption growth, real investment growth, labor hours, the log change of
the GDP deflator, real wage growth, and the Federal Funds Rate. Additionally,
we present results for estimations in which we add the Gilchrist and Zakraǰsek
(2012) spread (GZ-spread, henceforth).17

16Naturally, using a shorter sample yields less data observations. Yet, our sample is still larger
than e.g. in Smets and Wouters (2003).

17For the computation of the spread, Gilchrist and Zakraǰsek (2012) consider a broad set of
loans to firms with different credit risk and compare the interest rate paid on each individual
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The measurement equations that relate the model variables to our data series
are

Real GDP growth = γ + (yt − yt−1), (10)

Real consumption growth = γ + (ct − ct−1), (11)

Real investment growth = γ + (it − it−1), (12)

Real wage growth = γ + (wt − wt−1), (13)

Labor hours = l + lt, (14)

Inflation = π + πt, (15)

Federal funds rate = (
π

βγ−σc
− 1) ∗ 100 + rt. (16)

When we also add the spread as an observable, we specify

GZ-spread = spread+ Et[r̃
k
t+1 − rt]. (17)

The construction of the observables is mostly standard and delegated to A.5.
Three aspects are worth mentioning. First, for our benchmark estimations, we
follow Justiniano et al. (2010) and include durable consumption in our investment
series. As observed by Erceg and Levin (2006), durable consumption resembles
investment in its behaviour over the business cycle. We find that including this
choice generally improves the ability of the model to explain the data.

As a consequence, the strong fall in durable consumption during the Great
Recession contributes to the sharp decrease in the investment series, whereas the
decline in the consumption series at that time is somewhat dampened.Secondly,
as in Boehl et al. (2020), we use a trailing MA(5) of the civilian non-institutional
population index to normalize real quantities. This helps us to purge our observ-
ables of jumps in the index that reflect artifacts in its construction rather than the
underlying economic fundamentals. Lastly, we set the empirical lower bound of
the nominal interest rate within the model to 0.05% quarterly. Setting it exactly
to zero would imply that the ZLB never binds in our estimations, as the observed
series for the FFR stays strictly above zero. Our choice maintains that the ZLB
is considered binding throughout the period from 2009:Q1 to 2015:Q4. For the
observable Federal Funds Rate we cut off any value below 0.05. This maintains
that any observable value is also reachable for the model. Formally, we set the
lower bound for the quarterly nominal rate r̄ = −100( π

βγ−σc
− 1) + 0.05, where π

is gross inflation and the parameters γ and σc denote the steady state growth rate
and the coefficient of relative risk aversion, respectively. We assume small mea-

loan with the costs that the government would have had to pay on a loan with a comparable
maturity. The GZ-spread is the average over these individual credit spreads.
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surement errors for all variables with a variance that is 0.01 times the variance of
the respective series. Since the Federal Funds rate is perfectly observable (though
on a higher frequency) we divide the measurement error variance here again by
100. Hence, the observables are de facto matched perfectly.

In the calibration of some parameters and the choice of the priors for the
estimation of the others we stick as closely as possible to the previous literature.
For the parameters of RANK we rely on the choices of Smets and Wouters (2007).
For the parameters associated with the extension of the financial sector we use the
priors employed by Del Negro et al. (2015). The TANK model only requires one
additional prior for λ. Here, we choose for the prior a beta distribution with a
mean of 0.3 and a standard deviation of 0.1. Our prior mean is close to the roughly
31 % reported by Kaplan, Violante, and Weidner (2014) as the combined share
of poor and wealthy hand-to-mouth agents in the US. This is also within close
range to estimates by Coenen and Straub (2005) and Fève and Sahuc (2017), but
slightly higher than the value estimated by Coenen, Straub, and Trabandt (2013).

In the estimations on the crisis sample, we follow Kulish et al. (2017) in the
choice of our prior for γ. Importantly, they opt for a tighter prior for this parameter
than Smets and Wouters (2007). Arguably the economy deviated strongly and
persistently from its steady state during the Great Recession. In order to dampen
the data’s pull of the parameter down to the sample mean, we prefer the tight
prior as well.18

4 Estimation Results

Our main focus is on estimations on the crisis sample from 1998:I to 2019:III. We
compare parameter estimates across models and contrast them with the estimates
for a pre-crisis sample from 1983:I to 2008:IV. This pre-crisis sample is a good
candidate because it is quite frequently used in the literature for two reasons: it
avoids the Great Inflation as well as the methodological challenge of accounting for
a binding ZLB after 2008. Table 5 summarize the posterior for model parameters
for the crisis sample. The three main models we consider are RANK, TANK, and
FRANK. Parameter estimates for the pre-crisis sample across models are reported
in Table 6. 19 Overall we find that parameter estimates are quite robust to the
model extensions, however there are meaningful systematic differences between the
pre-crisis and the crisis estimates.

Across models, we find that the coefficient of relative risk aversion σc has
decreased from means between 1.260 and 1.469 in the pre-crisis sample to slightly

18For wider priors we confirm unrealistically low estimates of the trend growth rate.
19We provide additional parameter estimates for FTANK and other variations of the financial

friction models, as well as for samples from 1983–2019 in Table 9.
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Table 1: Comparison of estimation results across models for the crisis sample
(1998–2019).

Sample from 1998 to 2019
Prior Posterior

RANK TANK FRANK

dist. mean sd/df mean sd mode mean sd mode mean sd mode

σc CRRA normal 1.500 0.375 0.930 0.081 0.882 0.891 0.046 0.871 0.980 0.114 1.161
σl Labor supply normal 2.000 0.750 1.753 0.459 1.315 1.518 0.431 1.276 1.764 0.409 1.454
βtpr Discount factor gamma 0.250 0.100 0.158 0.055 0.141 0.154 0.055 0.118 0.138 0.045 0.137
h Habit beta 0.700 0.100 0.833 0.027 0.839 0.839 0.025 0.849 0.755 0.048 0.666
S′′ Inv. adj. cost normal 4.000 1.500 5.287 0.914 4.926 5.420 0.928 4.971 4.996 1.007 3.713
ιp Price indexaation beta 0.500 0.150 0.192 0.066 0.166 0.180 0.062 0.190 0.218 0.077 0.288
ιw Wage indexation beta 0.500 0.150 0.371 0.112 0.426 0.398 0.123 0.429 0.309 0.101 0.344
α Capital share normal 0.300 0.050 0.168 0.013 0.175 0.167 0.012 0.171 0.173 0.013 0.179
ζp Price Calvo beta 0.500 0.100 0.852 0.033 0.840 0.850 0.033 0.861 0.920 0.027 0.927
ζw Wage Calvo beta 0.500 0.100 0.710 0.044 0.678 0.691 0.047 0.681 0.766 0.050 0.771
Φp Fixed cost normal 1.250 0.125 1.254 0.076 1.249 1.251 0.079 1.254 1.303 0.074 1.411
ψ Capital Utilization beta 0.500 0.150 0.757 0.080 0.802 0.759 0.079 0.751 0.763 0.071 0.749
φπ Mon. policy: inflation normal 1.500 0.250 1.353 0.218 1.512 1.361 0.218 1.386 1.101 0.196 0.900
φy Mon. policy: gap normal 0.125 0.050 0.207 0.029 0.190 0.196 0.027 0.174 0.237 0.027 0.220
φdy Mon. policy: growth normal 0.125 0.050 0.170 0.040 0.165 0.172 0.041 0.174 0.163 0.042 0.170
ρ Mon. policy: smoothing beta 0.750 0.100 0.816 0.042 0.833 0.818 0.040 0.809 0.751 0.039 0.711
ζspb Leverage elast. of spread beta 0.050 0.005 0.050 0.004 0.050
λ Share of h2m agents beta 0.300 0.100 0.227 0.075 0.286
ρr AR(1) monetary beta 0.500 0.200 0.754 0.088 0.710 0.737 0.090 0.760 0.493 0.079 0.452
ρg AR(1) fiscal beta 0.500 0.200 0.918 0.019 0.915 0.916 0.019 0.902 0.941 0.016 0.959
ρz AR(1) technology beta 0.500 0.200 0.979 0.013 0.982 0.982 0.012 0.986 0.964 0.025 0.977
ρu AR(1) risk premium beta 0.500 0.200 0.866 0.022 0.871 0.867 0.022 0.881 0.890 0.023 0.891
ρi AR(1) MEI beta 0.500 0.200 0.602 0.127 0.528 0.572 0.100 0.573 0.916 0.024 0.938
ρp AR(1) price Markup beta 0.500 0.200 0.639 0.090 0.679 0.622 0.103 0.617 0.441 0.199 0.666
ρw AR(1) wage Markup beta 0.500 0.200 0.455 0.097 0.369 0.449 0.091 0.476 0.499 0.093 0.417
µp MA price markup beta 0.500 0.200 0.315 0.121 0.300 0.345 0.141 0.257 0.403 0.149 0.391
µw MA wage markup beta 0.500 0.200 0.255 0.090 0.166 0.246 0.081 0.259 0.316 0.093 0.236
ρgz Fiscal technology normal 0.500 0.250 0.607 0.085 0.646 0.615 0.089 0.672 0.479 0.101 0.340
σr Std. dev. monetary IG 0.100 2.000 0.106 0.017 0.122 0.110 0.021 0.112 0.173 0.045 0.189
σg Std. dev. fiscal IG 0.100 2.000 0.222 0.025 0.208 0.220 0.024 0.214 0.255 0.024 0.287
σz Std. dev. technology IG 0.100 2.000 0.399 0.043 0.412 0.396 0.038 0.399 0.378 0.042 0.424
σu Std. dev. risk premium IG 0.100 2.000 0.681 0.148 0.626 0.688 0.161 0.588 0.432 0.104 0.339
σi Std. dev. MEI IG 0.100 2.000 0.881 0.276 1.041 0.940 0.257 0.876 0.533 0.059 0.618
σp Std. dev. price Markup IG 0.100 2.000 0.184 0.058 0.139 0.204 0.078 0.173 0.411 0.152 0.182
σw Std. dev. wage Markup IG 0.100 2.000 1.272 0.294 1.487 1.287 0.279 1.176 1.133 0.222 1.289
γ Trend growth normal 0.440 0.050 0.382 0.036 0.386 0.379 0.038 0.392 0.391 0.033 0.393

l ME constant: labor normal 0.000 2.000 0.997 0.634 1.099 1.179 0.651 1.356 1.395 0.643 2.243
π ME constant: inflation gamma 0.625 0.100 0.632 0.059 0.659 0.645 0.057 0.688 0.603 0.060 0.581

spread ME constant: spread normal 0.500 0.100 0.331 0.064 0.322
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Table 2: Comparison of estimation results across models for the sample before the
crisis (1983–2008).

Sample from 1983 to 2008
Prior Posterior

RANK TANK FRANK

dist. mean sd/df mean sd mode mean sd mode mean sd mode

σc CRRA normal 1.500 0.375 1.469 0.147 1.468 1.388 0.133 1.298 1.424 0.126 1.444
σl Labour supply normal 2.000 0.750 2.361 0.539 2.555 2.062 0.513 1.849 2.519 0.507 2.786
βtpr Discount Factor gamma 0.250 0.100 0.147 0.046 0.146 0.147 0.049 0.142 0.143 0.048 0.123
h Habit beta 0.700 0.100 0.689 0.048 0.699 0.710 0.040 0.688 0.669 0.042 0.670
S′′ Inv. adj. cost normal 4.000 1.500 5.622 1.035 6.023 5.727 1.029 4.939 6.176 0.982 5.926
ιp Price indexation beta 0.500 0.150 0.309 0.100 0.311 0.344 0.106 0.323 0.355 0.130 0.385
ιw Wage indexation beta 0.500 0.150 0.424 0.127 0.476 0.414 0.129 0.371 0.373 0.121 0.600
α Capital share normal 0.300 0.050 0.214 0.011 0.218 0.213 0.011 0.210 0.226 0.011 0.226
ζp Price Calvo beta 0.500 0.100 0.845 0.032 0.832 0.858 0.033 0.855 0.847 0.031 0.841
ζw Wage Calvo beta 0.500 0.100 0.783 0.047 0.769 0.792 0.045 0.797 0.833 0.038 0.859
Φp Fixed Cost normal 1.250 0.125 1.531 0.072 1.603 1.551 0.070 1.554 1.525 0.063 1.521
ψ Capital utilization beta 0.500 0.150 0.631 0.089 0.643 0.625 0.091 0.685 0.545 0.069 0.485
φπ Mon. policy: inflation normal 1.500 0.250 1.294 0.245 1.436 1.319 0.235 1.067 1.311 0.217 1.273
φy Mon. policy: gap normal 0.125 0.050 0.222 0.040 0.216 0.212 0.038 0.235 0.196 0.033 0.206
φdy Mon. policy: growth normal 0.125 0.050 0.203 0.040 0.199 0.205 0.041 0.214 0.198 0.038 0.216
ρ Mon. policy: smoothing beta 0.750 0.100 0.710 0.044 0.752 0.713 0.041 0.638 0.734 0.036 0.744
ζspb Leverage elast. of spread beta 0.050 0.005 0.051 0.004 0.048
λ Share of h2m agents beta 0.300 0.100 0.176 0.052 0.151
ρr AR(1) monetary beta 0.500 0.200 0.813 0.061 0.771 0.813 0.061 0.855 0.696 0.070 0.715
ρg AR(1) fiscal beta 0.500 0.200 0.972 0.013 0.975 0.972 0.013 0.981 0.939 0.031 0.948
ρz AR(1) technology beta 0.500 0.200 0.955 0.015 0.940 0.947 0.017 0.950 0.941 0.021 0.963
ρu AR(1) risk premium beta 0.500 0.200 0.736 0.090 0.754 0.700 0.083 0.797 0.691 0.076 0.785
ρi AR(1) MEI beta 0.500 0.200 0.767 0.061 0.806 0.807 0.048 0.793 0.868 0.028 0.883
ρp AR(1) price markup beta 0.500 0.200 0.764 0.082 0.827 0.749 0.100 0.821 0.728 0.106 0.801
ρw AR(1) wage markup beta 0.500 0.200 0.673 0.109 0.688 0.642 0.121 0.694 0.588 0.110 0.650
µp MA price markup beta 0.500 0.200 0.611 0.144 0.603 0.642 0.115 0.601 0.514 0.140 0.557
µw MA wage markup beta 0.500 0.200 0.393 0.152 0.396 0.423 0.158 0.443 0.391 0.156 0.386
ρgz Fiscal technology normal 0.500 0.250 0.352 0.078 0.423 0.351 0.079 0.324 0.389 0.079 0.382
σr Std. dev. monetary IG 0.100 2.000 0.130 0.015 0.141 0.131 0.015 0.123 0.151 0.021 0.138
σg Std. dev. fiscal IG 0.100 2.000 0.237 0.017 0.233 0.238 0.018 0.228 0.242 0.018 0.230
σz Std. dev. technology IG 0.100 2.000 0.308 0.028 0.316 0.309 0.027 0.285 0.316 0.027 0.300
σu Std. dev. risk premium IG 0.100 2.000 0.958 0.397 0.853 1.138 0.412 0.619 0.954 0.314 0.625
σi Std. dev. MEI IG 0.100 2.000 0.639 0.114 0.590 0.576 0.083 0.582 0.641 0.059 0.587
σp Std. ev. price markup IG 0.100 2.000 0.140 0.045 0.098 0.158 0.047 0.101 0.138 0.054 0.090
σw Std. dev. wage markup IG 0.100 2.000 0.457 0.100 0.420 0.523 0.153 0.459 0.591 0.148 0.511
γ Trend growth normal 0.440 0.050 0.463 0.025 0.460 0.466 0.024 0.473 0.412 0.027 0.427

l ME constant: labor normal 0.000 2.000 2.297 0.587 2.497 2.187 0.559 2.832 1.532 0.501 1.791
π ME constant: inflation gamma 0.625 0.100 0.703 0.065 0.704 0.693 0.065 0.706 0.599 0.065 0.613

spread ME constant: spread normal 0.500 0.100 0.472 0.064 0.438
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less then unity in the crisis sample. Similarly, Kulish et al. (2017), who also include
the last decade in their estimation, find σc to be close to unity. A value of σc close
to one mutes the effect of variations in labor hours on consumption via the Euler
equation, which is introduced through the nonseperabilites in preferences. The
reduction of this channel prevents the strong drop in labor hours during the crisis
to exert an excessive downwards pull on consumption.

The posterior mean values for habit formation, h, vary from from 0.755 (FRANK)
to 0.839 (TANK) in the crisis sample. Across models, this is roughly 0.1 higher
than in the pre-crisis sample. In contrast, investment adjustment costs are lower
for each model in the crisis sample (between 4.996 and 5.287) than in the pre-crisis
sample (between 5.612 and 6.176). This reflects the high volatility of investment
relative to consumption observed in the Great Recession.

The estimates of labor market parameters imply more flexibility of both labor
and wages in the Great Recession and at the ZLB than in prior decades. The pos-
terior mean for the inverse of the Frisch elasticity, σl, lies between 1.764 (FRANK)
and 1.518 (TANK) in the crisis sample, which is somewhat lower than in the pre-
crisis sample, where it is estimated to be slightly higher than 2 in all models.
This implies a higher elasticity of labor supply during the crisis and therefore a
higher responsiveness to demand shocks. This allows for a quicker decline in labor
hours and labor income in the Great Recession. Additionally, in crisis times, and
in particular in models without financial frictions, the parameter governing wage
rigidities, ζw, is estimated to be lower than in the pre-crisis sample. Mean values
here range from 0.691 (TANK) to 0.766 (FRANK), allowing wages to respond
faster to developments in the economy. Our estimates of ζw come close to the
value in Kulish et al. (2017), but stand in contrast to the estimates of Gust et al.
(2017) who obtain an wage adjustment cost parameter of 4420 in a Rotemberg
setting, which implies a virtually inexistent wage Phillips curve.

The RANK estimates for the Calvo parameter of ζp = 0.852 and the gross
price markup of Φp = 1.254 support the general notion that the Phillips Curve
has been flat in the last decades. Table 3 summarizes the estimated slopes of the
Phillips across different samples and model vintages. At the mean, the slope of
the Phillips Curve of RANK is estimated to be 0.007. This is substantially lower
than the estimate by Smets and Wouters (2007), who find a slope coefficient of
roughly 0.02. Our estimates provide evidence that the Phillips curve has already
been flattening out during the Great Moderation and has stayed flat at the ZLB.
This finding is robust to all model considered, including estimates of FRANK in
which we include a risk shock á la Christiano et al. (2014)(FRANK-R) and the GZ-
spread (FRANK-Spread), and corroborated by estimates of Kulish et al. (2017),
who start their sample in the 80s and include the crisis period in their estimation.

The persistence parameter of the risk premium shock lies roughly in the range of
0.866 to 0.890 in the crisis sample. This is substantially higher than the estimates
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Table 3: Comparison of the slopes of estimated Phillips Curves of the different
models.

Slope of the Phillips Curve

Sample RANK TANK FRANK FTANK

1998 – 2019 0.007 (0.004) 0.007 (0.003) 0.002 (0.002) 0.001 (0.0)
1983 – 2008 0.004 (0.002) 0.003 (0.002) 0.004 (0.002) 0.003 (0.001)
1983 – 2019 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001)

Sample FRANK-R FTANK-R FRANK-Spread FTANK-Spread

1998 – 2019 0.01 (0.003) 0.011 (0.003) 0.001 (0.003) 0.001 (0.001)
1983 – 2008 0.004 (0.003) 0.004 (0.005) 0.099 (0.09) 0.004 (0.088)

Posterior means with standard deviations in parenthesis. The short crisis sample

(1998–2019) is the benchmark we focus on in the main body.

for the pre-crisis sample, which vary around 0.7.20 This is not surprising as this
shock plays a larger role for the Great Recession and the ZLB period than for an
analysis of the pre-crisis period. The persistence parameter for MEI shocks displays
substantial differences between models with and without financial frictions. In
RANK, its posterior mean value is 0.602, whereas for FRANK it is at 0.916. This
points at the more important role of MEI shocks in financial friction models in the
crisis, which we discuss in Subsection 7.1.

The share of hand-to-mouth agents, λ, is estimated to be around 0.227 in
TANK. It is a tad higher in the crisis sample, than in the pre-crisis sample. This
squares with the notion that credit constraints played a larger role for households
in the Great Recession and its aftermath than in the previous decades. However
the posterior mean is below its prior, which, motivated by the estimates by Kaplan
et al. (2014), is set to 0.3. Our results suggest that high ad-hoc calibrations of the
share at, e.g., 0.5, which are often applied in the literature21, overstate the weight
of hand-to-mouth consumers in macroeconomic models.

5 The Great Recession Through the Lens of RANK

We start our discussion of business cycle dynamics at the ZLB by summarizing the
main implications, which result from the estimation of RANK on the crisis sample.

20For comparison in their estimate from 1966-2004, Smets and Wouters (2007) report a persis-
tence parameter of 0.22 for the risk premium shock. Kulish et al. (2017), who include the recent
decades in their sample, report a persistence parameter of 0.95 for the shock.

21See, e.g., Gaĺı, López-Salido, and Vallés (2007).
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These results are broadly in line with the findings of previous work that estimates
versions of this model while taking the ZLB into account (e.g., Gust et al., 2017;
Kulish et al., 2017). This lends credence to the results generated by our choices
of data and methods. Other than these papers, we focus on a more recent sample
starting 1998 for the reasons outlined in the previous Section 3.

In the context of the RANK model, risk premiums shocks are the most promi-
nent driver of the joint dynamics of key variables following the financial crisis.
Figure 1 illustrates the dominant role of risk premium shocks on the households’
borrowing rate, εut , for macroeconomic dynamics following the Great Recession.22

It presents the historical shock decompositions of key variables for the crisis sam-
ple. From 2009 on, persistently elevated risk premiums account for almost the
entire drop of aggregate consumption, weigh on aggregate investment and infla-
tion, and consequently are responsible for the long duration of the ZLB spell for
the nominal interest rate.

However, high risk premiums cannot fully account for the sharp drop in in-
vestment during the Great Recession. While recessionary risk premium shocks
do trigger a simultaneous downturn of consumption and investment, they fail to
match the drop differential of these components, creating the need for an extra
driver to make up for the missing decline in investment. In the case at hand, the
initial decline of investment is triggered by recessionary MEI shocks, εit, which at
the trough account for roughly half of the collapse in investment.

Similarly, the decline of inflation during the Great Recession can only partly
be attributed to the increase in risk premiums. The estimated flat Phillips Curve
prevents the decline in real activity from generating substantial deflation, which
requires price markup shocks, εpt , to account for the inflation dynamics. These
shocks govern the high-frequency movements of inflation in the sample and account
for the dip in inflation during the Great Recession.23 The only modest decrease
in inflation triggered a debate on the missing disinflation puzzle. Christiano et al.
(2015) attribute some inflationary pressure to a persistent decline in productivity
relative to its pre-recession trend. In contrast, in our estimation, which abstracts
from a TFP-specific trend, the technology process, zt, is consistently measured to
be positive. In addition, Christiano et al. (2015) as well as Gilchrist et al. (2017)
ascribe the missing inflation to higher refinancing costs of firms. We confirm
that within the RANK model, MEI shocks raise inflation by increasing the firms’
cost of investments. However, the size of this effect is negligible according to our
estimation. In our analysis, similar to Del Negro et al. (2015), the estimate of a

22The dominant role of risk premium shocks is corroborated by the generalized forecast error
variance decomposition, reported in Table 11 in the appendix.

23The relatively low estimate of φπ in the Taylor rule moderates the transmission of the volatile
short-lived effects of price markup shocks on inflation to the nominal interest rate, and in turn
to economic activity.
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Figure 1: RANK Model estimated to 1998-2019. Decomposition of the smoothed
time series into the contribution of the different shocks.

Means over 250 simulations drawn from the posterior. The contribution of each shock

is normalized as in A.8.

flat Phillips Curve is responsible for the lack of a steep decline in inflation. We
view the reliance on MEI shocks and price markup shocks as disparate exogenous
drivers for the explanation of the dynamics of investment and inflation in the years
of the Great Recession constitutes a shortcoming of the RANK model.24

The long duration of the ZLB is largely interpreted by our estimation as an
endogenous response of the central bank to the deterioration of fundamentals via
the Taylor rule, rather than to an active lower-for-longer policy.25 Figure 2 shows
the dynamics and the distribution of the expected duration of the ZLB spell over

24For an illustration of the exogenous shock process, see Figure 23 in the appendix.
25In principle, our model allows for forward guidance shocks at the ZLB. However, as discussed

in A.10, we find that, in the absence of additional data input such as, e.g., term premia, non-
linear filters do not perform reliably well in identify forward guidance shocks at the ZLB. For a
discussion of the effects of unconventional monetary policy, see Boehl et al. (2020).
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Figure 2: Estimated expected ZLB durations based on the benchmark estimation
of RANK.

Bars in the top panel mark the mean estimate. The shaded area represents 90%

credible sets. In the lower panels, the last bar to the right marks the probability of a

duration of 10 or more quarters.

the sample.26 The mean expected durations vary between six and ten quarters
throughout the ZLB years. Although we do not target, nor use any prior informa-
tion on the actual expectations of market participants on the duration of the ZLB,
for the most part they come remarkably close to the average expected durations
reported by the Blue Chip Financial Forecast and the Federal Reserve Bank of
New York’s Survey of Primary Dealers. In the first years of the ZLB, our mean
estimates somewhat overestimate expected durations, and around 2012, they are
slightly too low. However, the results of these surveys lie within the 90 % con-
fidence intervals of our estimation for almost all quarters. The lower panels of
Figure 2 show the distributions of expected ZLB durations at different points in
time. In 2009:Q1, most of the probability mass lies on durations of, or higher
than, 8 quarters. The same holds for the first quarters of 2012 and 2013, for which
survey data shows high expected durations as well. In contrast, for 2011:Q1 when

26For a discussion of the economic cost of a binding ZLB, see A.9. Closely related to the cost
of the binding ZLB is the decline in the natural rate, which is discussed in A.11.
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our mean expected duration of seven quarters slightly exceeds the mean implied by
the Primary Dealer Survey, the distribution shows that considerable probability
mass is allocated to lower expected durations and the survey mean is within the
confidence interval of the RANK estimation.

The resulting estimated average expected durations are higher than those by
Gust et al. (2017), who obtain an average ZLB spell of merely 3.5 quarters. A
potential reason for the difference in the resulting expected durations might be the
treatment of the ZLB in the estimation. As mentioned in Section 3.2, we set the
empirical ZLB to 0.05% quarterly, whereas Gust et al. (2017) choose exactly zero
percent. This may be problematic as the Federal Funds Rate never actually went
all the way down to zero. In theory, their model is hence capable of matching the
observables without forcing the model to the zero lower bound.27

Kulish et al. (2017) use the survey data to construct priors on expected du-
rations, which they estimate directly. While this procedure poses a challenge for
parameter identification by substantially extending the dimensionality of the pa-
rameter space, it eases matching the observed dynamics of the expectations over
the years at the ZLB. In contrast to the aforementioned papers, our sample also
covers the takeoff from the ZLB. The mean of the smoothed nominal interest rate
series leaves the ZLB a year after the actual ZLB period ended. The model there-
fore interprets the very low federal fund rate in 2016 to have the same effects on
equilibrium dynamics as a binding ZLB. This might capture uncertainty effects
that could not explicitly included in our modelling approach.

6 The Necessity of Using Post-Crisis Data in the

Estimation

Fully accounting for the ZLB in the estimation of a DSGE model is non-trivial
(c.f. Subsection 3.1) It therefore has become common practice to analyze the dy-
namics of the US economy during the crisis based on models that are estimated on
pre-ZLB data only (see, e.g., Chen, Cúrdia, and Ferrero, 2012; Christiano et al.,
2014, 2015; Del Negro et al., 2015; Carlstrom et al., 2017). This approach has
generated prominent that shape our understanding of the Great Recession, the
role of financial frictions or the effects of unconventional monetary policy. In this
subsection we illustrate that this practice can yield strongly misleading implica-

27From this angle it is surprising that in their smoothed state estimates, they hit the ZLB at
all. We suspect that this is due to the assumption of relatively large observation errors, which
is often necessary when employing the particle filter (see e.g. Atkinson et al., 2019). Their
measurement errors variances are assumed to at least 10% of the variance of data sample, which
is a full magnitude higher than our assumed measurement errors (3 magnitudes for the Federal
Funds Rate).
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Figure 3: RANK Model estimated to 1983–2008 used for the decomposition of the
sample from 1998 – 2019

Means over 250 simulations drawn from the posterior. The contribution of each shock

is normalized as in A.8.

tions. One particular implication is that the importance of disturbances to the
investment decision is highly overtaxed. Shocks to investment cost have received
heightened attention in a search for an explanation of the events of the Great
Recession – Christiano et al. (2015) label it the financial wedge. In their analysis,
variations in this wedge explain the bulk of variations in real activity in the Great
Recession and its aftermath. In contrast to their finding, we argue that the im-
portance of risk premium shocks, or in analogous terms, the consumption wedge,
is underestimated.

We illustrate this in Figure 3, which shows the historical shock decomposition
for the crisis sample using parameter estimates derived from the estimation of the
RANK model on the pre-crisis sample. Relying only on pre-crisis data drastically
changes the interpretation of the crisis. Importantly, as a comparison with Figure
1 shows, in this exercise the role of risk premium shocks for business cycle dynam-
ics is dramatically reduced. The decline in consumption is now attributed to a
combination of risk premium shocks and MEI shocks. Investment dynamics are
almost entirely driven by MEI shocks, whereas the effect of risk premium shocks
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Figure 4: IRFs to a risk premium shock in RANK estimated for 1998-2019

In orange with the CRRA coefficient σc = 1.469, a value taken from the estimate of

RANK from 1983 to 2008. Medians over 250 simulations drawn from the posterior.

90% credible set for RANK. Shock size is the posterior mean standard deviation.

is subdued. Compared to the results from the previous section, the role of risk
premiums for inflation dynamics is strongly reduced as well. In contrast, the infla-
tionary effect of negative MEI shocks now becomes more relevant. The long ZLB
period as well is explained to a mixture of recessionary risk premium shocks and
MEI shocks.

The sharp difference between this interpretation of the crisis and the interpre-
tation based on an estimation on crisis data can be attributed to the differences
in the estimated parameter values displayed above in Table 5. In particular, the
estimates of the coefficient of relative risk aversion, σc, play an important role. In
the crisis estimate, its posterior mean is at 0.930. In the pre-crisis estimate it is
at 1.469. Figure 4 shows how this alters the transmission of risk premium shocks.
Already in the base case of RANK, a drawback of the risk premium shock is that
it cannot match the drop differential of consumption and investment that was ob-
served in the Great Recession. A risk premium shock that would have triggered
a collapse in investment as observed in 2009, would have caused an excessive fall
in consumption. For a coefficient of relative risk aversion of σc = 1.469, as in this
exercise, this drawback is exacerbated. For values of σc larger than one, the decline
in labor hours exerts an additional downwards pull on consumption through the
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Figure 5: IRFs to a MEI shock in RANK estimated for 1998-2019

In orange with the CRRA coefficient σc = 1.469, a value taken from the estimate of

RANK from 1983 to 2008. Medians over 250 simulations drawn from the posterior.

90% credible set for RANK. Shock size is the posterior mean standard deviation.

non-separabilities in the utility function. In turn, the lower consumption trans-
lates into an outward shift of the labor supply curve, and a further drop in wages.
Investment falls by less, since the marginal product of capital increases with the
additional employment used in production. Therefore, the drop differential be-
tween investment and consumption becomes even smaller and makes it less likely
that risk premium shocks can account for the Great Recession.

In contrast, Figure 5 shows that one cause of the failure of MEI shocks to
be reconciled with the dynamics of the Great Recession is the low estimate of σc
derived from the estimation on crisis data. Here, a negative MEI shock increases
consumption: by lowering aggregate demand, MEI shocks weigh on the policy
interest rate, which in turn stimulates consumption on impact. This negative co-
movement of consumption and investment is at odds with the observed dynamics
in the Great Recession. In contrast, when the higher value of σc derived from
the estimate on pre-crisis data is used, the non-separabilities between labor and
consumption generate a decline in consumption. In that case, the more prominent
role for MEI shocks allows a stronger support for inflation which, after an initial
decline in response to the shock, rebounds and puts upwards pressure on price
dynamics. Hence, given the pre-crisis estimate for the coefficient of relative risk
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aversion, MEI shocks can address the missing deflation puzzle. However, the pre-
crisis estimate of σc is very close to the prior mean and it is hard to reject that
this estimate is a matter of poor identification. On the contrary, the crisis-sample
estimate of this parameter is almost two standard deviations distant from the prior
mean, which suggests that the value is driven by the data. Hence we find that
through the lens of pre-crisis estimates, MEI shocks – and other financial wedge
type of shocks which share similar properties – appear more attractive than they
are when bringing the model to crisis data.

This account of the Great Recession offered by our exercise based on the pre-
crisis sample differs sharply from the interpretation deemed most likely by the crisis
data. As we see, elevated risk premiums to the households borrowing rate play a
dominant role for business cycles. This can be loosely associated to increases in
mortgage lending rates and calls for a more refined modeling of household finances,
as well as additional modeling features that link a contraction in consumption to a
strong fall in investment.28 Whatever modeling choices prove to be the best fit to
capture the events of the recent decades, the exercise in this section highlights the
importance of making use of the data of the last decade, when analyzing business
cycle dynamics during this time.

7 Evaluation of Financial Frictions and House-

hold Heterogeneity

The mortgage crisis, which culminated in the default of Lehman Brothers in
September 2008, sent the US economy into a deep recession. Output, consump-
tion, investment and employment plummeted in 2009. The drop in investment was
particularly sharp in comparison to the decline in consumption. However, while
real activity collapsed, price dynamics did not follow suit. The drop in inflation
in the Great Recession was mild and short-lived.29 As argued above, with the
financial crisis marking one, albeit complex, event, a good model should provide
a parsimonious account of this event in terms of a common causal driver of the
occurrences during this period. In this section we lay out that none of our models
meets the challenge of attributing the key features of this episode to a common
source. At the end of the section, we discuss how the presence of a joint prop-
agation mechanism or the lack thereof in the model affects its empirical fit. We
show that against the gist of the literature, neither household heterogeneity nor
financial frictions improve upon the simple RANK model in terms of empirical fit.

28Additional challenges highlighted by Gomme, Ravikumar, and Rupert (2011) is to generate a
negative co-movement of the investment volume and Tobin’s q, as well as to break the equivalence
of the return on assets and the return on equity.

29See, e.g., Christiano et al. (2015), Del Negro et al. (2015), Gilchrist et al. (2017).
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7.1 FRANK: Challenges for financial friction modeling

We start this section by showing that the inclusion of the financial sector impairs
the ability of non-financial shocks to generate the observed collapse in investment
during the Great Recession. Subsequently, we show that financial shocks cannot
fill in as main drivers of the recessions, due to their inability to generate a sub-
stantial decline in consumption in the estimated models. As a consequence, the
models with financial frictions do not offer a joint propagation mechanism for the
behaviour of the components of aggregate demand. This stands in contrast to the
large theoretical literature that highlights the importance of the inter-linkages be-
tween the real economy and the financial sector for the macroeconomic dynamics
following the financial crisis.

7.1.1 The role of the financial sector for the transmission of shocks

The inclusion of financial frictions alters the transmission of shocks in important
ways. Figure 6 shows the dynamic response of key variables to a risk premium
shock. The difference between ‘FRANK’ and ‘low ζspb’ isolates the effect of the
financial accelerator on the transmission of the shock in an estimated FRANK
model, whereas the difference between ‘RANK’ and ‘FRANK’ also includes the
effect of changes in all parameter estimates.30 In all cases, an exogenous increase
of the risk premium on the households’ borrowing rate induces a contraction in
aggregate demand. The presence of financial frictions, however, amplifies the drop
in consumption and attenuates the drop in investment in response to the shock.
This worsens the shock’s ability to account for the observed drop differential of
consumption and investment in the Great Recession.

Why is that so? On impact, a risk premium shock reduces the price of capital
and net worth of entrepreneurs. As a consequence, their leverage increases and
– accordingly – the return on capital demanded by creditors. However, in the
context of the estimated FRANK model, the high return on capital induces a
quick recovery of net worth (c.f. Equation 5). In contrast, the decline in the
capital stock is more persistent. Hence, the increase in leverage is short-lived and
reverses after a few periods, while in the medium-run, the low leverage reduces the
required return on capital, and improves the investment climate. As the investment
decision is forward looking and rash adjustments of the capital stock are costly,
the outlook of a future investment boom already attenuates the fall of investment
from the onset. The attenuating role of financial frictions impairs the ability of
the risk premium shock to account for the dramatic fall of investment observed
in the Great Recession without simultaneously generating an excess decline in

30In our discussion of financial frictions we focus on FRANK and omit the FTANK model as
the role of hand-to-mouth agents does not alter the key results.
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Figure 6: IRFs to a risk premium shock in FRANK estimated for 1998-2019

In orange: estimated FRANK with the elasticity of the spread w.r.t leverage, ζspb ≈ 0.

In green: RANK. Medians over 250 simulations drawn from the posterior. 90% credible

set for FRANK. Shock size is the posterior mean standard deviation for each model.

consumption. Thus, less weight is assigned to these shocks, and more weight to
MEI shocks, which must fill in to generate the strong fall in investment.

As is shown in Figure 7, the estimated financial friction has a similar effect
on the transmission of recessionary MEI shocks: they increase the price of capital
and raise entrepreneurial net worth, thereby lowering the spread. Again, the di-
rect effect of the financial sector is to dampen the decline in investment. Despite
the financial attenuator, the decline in investment is far stronger in the estimated
FRANK model than in the estimated RANK model due to shifts in other parame-
ter estimates. Importantly, the estimate for the persistence parameter ρi is higher
in FRANK (0.916) than in RANK (0.602). In equilibrium, the higher value of
ρi implies a more persistent and substantial decline in investment, which triggers
a stronger drop in output and labor hours. The sharper decline in labor weighs
on consumption, which decreases directly on impact. The negative co-movement
between investment and consumption is therefore removed. However, the fall in
consumption is far too modest to enable MEI shocks in FRANK to match the drop
differential between investment and consumption.

Figure 8 shows that as a result, the dynamics of consumption and investment
are driven by two disparate sources of shocks. This represents a severe drawback
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Figure 7: IRFs to a MEI shock in FRANK estimated for 1998-2019

In orange: estimated FRANK with the elasticity of the spread w.r.t leverage, ζspb ≈ 0.

In green: RANK. Medians over 250 simulations drawn from the posterior. 90% credible

set for FRANK. Shock size is the posterior mean standard deviation for each model.

for the FRANK model’s appeal, as it moves farther away from providing a unifying
account of macroeconomic dynamics in the Great Recession than RANK. While the
financial sector itself acts as an attenuator for output and investment dynamics, the
higher persistence in MEI shocks in FRANK supports a more pronounced decline
in aggregate demand thereby creating deflationary pressure. As with RANK, this
pressure is too weak to cause the dip in inflation during the Great Recession.
Again, the inability of the model to account for the inflation dynamics is associated
with a flat Phillips Curve and variations in inflation are largely attributed to
exogenous fluctuations in the price markup.

7.1.2 Can risk shocks explain the Great Recession?

The difficulties of the MEI shock to generate one of the Great Recession’s key fea-
tures – a substantial, simultaneous drop of consumption and investment – is shared
by a wide range of financial shocks, which have been proposed in the literature.
Like the MEI shock, they present a disturbance to the intertemporal investment
decision, or as labelled in Christiano et al. (2015), the financial wedge. At odds
with observed dynamics in the Recession, these shocks stimulate consumption.
This holds for instance by the contractionary credit shock, which Carlstrom et al.
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Figure 8: FRANK Model estimated to 1998-2019

Decomposition of the smoothed time series into the contribution of the different

shocks. Means over 250 simulations drawn from the posterior. The contribution of

each shock is normalized as in A.8.

(2017) employ in their analysis of the effects of unconventional monetary policy.
Similarly, recessionary wealth shocks raise households consumption in Carlstrom
and Fuerst (1997).31

Figure 9 displays this unappealing feature of a financial shock in our estimates,
where it triggers a negative co-movement of consumption and investment. For this
illustration we employ the risk shock, which was developed by Christiano et al.
(2014). The risk shock is an exogenous process driving changes in the volatility of
cross-sectional idiosyncratic uncertainty of entrepreneurs. The Figure results from
two exercises that we conduct in order to investigate on the ability of this shock to
improve our understanding of the Great Recession and the ZLB period. First, we
exchange the MEI shock in FRANK for the risk shock and estimate the resulting
model as before (FRANK-R). Secondly, we use FRANK with both shocks and add

31As a counterexample, more recently, Becard and Gauthier (2020) propose a collateral shock,
which affects both household and investment financing directly. In their model this financial
shock induces a comovement of consumption and investment.
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Figure 9: IRFs to a risk shock in FRANK-R and FRANK-S estimated for 1998-
2019

Additionally the IRFS to an MEI shock in the same FRANK-S estimate. Medians over

250 simulations drawn from the posterior with 90% credible sets. Shock size is the

posterior mean standard deviation for each model.

the GZ spread as an additional observable in our estimation (FRANK-S).32

An increase in entrepreneurial risk raises the spread and makes external funding
less affordable for entrepreneurs. Aggregate investment and the price of capital
therefore both drop, jointly with entrepreneurial net worth. In contrast to the
MEI shock, which drives Tobin’s Q and investment in opposite directions, the risk
shock is therefore a demand shock in the market for investment goods. The drop in
investment demand lowers output and hence labor hours. However, the latter are
sufficiently stable so that the decline in the real rate dominates the consumption
response in the short run in both estimations. With regard of the post-2008 course
of inflation, an appealing feature of the risk shock is that, by raising the costs of
capital, it increases marginal cost and thereby creates inflationary pressure. This
effect is particularly pronounced in FRANK-R. However, whereas the risk shock
speaks to the missing deflation puzzle, its implications for consumption dynamics

32For details on the estimated parameters, interested readers are relegated to Table 7 in A.4.
For completeness, we additionally conduct analogous estimations with our two-agent extension.
The results of the parameter estimates are reported in the same Table 7 as well. Adding hand-
to-mouth agents however does not alter the main results of this section.
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Figure 10: FRANK-S Model – estimated including the GZ spread as observable –
estimated to 1998-2019

Decomposition of the smoothed time series into the contribution of the different

shocks. Means over 250 simulations drawn from the posterior. The contribution of

each shock is normalized as in A.8. The shock size is the posterior mean standard

deviation for each model.

are at odds with the data.
For both, FRANK-R and in FRANK-S, the problem persists that consumption

and investment dynamics following the Great Recession are explained by disparate
sources within the model. For FRANK-S this is illustrated in Figure 10, whereas
the historical shock decompositions for FRANK-R are relegated to Figure 19 in
A.12. In both cases, the risk premium shock remains the main source of move-
ments in consumption. Notwithstanding, for reasons discussed in Section 7.1.1,
the financial accelerator undermines the risk premium shock’s ability to account
for investment dynamics and creates additional need for financial wedge type of
shocks.
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Crucially, the role of risk shocks for macroeconomic dynamics in FRANK-S is
negligible. Of the risk shock and the MEI shock, the latter produces a response
of consumption that is more in line with observations in the crisis. Consequently,
MEI shocks take a more prominent role in the explanation of investment dynamics
than risk shocks. Increases in entrepreneurial risk only play a notable role for the
credit spread. In conjunction with increasing risk premiums on households bor-
rowing rates, they are responsible for the spike of the credit spread in the financial
crisis. Other than MEI shocks, recessionary risk shocks increase the spread, which
renders them unable to reconcile the very moderate spreads after 2010 with the
continuing depression of investment. The decomposition of inflation and interest
rate dynamics is almost the same as in FRANK.33 Adding the risk shock and
the spread as an observable therefore does not improve upon the explanation of
macroeconomic dynamics as given by RANK. As the risk shock in our exercise
stands in for a range of financial shocks that fail to trigger a fall in consumption,
it appears that, in general, a focus on distortion to investment financing may not
be a promising approach in the search for a parsimonious narrative of the Great
Recession.

7.2 The role of hand-to-mouth agents

The recent years have also seen a surge of interest into the interaction of microe-
conomic heterogeneity and macroeconomic dynamics. While a full-fledged HANK
model exceeds the scope of our analysis, we introduce hand-to-mouth consumers,
thereby extending our RANK to a TANK model. Hand-to-mouth consumers cap-
ture the fact that financial constraints affected the dynamics of households con-
sumption spending. As their income is determined solely by the labor market,
the introduction of these agents ties aggregate demand closer to labor market out-
comes.34 A contraction in investment therefore should exert a stronger downward
pull on consumption via the decline in labor income of households.

However, our analysis implies that the effect of hand-to-mouth agents on the
results for the crisis sample is rather small. Parameter estimates as well as the
historical shock decomposition of the crisis for TANK (see Figure 18 in A.12) are
very similar to the results for RANK.35 The low relevance of hand-to-mouth con-
sumers is mainly due to the presence of other frictions in our model that make

33In FRANK-R the slope of the Phillips curve is steeper and real shocks play a larger role
for inflation dynamics. As displayed in Figure 19 in A.12, the inflationary impact of risk shocks
becomes notable.

34In our framework, we keep the labor market simple. For a full-fledged account of its dynamics
during the Great Recession., see Christiano et al. (2015).

35We confine our discussion in the main body to the results of TANK, as the results with
regards to the role of hand-to-mouth consumers hold with FTANK as well.
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Figure 11: IRFs to a risk premium shock in TANK estimated for 1998-2019

Compared with mean IRFs to RANK. Medians over 250 simulations drawn from the

posterior with 90% credible set for TANK. Shock size is the posterior mean standard

deviation for each model.

it difficult to identify the effects of hand-to-mouth agants on business cycle dy-
namics: non-separable preferences create an additional link between labor hours
and consumption via the Euler equation of Ricardian agents; sticky wages pre-
vent sharp movement in the income of hand-to-mouth consumers and hence their
spending; lastly, habit formation strongly attenuates swings in the consumption
of constrained agents during the crisis.

Figure 11 illustrates that the transmission of the risk premium shock, which
again dominates macroeconomic dynamics in the crisis, is hardly altered. In
RANK, the reaction of consumption, a key component of aggregate demand, is
determined by the intertemporal substitution of current for future spending, the
price of which is determined by the households savings (or borrowing) rate. Adding
hand-to-mouth consumers to the model dampens the direct effect of risk premium
shocks on aggregate consumption, as a lower share of households can adjust its
consumption decision to changes in the interest rate. At the same time, hand-
to-mouth consumers add an indirect effect to the transmission of risk premium
shocks, because their spending is tied to current income, which closely tracks the
fluctuations in real activity that are caused by risk premium shocks as well. If
the amplification and attenuation via the indirect and direct effect cancel out,
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Figure 12: TANK Model estimated to 1983–2008

Decomposition of time series into the contribution of the different shocks. Means over
250 simulations drawn from the posterior. The contribution of each shock is

normalized as in A.8.

hand-to-mouth consumers have no effects on the transmission of this shock.36

Whether the indirect effect outweighs the direct effect mainly depends on the
estimates of labor market parameters. The estimated value of the Calvo parameter
for wage setting, ζw, implies a substantial wage rigidity that attenuates the reaction
of real wages to aggregate demand and therefore fluctuations in hand-to-mouth
agents’ spending. This substantially reduces the indirect effect. Another important
parameter is σl. In the extreme case of σl = 0, the consumption of Ricardian
and hand-to-mouth agents move closely together since, due to the assumption of
identical preferences, they are tied together via the same labor supply curve. All
else equal, the higher σl – the less elastic the labor supply – the more ch,t differs
from cr,t, and the stronger the fall in wages when labor hours drop. Lower wages in
turn further reduce hand-to-mouths agents’ budget and hence their consumption.

36A related intuition has been discussed by Bilbiie (2019) in the context of monetary policy
shocks, which affect the households saving (borrowing) rate in a similar manner.
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Figure 13: IRFs to a wage markup shock for RANK and TANK estimated for
1983-2008

For TANK, the share of hand-to-mouth agents λ is increased to 0.3 (vs. 0.176 in the

posterior mean) to illustrate the effect of MPC heterogeneity. Medians over 250

simulations drawn from the posterior. 90% credible set for TANK. Shock size is the

posterior mean standard deviation for each model

For the posterior estimate of σl of TANK in the crisis sample, the fall in ch is
only a tad more pronounced than that of cr. In equilibrium this slightly lowers
the policy rate, which dampens the fall of cr, and increases the wedge between
the consumption of both types of agents.37 However, combined with their low
share in households, the diverging spending behavior of hand-to-mouth consumers
is not sufficient to have a substantial impact on aggregate dynamics in the crisis
sample.38

37This type of externality imposed by hand-to-mouth consumers on Ricardian households,
which arises due to the feedback effects of hand-to-mouth spending on aggregate demand and
the interest rate is discussed in Bilbiie (2019).

38Additionally, the differences in the consumption response of household types is illustrated for
the transmission of MEI shocks in RANK and TANK in Figure 22 in A.13. Whereas Ricardian
consumption increases in response to the shock, consumption of hand-to-mouth consumers follows
labor market variables and declines. In principle, hand-to-mouth consumers could help to lower
the aggregate consumption response and create co-movement of investment and consumption in
response to this shock. However, as in the transmission of risk premium shocks, their impact on
aggregate figures is negligible.

34



While the irrelevance of hand-to-mouth consumers for the crisis sample is
largely due to the prominence of the risk premium shock, other exogenous driving
forces can induce a stronger divergence of the behavior of household types. A case
in point are wage markup shocks. These shocks only play a small role in the crisis
sample, but feature more prominently before the Great Recession. We illustrate
this in Figure 12, which shows the historical shock decomposition of that period
for TANK. Here, MEI shocks drive investment and consumption dynamics to a
large extent while wage markup shocks explain a significant share of real wage
and inflation dynamics.39 In the mid-80s, positive wage markup shocks raise the
real wage and support a positive comovement of wages with aggregate demand
components. In contrast, in the mid-90s, negative wage markup shocks depress
wages and create a negative comovement with aggregat demand.

As shown in Figure 13, the transmission of wage markup and MEI shocks is
altered by the addition of hand-to-mouth consumers. While the response of wages
and inflation is practically the same in RANK and TANK, the reaction of consump-
tion differs accross models.40 In RANK, consumption declines, whereas in TANK
a boost to labor income directly feeds into increased spending by hand-to-mouth
agents. This raises aggregate demand as well as labor hours, while the investment
response has the opposite sign, though the effect on the latter is minuscule. Over-
all, TANK creates unlikely joint dynamics of the components of real activity in
response to a wage markup shock. As this is not easy to reconcile with the data,
it creates an inconvenient finding for TANK for the pre-crisis sample.41 Hence,
the look at the pre-crisis sample underlines that the difficulty of hand-to-mouth
consumers to improve upon RANK are not limited to the crisis sample.

To check whether the irrelevance of hand-to-mouth consumers for macroeco-
nomic dynamics in our analysis is driven by our choice of the prior for λ, we conduct
additional estimations, in which we assign a uniform prior to this parameter. Ta-
ble 10 in A.4 shows the result of our robustness check. While in our benchmark
estimates we obtain posterior means of roughly 22% for TANK and FTANK, the
estimation with wide priors yield far lower estimates, namely between five and nine
percent for all considered samples. We therefore conclude that the low relevance
of hand-to-mouth consumers in our benchmark analysis is not the result of our
informed prior. Rather it is due to the presence of other frictions in our model
that make it difficult to identify their effects on business cycle dynamics.

39For this sample, the downward trending interest rate drives the persistent upwards deviation
of consumption from its trend.

40As wage markup shocks are most important for wages and inflation in the historical shock
decomposition, the differences in the decomposition between RANK and TANK are negligible.

41In fact, the measures for the estimated MDD displayed in Table 6 show a better empirical
fit for RANK than for TANK in the pre-crisis sample.
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Table 4: Comparison of the MDD (marginal data density)

Estimated marginal data densities

1998 – 2019 1983 – 2008
Mod.HM Laplace Mod.HM Laplace

RANK -388.522 -393.117 -444.460 -448.292
TANK -393.376 -395.718 -451.007 -450.096
FRANK -402.072 -405.040 -448.026 -450.343
FTANK -404.826 -408.701 -447.142 -450.919
FRANK-R -390.133 -394.931 -446.363 -448.189
FTANK-R -391.684 -398.029 -449.958 -448.847

FRANK-S -362.267 -360.621 -393.203 -400.407
FTANK-S -362.103 -366.018 -398.474 -400.559

7.3 The empirical fit of RANK, TANK & Financial friction
models

Lastly, we assess how household heterogeneity à la TANK and financial frictions
affect the models’ empirical fit in the crisis. In Table 4, the first figure for each
model marks the approximation of the estimated marginal data density (MDD)
via the Modified Harmonic Mean, developed by Geweke (1999) whereas the second
uses the Laplace Approximation.42

Centrally, the estimated MDDs confirm that neither financial frictions nor
hand-to-mouth consumers improve upon RANK in the crisis sample, as long as
the same set of observables is considered. This is in line with our analysis above.
The empirical fit of the model in the crisis sample is closely related to the ability
of the most prominent shocks in the sample to efficiently generate the observed
dynamics. The more additional shocks are needed to explain the variations of the
observables, the worse is the empirical fit. As discussed above, of the shocks under
consideration, the risk premium shock is the one that goes a longest way in driving
joint dynamics over the crisis sample.

The empirical fit of TANK is only slightly worse than that of RANK for both
measures of the estimated MDD. Its failure to improve upon RANK is largely tied
to its irrelevance for the transmission of risk premium shocks. The MDD measures

42As the posterior distributions for the FRANK models are in parts bimodal, the Laplace
estimator of the MDD is likely to be biased as it relies on the assumption of a unimodal posterior.
Similarly, as noted in the original paper, the high dimensional parameter space of the models
considered here potentially results in approximation errors when using the approximation via
the Modified Harmonic Mean. Note that for estimations based on nonlinear filters, the estimate
of the likelihood can also be subject to approximation errors due to sampling errors.
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of the financial models show that financial frictions deteriorate the empirical fit of
the model. This is due to the fact that the presence of financial frictions dampens
the drop differential of consumption and investment in response to a risk premium
shock (c.f. Section 7.1.1). This impedes the ability of risk premium shocks to
generate the stark collapse of investment in the Great Recession without triggering
an excessive decline in consumption. As a consequence, financial friction models
more heavily rely on additional shocks. MEI shocks or risk shocks need to account
for the decline in investment, and price markup feature more prominently in the
generation of inflation dynamics.

Notably, FRANK-R and FTANK-R, the models in which MEI shocks are re-
placed by risk shocks fare better in terms of empirical fit than their counterparts
FRANK and FTANK. The reason is that compared to the effects of MEI shocks,
the inflationary pressure induced by risk shocks is more pronounced. The support
of risk shocks dampens the fall of marginal cost in the Great Recession and allows
for a higher estimate of the slope coefficient of the Phillips curve without inducing
strong disinflation. Consequently, the steeper Phillips curve allows a larger frac-
tion of inflation dynamics to be explained endogenously. The reduced need for
the additional price markup shocks improves the empirical fit of FRANK-R which
is only slightly worse than that of RANK. Unfortunately, as discussed in Section
7.1.2, this appealing feature disappears once the set of observables is enlarged by
the credit spread and MEI shocks crowd out risk shocks. Additionally, while im-
proving upon a joint account for investment and inflation, they fail to conciliate
the dynamics of consumption and investment.

The fit of FRANK-S and FTANK-S is not directly comparable to the other
models. Whereas matching the path of the credit spread as an additional observ-
able constitutes a challenge in the estimation, the joint use of MEI shocks and risk
shocks creates an additional degree of freedom to match the data. These shocks
have very similar effects on the model dynamics. Using both in the same analysis,
allows for matching the data with smaller disturbances of two types instead of
larger disturbances of one type, which would yield a lower likelihood.

The results presented in this section demonstrate that the employed extensions
might not add significant value to the standard medium-scale RANK model for
fitting the macroeconomic dynamics in the US around the Great Recession. This
presents a potentially inconvenient finding to the disadvantage of current TANK
or financial friction models. Our results highlight the challenge to find a proper
modeling of these features that enables them to improve upon the standard model.
At the same time, and somewhat expectable, the RANK model itself delivers a
poor story for the course of the macroeconomic dynamics since the financial crisis.
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8 Conclusion

In this paper we estimate a selection of models on a sample that centers around
the Great Recession and includes the period of the binding ZLB thereafter. For
the Bayesian inference we take this occasionally binding constraint serious. Our
approach allows us to analyze US business cycles during that period and decompose
the dynamics into the contribution of its causal drivers. This paper is the first to
estimate models on a US data sample that ends in 2019, including the exit from
the ZLB, and a rigorous model comparison. With our comprehensive assessment of
parameter estimates over various time horizons, we provide for reference estimation
for a set of medium-scale models that can be used to circumvent the technical
complications associated with the ZLB. Additionally, we provide a discussion of
how parameter estimates differ for crisis and pre-crisis samples.

Importantly, we find that although the empirical performance of the RANK
model calls for improvements, neither a TANK extension nor models that include
financial frictions as in Bernanke et al. (1999) meet the challenge of assigning a
common causal driver to the main events in the Great Recession. Namely, these
models fall short of providing the source for the collapse in investment, the decline
in consumption and the only modest dip in inflation observed in the recession.
Particularly in models with financial frictions, consumption and investment dy-
namics are dominated by independent drivers and a joint propagation mechanism
is absent. The absence of a common explanation for the dynamics in the Great
Recession presents a severe drawback for the considered models as a storytelling
device. This is also reflected in the fact that hand-to-mouth agents and financial
frictions somewhat worsen the empirical fit of the standard model.

Whereas recessionary financial shocks can in principle be inflationary, their
implied consumption response is at odds with the data. Hence, they are assigned
a low weight in the estimation of the crisis sample. This prevents them from
contributing to an explanation of the missing disinflation puzzle. Post-crisis dy-
namics are dominated by elevated risk premiums on household borrowing rates,
in line with the importance of increased mortgage rates in the financial crisis. In
contrast, pre-crisis business cycles are to a large degree driven by shocks to the
marginal efficiency of investment. Using pre-crisis estimates to analyze the post-
crisis period yields the misleading conclusion that shocks to the cost of investment
were a main driver for the Great Recession and the US economy’s post-crisis tra-
jectory. This result is a cautionary tale that should discourage from empirically
investigating on the Great Recession with models tuned to match the pre-crisis
experience.

Going forward, it is a fruitful endeavor to use more refined models that zoom
in on the drivers of elevated risk premiums or to consider a more detailed modeling
of labor markets. To keep the scope of the paper manageable, we abstain from
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a discussion of the role of the expanded set of monetary policies for post-crisis
business cycles. Instead, a detailed analysis of the effects of quantitative easing
policies for macroeconomic dynamics in the US in the context of a large-scale
model is provided by Boehl et al. (2020).
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Cúrdia, V. and M. Woodford (2011). The central-bank balance sheet as an instru-
ment of monetary policy. Journal of Monetary Economics 58, 54–79.

De Graeve, F. (2008). The external finance premium and the macroeconomy:
US post-WWII evidence. Journal of Economic Dynamics and Control 32 (11),
3415–3440.

Del Negro, M., G. Eggertsson, A. Ferrero, and N. Kiyotaki (2017, March). The
great escape? a quantitative evaluation of the Fed’s liquidity facilities. American
Economic Review 107 (3), 824–857.

Del Negro, M., M. Giannoni, and C. Paterson (2015). The forward guidance puzzle.
Staff Report 574, Federal Reserve Bank of New York.

40



Del Negro, M., M. P. Giannoni, and F. Schorfheide (2015). Inflation in the Great
Recession and New Keynesian models. American Economic Journal: Macroe-
conomics 7 (1), 168–96.

Edge, R. M., M. T. Kiley, and J.-P. Laforte (2008). Natural rate measures in an
estimated DSGE model of the U.S. economy. Journal of Economic Dynamics
and Control 32 (8), 2512 – 2535.

Eggertsson, G. B. and M. Woodford (2003). The zero bound on interest rates
and optimal monetary policy. Brookings Papers on Economic Activity 2003 (1),
139–211.

Erceg, C. and A. Levin (2006, October). Optimal monetary policy with durable
consumption goods. Journal of Monetary Economics 53 (7), 1341–1359.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-
geostrophic model using monte carlo methods to forecast error statistics. Journal
of Geophysical Research: Oceans 99 (C5), 10143–10162.

Fratto, C. and H. Uhlig (2020, January). Accounting for post-crisis inflation: A
retro analysis. Review of Economic Dynamics 35, 133–153.
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A Appendix

A.1 Details on the solution method

This section presents the solution method. The model can be cast in the form

Etxt+1 = Nxt + hmax {pEtxt+1 +mxt, r̄} , (18)

with xt =

∣∣∣∣ vtwt−1

∣∣∣∣, where vt is the vector of forward looking variables and wt−1 are

the states updated by the time-t shocks. N is the system matrix and h contains the
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time-t coefficients of the constraint. The vectors p and m represent the constraint
equation, which in our case is the equation defining the notational rate. This reads
rt = max{pxt+1 + mxt, r̄}. Villemot et al. (2011) provides the means to cast any
dynamic system in the form Axt+1 + Bxt = 0. Matrix A can be inverted e.g. by
applying the singular value decomposition and substituting out static variables.

Denote the system in which the constraint is slack (the unconstrained system)
as

Etxt+1 = N̂xt, (19)

with
N̂ = (I − h⊗ p)−1 (N + h⊗m) , (20)

and note that it is always possible to find an invertible (I − h⊗ p) by multiplying
m, p and r̄ by an appropiate scalar while at the same time dividing h by the same
scalar.

We will first outline the solution method, taking the durations for which the
constraint holds as given. Then we present a simple iteration scheme to endogenize
the expected durations for discrete expectations. Let us first assume that the
constraint binds in the current period t. System (18) can be rewritten as

Etxt+1 =


N̂xt ∀ pEtxt+1 +mxt − r̄ ≥ 0

Nxt+gr̄ ∀ pEtxt+1 +mxt − r̄ < 0.

(21)

Let k be the expected ZLB spell in period t. Denote the desired rational
expectations solution to (18) given k and the state variables wt as the function S
such that

vt = S(k, wt−1). (22)

We will use S(k) as a shorthand notation where wt−1 are understood. Also, denote
as xt|k the solution conditional on expecting the constraint to hold for k periods.
For the unconstrained system N̂ , S(0, wt−1) = vt can be found using familiar
methods like the QZ-decomposition as suggested by Klein (2000). Denote this
(linear) solution by S(0) = Ω:

vt = Ωwt−1 ∀ pEtxt+1 +mxt > r̄ (23)

For Ψ =
∣∣I −Ω

∣∣ , Equation (23) implies that

Et

{
Ψ

∣∣∣∣vt+k+1

wt+k

∣∣∣∣} = 0 ∀ pEtxt+k+1 +mxt+k ≥ r̄, (24)

i.e. for every future period t + k in which the system is expected to be uncon-
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strained.
Now assume that the constraint binds at time t and will continue to do so until

period t+ k. Iterating System (21) forward yields

Et

{∣∣∣∣ vt+kwt+k−1

∣∣∣∣} = Nkxt + (I −N)−1(I −Nk)hr̄, (25)

where (I −N)−1(I −Nk) =
∑k−1

i=0 N
i is the transformation for a geometric series

of matrices. Finally, we can combine Equations (24) and (25) to find a solution of
type (22) of the endogenous variables vt in terms of the state variables wt−1 given
k:

S(k, wt−1) =

{
vt : ΨNk

∣∣∣∣ vtwt−1

∣∣∣∣ := −Ψ(I −N)−1(I −Nk)hr̄

}
. (26)

Since h is a vector of constants, the whole RHS of (26) is given.
Let us now relax the assumption that the constraint holds immediately in time

t. This case is in particular relevant for models with persistent endogenous state
variables. It is straightforward to take Equation (26) as a starting point, and to
allow for a number of periods l in the unconstrained system N̂ until the system is
at the constraint:

S(k, l, wt−1) =

{
vt : ΨNkN̂ l

∣∣∣∣ vtwt−1

∣∣∣∣ = −Ψ(I −N)−1(I −Nk)hr̄

}
. (27)

Using Equations (25) and (27) we can express the expectations on the state con-
ditional on (l, k) of the economy in period s, Etxs|(l, k), as the function L with

Etxs|(l, k) = Ls(l, k, wt−1) =Nmax{s−l,0}N̂min{l,s}
∣∣∣∣S(l, k, wt−1)

wt−1

∣∣∣∣
+ (I −N)−1(I −Nmax{s−l,0})hr̄.

(28)

Note that L1(0, 0, wt−1) =

∣∣∣∣ΩI
∣∣∣∣wt−1 is the generic solution to the unconstrained

system.

Solving for (l, k)

Let us again first treat the simpler case in which we assume that any shock causes
the constraint to bind immediately in time t (the no-transition case). The following
proposition summarizes the conditions for (xt, wt−1, k) to be a rational expectations
equilibrium:
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Proposition 1 (No-transition equilibrium). Assuming no-transition, a number of
expected periods k at the constraint is a rational expectations equilibrium iff

pEt[xt+1|k∗] +mxt|k∗ ≥ r̄ > pEt[xt+1|k] +mxt|k (29)

for all k∗ > k ≥ 0, hence if in expectations the system is constrained for exactly
k∗ periods.

Let us proceed to the case where agents expect the unconstrained system to
prevail for some transition time before the constraint binds for k periods. Using
specification (28), Definition 2 summarizes the respective equilibrium conditions.

Proposition 2 (transition equilibrium). A pair (l∗, k∗) is a rational expectations
equilibrium iff

pEt[xs|k∗] +mxs|k∗ ≥ r̄ ∀s < l∗ ∧ s ≥ k∗ + l∗ (30)

and
pEt[xs|k∗] +mxs|k∗ < r̄ ∀l∗ ≤ s < k∗ + l∗. (31)

In other words, (l, k) are part of an equilibrium, if in expectations, the con-
straint starts binding exactly in period t + l and ends to bind exactly in period
t+ l + k.

Unfortunately there is no closed form solution for (l, k) given wt−1. A set of
(l, k) that satisfies Theorem 2 must be found using an iterative scheme. As this
constitutes an iterative scheme on an integer domain, a theoretical assessment
is difficult because most theoretical work on similar algorithms deals with real
valued functions. While there are limits to the assessment of whether equations
(30) and (31), given wt−1 have any solution, some insights regarding the existence
and uniqueness of such solutions on such solutions are provided by Holden (2017).

The specification of the equilibrium conditions, although arguably slightly more
formal, is similar to the one in Guerrieri and Iacoviello (2015). The crucial advan-
tage of the formulation here is the closed form expression of Et[xt+s|(l, k)].

An optimal iterative scheme must be hand-tailored to the problem. For the
purpose of the estimation of large-scale DSGE models, in which the constraint
is the zero lower bound on nominal interest rates, we use the following iterative
scheme:

l , k = 0 , 0
f o r l in range ( l max ) :

i f b L( l , 0 , l , v ) − r ba r < 0 :
# break loop s i n c e c o n s t r a i n t binds
break
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i f l i s l max − 1 :
# return that l=k=0 i s an equ i l i b r i um
return 0 , 0

. . .

If this is the case, exit. Otherwise assume k > 0 and iterate over l and k until the
equilibrium conditions in (29), (30) and (31) are satisfied.

. . .
f o r l in range ( l max ) :

f o r k in range (1 , k max ) :
i f l :

i f b L( l , k , 0 , v ) − r ba r < 0 :
cont inue # cont inue s k i p s the inner loop

i f b L( l , k , l −1, v ) − r ba r < 0 :
cont inue

i f b L( l , k , k+l , v ) − r ba r < 0 :
cont inue

i f b L( l , k , l , v ) − r ba r > 0 :
cont inue

i f b L( l , k , k+l −1, v ) − r ba r > 0 :
cont inue

# i f we made i t here , t h i s must be an equ i l i b r i um
return l , k

# i f the loop went though without f i n d i n g an equ i l ib r ium ,
# throw a warning
warn ( ’No equ i l i b r i um e x i s t s ! 1 1 ’ )

This scheme is very efficient for the specific problem because in more than 50%
of the cases, the method will already exit in the first loop because the ZLB is not
binding and not expecting to bind in the near future. If it does not exit, than
for post-2008 data points it is predominantly the case that the ZLB already is
binding. In this case l = 0 and only k is to be determined. As, according to the
Primary Dealer Survey, most market participants expected the ZLB to be binding
for about eight quarters, the procedure will on average need 8 guesses (plus three
for the first loop) until an equilibrium is found. l will normally only be positive in
2008, when the economy is not yet at the ZLB, but the respective shocks, which
trigger a binding ZLB in later periods, have already materialized.

While the above procedure is taylored to work most efficiently in the context
of estimating DSGE models with the ZLB, it is generic and applicable to any sort
of constraint. The resulting transition function is linear for the region where the
ZLB does not bind and (increasingly) nonlinear when it binds. For the model
presented here, the implementation in the pydsge package (Boehl, 2020) will find
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the state-space representation for about 200.000 particles draws per second and
CPU.

A.2 Details on nonlinear filtering

We here briefly summarize the nonlinear filtering methodology, which is an adap-
tation of the Ensemble Kalman Filter (Evensen, 1994, EnKF) for the general type
of nonlinear problems faced in macroeconomics. Denote a (potentially nonlinear)
hidden Markov-Model (HMM) by

xt =g(xt−1, εt) (32)

zt =h(xt) + νt (33)

with εt ∼ N (0, Q) and νt ∼ N (0, R). Let Xt = [x1
t , · · · ,xNt ] ∈ Rn×N be the

ensemble at time t, which consists of N vectors of the state. Further denote by
(x̄t, Pt) the mean and the covariance matrix of the unconditional distribution of
states for period t. Initialize the ensemble by sampling N times from the prior
distribution

X0
N∼ N (x̄0, P0) . (34)

Step 1: Predict

Predict the prior-ensemble Xt|t−1 at time t by applying the transition function to
the posterior ensemble from last period. Use the observation function to obtain a
prior-ensemble of observables:

Xt|t−1 = g(Xt−1|t−1, εt), (35)

Zt|t−1 = h(Xt|t−1) + νt, (36)

where εt and νt are each N realizations drawn from the respective distributions.

Step 2: Update

Denote by X̄t = Xt(IN−11ᵀ/N) the anomalies of the ensemble, i.e. the deviations
from the ensemble mean. Recall that the covariance matrix of the prior distribution

at t is
X̄tX̄

ᵀ
t

N−1
. The Kalman mechanism then yields an update-step of

Xt|t = Xt|t−1 + X̄t|t−1Z̄
ᵀ
t|t−1

(
Z̄t|t−1Z̄

ᵀ
t|t−1

)−1 (
zt1

ᵀ − Zt|t−1

)
. (37)

The mechanism is similar to the unscented Kalman filter (UKF) UKF but with
particles instead of deterministic Sigma points, and statistical linearization instead
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of the unscented transform. The advantage of the EnKF over the UKF is that its
output does not depend on the parametrization of the filter. Conceptionally this
procedure can hence be seen as a transposition of the EnKF.43

The likelihood at each iteration can be then determined by

llt = ϕ

(
zt|z̄t,

ȲtȲ
ᵀ
t

N − 1
+R

)
(38)

A.3 Smoothing and iterative path-adjusting

For economic analysis we are also interested in the series of shocks, {εt}T−1
t=0 that

fully recovers the mode of the smoothened states. The econometric process of using
all available information on all estimates is called smoothing. For this purpose,
we employ the Rauch-Tung-Striebel smoother (Rauch et al., 1965) in its Ensemble
formulation similar to Raanes (2016).

Denote by T the period of the last observation available and update each
ensemble according to the backwards recursion44

Xt|T = Xt|t + X̄t|tX̄
+
t+1|t

[
Xt+1|T −Xt+1|t

]
. (40)

This creates a series
{
Xt|T

}T
t=0

of representatives of the distributions of states
at each point in time, reflecting all the available information. We now want to
ensure that the mode of the distribution fully reflects the nonlinearity of the tran-
sition function while retaining a reasonably good approximation of the full dis-
tribution. We call this process nonlinear path-adjustment. It is important that
the smoothened distributions are targeted instead of, e.g., just the distributions of
observables and shocks. Only when the full smoothened distributions are targeted
it can be maintained that all available information from the observables is taken
into account. This procedure implicitly assumes that the smoothened distribu-
tions approximate the actual transition function sufficiently well and only minor
adjustments remain necessary. Since in general there are (many) more states than
exogenous shocks, the fitting problem is underdefined and matching precision will

43Notationally both are equivalent. The regular EnKF assumes the size of the state spaces to

be larger than N , and accordingly the term
(
Z̄t|t−1Z̄

ᵀ
t|t−1

)
to be rank deficient. The mechanism

then builds on the properties of the pseudoinverse (the latter provides a least squares solution
to a system of linear equations), which is used instead of the regular matrix inverse.

44Although it is formally correct that

X̄t|tX̄
ᵀ
t+1|t

(
X̄t+1|tX̄

ᵀ
t+1|t

)+
= X̄t|tX̄

+
t+1|t, (39)

the implementation using the LHS of this equation is numerically more stable when using stan-
dard implementations of the pseudo-inverse based on the SVD.

50



depend on the size of the relative (co)variance of each variable. Small observation
errors lead to small variances around observable states and tight fitting during
path-adjustment while loosely identified states grant more leeway.

Initiate the algorithm with x̂0 = EX0|T (the mean vector over the ensemble
members), define Pt|T = Cov{Xt|T} and for each period t recursively find

ε̂t = arg max
ε

{
log f

(
g(x̂t−1, ε)|x̄t|T , Pt|T

)}
, (41)

x̂t =g(x̂t−1, ε̂t), (42)

which can be done using standard iterative methods.
The resulting series of x̂t corresponds to the estimated mode given the initial

mean and approximated covariances and is completely recoverable by ε̂t. Naturally,
it represents the nonlinearity of the transition function while taking all available
information into account. Since the deviation between mode x̂t and mean x̄t is in
general marginal, we refer to

{x̂t, Pt}Tt=0 (43)

as the path-adjusted smoothed distributions. 45

45Unfortunately the adjustment step can not be done during the filtering stage already. Itera-
tive adjustment before the prediction step, would bias the transition of the covariance. Likewise,
adjusting after the prediction step will require the repeating the prediction and updating step
leading to a potentially infinite loop. See e.g. Ungarala (2012) for details.
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A.4 Additional estimation results

Sample from 1998 to 2019
Prior Posterior

FTANK
dist. mean sd/df mean sd mode

σc normal 1.500 0.375 0.907 0.088 0.939
σl normal 2.000 0.750 1.636 0.372 1.616
βtpr gamma 0.250 0.100 0.131 0.045 0.157
h beta 0.700 0.100 0.779 0.039 0.793
S′′ normal 4.000 1.500 5.078 0.957 4.326
ιp beta 0.500 0.150 0.211 0.078 0.301
ιw beta 0.500 0.150 0.321 0.113 0.305
α normal 0.300 0.050 0.174 0.011 0.173
ζp beta 0.500 0.100 0.922 0.014 0.924
ζw beta 0.500 0.100 0.751 0.046 0.776
Φp normal 1.250 0.125 1.320 0.070 1.347
ψ beta 0.500 0.150 0.758 0.079 0.845
φπ normal 1.500 0.250 1.108 0.132 0.991
φy normal 0.125 0.050 0.235 0.026 0.208
φdy normal 0.125 0.050 0.161 0.042 0.241
ρ beta 0.750 0.100 0.753 0.031 0.755
ζspb beta 0.050 0.005 0.050 0.004 0.052
λ beta 0.300 0.100 0.223 0.073 0.193
ρr beta 0.500 0.200 0.491 0.071 0.425
ρg beta 0.500 0.200 0.938 0.018 0.945
ρz beta 0.500 0.200 0.970 0.021 0.972
ρu beta 0.500 0.200 0.886 0.025 0.891
ρp beta 0.500 0.200 0.412 0.146 0.567
ρw beta 0.500 0.200 0.515 0.086 0.450
ρi beta 0.500 0.200 0.914 0.025 0.915
µp beta 0.500 0.200 0.357 0.090 0.301
µw beta 0.500 0.200 0.326 0.087 0.264
ρgz normal 0.500 0.250 0.483 0.095 0.487
σg IG 0.100 2.000 0.252 0.025 0.252
σu IG 0.100 2.000 0.465 0.110 0.442
σz IG 0.100 2.000 0.389 0.042 0.408
σr IG 0.100 2.000 0.171 0.034 0.185
σp IG 0.100 2.000 0.414 0.140 0.228
σw IG 0.100 2.000 1.086 0.203 1.225
σi IG 0.100 2.000 0.524 0.060 0.530
γ normal 0.440 0.050 0.392 0.034 0.390

l normal 0.000 2.000 1.364 0.601 1.285
π gamma 0.625 0.100 0.592 0.050 0.613

spread normal 0.500 0.100 0.335 0.062 0.254

Table 5: Estimation results for FTANK for the crisis sample (1998–2019).
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Sample from 1983 to 2008
Prior Posterior

FTANK

dist. mean sd/df mean sd mode

σc normal 1.500 0.375 1.260 0.122 1.255
σl normal 2.000 0.750 2.499 0.510 2.771
βtpr gamma 0.250 0.100 0.147 0.047 0.146
h beta 0.700 0.100 0.659 0.052 0.696
S′′ normal 4.000 1.500 5.989 0.987 5.926
ιp beta 0.500 0.150 0.299 0.103 0.224
ιw beta 0.500 0.150 0.399 0.124 0.488
α normal 0.300 0.050 0.222 0.010 0.224
ζp beta 0.500 0.100 0.846 0.027 0.815
ζw beta 0.500 0.100 0.843 0.038 0.867
Φp normal 1.250 0.125 1.514 0.067 1.523
ψ beta 0.500 0.150 0.545 0.063 0.519
φπ normal 1.500 0.250 1.318 0.213 1.174
φy normal 0.125 0.050 0.213 0.034 0.196
φdy normal 0.125 0.050 0.192 0.039 0.200
ρ beta 0.750 0.100 0.732 0.038 0.717
ζspb beta 0.050 0.005 0.050 0.004 0.050
λ beta 0.300 0.100 0.218 0.059 0.161
ρr beta 0.500 0.200 0.702 0.068 0.742
ρg beta 0.500 0.200 0.941 0.029 0.967
ρz beta 0.500 0.200 0.936 0.019 0.944
ρu beta 0.500 0.200 0.764 0.074 0.776
ρp beta 0.500 0.200 0.749 0.085 0.827
ρw beta 0.500 0.200 0.607 0.106 0.438
ρi beta 0.500 0.200 0.875 0.029 0.885
µp beta 0.500 0.200 0.528 0.151 0.547
µw beta 0.500 0.200 0.323 0.131 0.145
ρgz normal 0.500 0.250 0.405 0.081 0.400
σg IG 0.100 2.000 0.238 0.018 0.224
σu IG 0.100 2.000 0.697 0.252 0.654
σz IG 0.100 2.000 0.314 0.029 0.325
σr IG 0.100 2.000 0.147 0.019 0.134
σp IG 0.100 2.000 0.130 0.048 0.087
σw IG 0.100 2.000 0.512 0.116 0.684
σi IG 0.100 2.000 0.667 0.073 0.648
γ normal 0.440 0.050 0.419 0.027 0.415

l normal 0.000 2.000 1.447 0.578 1.221
π gamma 0.625 0.100 0.600 0.066 0.598

spread normal 0.500 0.100 0.473 0.064 0.490

Table 6: Estimation results for FTANK for the sample before the crisis (1983–2008).
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Prior Posterior
FRANK-R FTANK-R FRANK-S FTANK-S

dist. mean sd/df mean sd mode mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.365 0.116 1.397 1.232 0.107 1.203 1.156 0.117 1.135 0.999 0.103 1.002
σl normal 2.000 0.750 1.478 0.410 1.442 1.604 0.460 1.671 1.421 0.450 1.638 1.228 0.351 1.675
βtpr gamma 0.250 0.100 0.129 0.042 0.119 0.127 0.043 0.086 0.102 0.033 0.092 0.109 0.036 0.131
h beta 0.700 0.100 0.831 0.029 0.827 0.843 0.024 0.872 0.545 0.051 0.535 0.554 0.057 0.583
S′′ normal 4.000 1.500 5.773 0.978 5.367 5.724 0.897 5.279 2.964 0.748 2.155 2.864 0.754 2.489
ιp beta 0.500 0.150 0.228 0.076 0.285 0.216 0.068 0.203 0.280 0.091 0.269 0.248 0.078 0.192
ιw beta 0.500 0.150 0.422 0.125 0.282 0.421 0.125 0.436 0.379 0.114 0.263 0.379 0.118 0.456
α normal 0.300 0.050 0.199 0.013 0.210 0.197 0.013 0.198 0.178 0.012 0.176 0.179 0.011 0.190
ζp beta 0.500 0.100 0.793 0.030 0.753 0.784 0.032 0.761 0.935 0.028 0.936 0.932 0.021 0.939
ζw beta 0.500 0.100 0.694 0.045 0.694 0.705 0.041 0.716 0.760 0.066 0.818 0.767 0.065 0.818
Φp normal 1.250 0.125 1.383 0.095 1.461 1.375 0.092 1.315 1.316 0.060 1.355 1.317 0.061 1.326
ψ beta 0.500 0.150 0.808 0.064 0.818 0.810 0.064 0.850 0.809 0.062 0.843 0.825 0.060 0.824
φπ normal 1.500 0.250 1.382 0.197 1.190 1.391 0.196 1.439 0.979 0.181 0.860 0.982 0.120 0.967
φy normal 0.125 0.050 0.195 0.026 0.196 0.194 0.026 0.214 0.205 0.024 0.203 0.223 0.032 0.197
φdy normal 0.125 0.050 0.174 0.039 0.174 0.177 0.038 0.164 0.179 0.040 0.205 0.173 0.039 0.178
ρ beta 0.750 0.100 0.790 0.036 0.772 0.791 0.035 0.808 0.725 0.033 0.701 0.731 0.033 0.735
ρr beta 0.500 0.200 0.835 0.056 0.849 0.828 0.062 0.858 0.469 0.060 0.476 0.451 0.057 0.465
ρg beta 0.500 0.200 0.888 0.033 0.874 0.890 0.031 0.912 0.966 0.013 0.970 0.966 0.017 0.971
ρz beta 0.500 0.200 0.981 0.013 0.995 0.982 0.011 0.970 0.919 0.024 0.899 0.921 0.023 0.951
ρu beta 0.500 0.200 0.739 0.053 0.756 0.736 0.049 0.734 0.968 0.007 0.959 0.965 0.007 0.967
ρp beta 0.500 0.200 0.597 0.100 0.662 0.649 0.092 0.647 0.542 0.107 0.581 0.562 0.090 0.635
ρw beta 0.500 0.200 0.451 0.089 0.413 0.450 0.085 0.415 0.577 0.103 0.608 0.526 0.102 0.485
ρi beta 0.500 0.200 0.906 0.026 0.918 0.913 0.026 0.913
ρfin beta 0.500 0.200 0.960 0.012 0.963 0.956 0.015 0.965 0.960 0.024 0.948 0.957 0.024 0.968
μp beta 0.500 0.200 0.291 0.141 0.363 0.309 0.130 0.254 0.385 0.119 0.306 0.278 0.109 0.343
μw beta 0.500 0.200 0.249 0.080 0.215 0.247 0.077 0.203 0.366 0.114 0.416 0.313 0.100 0.279
ρgz normal 0.500 0.250 0.619 0.095 0.691 0.618 0.093 0.617 0.291 0.089 0.283 0.294 0.087 0.286
σg IG 0.100 2.000 0.220 0.028 0.195 0.220 0.028 0.214 0.275 0.022 0.260 0.272 0.022 0.257
σu IG 0.100 2.000 1.363 0.390 1.189 1.398 0.357 1.598 0.130 0.012 0.132 0.131 0.011 0.133
σz IG 0.100 2.000 0.410 0.044 0.373 0.413 0.043 0.391 0.415 0.043 0.484 0.411 0.043 0.415
σr IG 0.100 2.000 0.093 0.012 0.086 0.094 0.013 0.086 0.181 0.034 0.166 0.187 0.034 0.169
σp IG 0.100 2.000 0.198 0.072 0.181 0.166 0.047 0.152 0.292 0.083 0.213 0.228 0.053 0.193
σw IG 0.100 2.000 1.325 0.277 1.419 1.315 0.265 1.295 0.938 0.165 0.903 1.040 0.220 1.102
σi IG 0.100 2.000 0.551 0.068 0.571 0.546 0.068 0.561
σfin IG 0.100 2.000 0.444 0.078 0.427 0.461 0.090 0.415 0.096 0.011 0.099 0.098 0.012 0.087
γ normal 0.440 0.050 0.313 0.041 0.284 0.312 0.044 0.358 0.403 0.023 0.394 0.406 0.023 0.412

l normal 0.000 2.000 1.123 0.793 1.295 1.085 0.758 0.661 1.606 0.567 1.309 1.390 0.648 1.475
π gamma 0.625 0.100 0.561 0.065 0.558 0.563 0.069 0.579 0.692 0.058 0.634 0.678 0.051 0.665

spread normal 0.500 0.100 0.352 0.075 0.394 0.365 0.073 0.413 0.259 0.062 0.236 0.263 0.061 0.316
ζspb beta 0.050 0.005 0.051 0.004 0.053 0.051 0.004 0.052 0.051 0.004 0.051 0.051 0.004 0.050
λ beta 0.300 0.100 0.196 0.057 0.166 0.139 0.043 0.105

MDD -390.133 / -394.931 -391.684 / -398.029 -362.267 / -360.621 -362.103 / -366.018

Table 7: Comparison of estimation results across models for the crisis sample: Models with financial shock
instead of MEI shock (FRANK-R and FTANK-R) and estimations including the GZ spread (FRANK-S and
FTANK-S).
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Prior Posterior
FRANK-R FTANK-R FRANK-S FTANK-S

dist. mean sd/df mean sd mode mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.572 0.175 1.652 1.485 0.164 1.353 1.537 0.147 1.504 1.448 0.139 1.459
σl normal 2.000 0.750 1.773 0.560 1.819 1.456 0.589 1.751 2.628 0.488 2.669 2.566 0.536 1.992
βtpr gamma 0.250 0.100 0.158 0.052 0.131 0.166 0.055 0.121 0.133 0.044 0.126 0.133 0.043 0.135
h beta 0.700 0.100 0.684 0.044 0.701 0.699 0.045 0.703 0.451 0.045 0.484 0.418 0.059 0.440
S′′ normal 4.000 1.500 4.215 0.969 4.164 4.379 0.930 4.645 2.685 0.641 2.870 2.558 0.662 2.279

ι

p beta 0.500 0.150 0.331 0.118 0.417 0.342 0.125 0.259 0.322 0.096 0.394 0.330 0.101 0.299

ι

w beta 0.500 0.150 0.438 0.125 0.459 0.439 0.123 0.537 0.396 0.120 0.303 0.418 0.126 0.473
α normal 0.300 0.050 0.241 0.013 0.243 0.239 0.013 0.225 0.227 0.011 0.225 0.223 0.010 0.231

ζ

p beta 0.500 0.100 0.840 0.034 0.818 0.842 0.050 0.843 0.886 0.023 0.887 0.878 0.024 0.876

ζ

w beta 0.500 0.100 0.759 0.052 0.765 0.760 0.072 0.725 0.829 0.055 0.871 0.834 0.055 0.862
Φp normal 1.250 0.125 1.546 0.067 1.570 1.564 0.073 1.563 1.523 0.070 1.531 1.524 0.063 1.538
ψ beta 0.500 0.150 0.665 0.087 0.607 0.655 0.092 0.679 0.484 0.109 0.438 0.435 0.108 0.490
φπ normal 1.500 0.250 1.239 0.249 1.253 1.278 0.276 1.272 1.094 0.209 1.128 1.315 0.249 1.101
φy normal 0.125 0.050 0.218 0.036 0.201 0.216 0.047 0.232 0.170 0.035 0.137 0.163 0.033 0.173
φdy normal 0.125 0.050 0.200 0.039 0.201 0.195 0.042 0.166 0.226 0.039 0.209 0.234 0.040 0.242

ρ

beta 0.750 0.100 0.713 0.041 0.707 0.717 0.042 0.712 0.691 0.046 0.687 0.717 0.040 0.673

ρ

r beta 0.500 0.200 0.807 0.068 0.831 0.810 0.079 0.833 0.633 0.086 0.627 0.585 0.082 0.642

ρ

g beta 0.500 0.200 0.969 0.017 0.975 0.969 0.030 0.980 0.980 0.010 0.978 0.979 0.010 0.973

ρ

z beta 0.500 0.200 0.968 0.014 0.979 0.963 0.018 0.961 0.932 0.023 0.921 0.928 0.019 0.936

ρ

u beta 0.500 0.200 0.770 0.063 0.726 0.755 0.066 0.812 0.975 0.007 0.979 0.974 0.007 0.973

ρ

p beta 0.500 0.200 0.708 0.129 0.830 0.700 0.143 0.843 0.770 0.096 0.838 0.760 0.100 0.807

ρ

w beta 0.500 0.200 0.701 0.103 0.578 0.715 0.101 0.780 0.701 0.104 0.757 0.681 0.113 0.539

ρ

i beta 0.500 0.200 0.776 0.048 0.734 0.782 0.049 0.759

ρ

fin beta 0.500 0.200 0.837 0.040 0.871 0.860 0.041 0.823 0.982 0.007 0.981 0.985 0.008 0.979
μp beta 0.500 0.200 0.556 0.158 0.629 0.589 0.138 0.633 0.698 0.108 0.777 0.676 0.105 0.739
μw beta 0.500 0.200 0.453 0.161 0.233 0.419 0.140 0.492 0.433 0.149 0.513 0.400 0.144 0.216

ρ

gz normal 0.500 0.250 0.373 0.081 0.422 0.391 0.085 0.362 0.361 0.083 0.401 0.383 0.082 0.397
σg IG 0.100 2.000 0.237 0.017 0.227 0.236 0.018 0.226 0.241 0.016 0.237 0.243 0.017 0.238
σu IG 0.100 2.000 0.742 0.233 0.913 0.824 0.266 0.612 0.100 0.009 0.092 0.103 0.009 0.104
σz IG 0.100 2.000 0.300 0.027 0.299 0.298 0.028 0.314 0.314 0.030 0.317 0.315 0.030 0.309
σr IG 0.100 2.000 0.126 0.015 0.126 0.126 0.021 0.107 0.180 0.034 0.176 0.193 0.034 0.197
σp IG 0.100 2.000 0.160 0.066 0.095 0.178 0.071 0.093 0.164 0.037 0.137 0.162 0.044 0.161
σw IG 0.100 2.000 0.455 0.103 0.511 0.416 0.078 0.360 0.423 0.081 0.368 0.427 0.114 0.522
σi IG 0.100 2.000 0.745 0.101 0.800 0.756 0.103 0.786
σfin IG 0.100 2.000 1.053 0.276 0.828 0.962 0.256 1.293 0.080 0.007 0.081 0.078 0.008 0.083
γ normal 0.440 0.050 0.468 0.027 0.438 0.485 0.024 0.508 0.489 0.019 0.484 0.490 0.019 0.500

l

normal 0.000 2.000 2.599 0.762 2.319 2.464 0.828 2.279 2.779 0.513 2.328 2.693 0.568 2.713
π gamma 0.625 0.100 0.638 0.068 0.632 0.648 0.071 0.571 0.727 0.085 0.678 0.752 0.094 0.710

spread normal 0.500 0.100 0.475 0.073 0.543 0.468 0.072 0.500 0.330 0.059 0.338 0.341 0.062 0.372

ζ

spb beta 0.050 0.005 0.050 0.004 0.052 0.049 0.004 0.047 0.046 0.004 0.047 0.046 0.004 0.046
λ beta 0.300 0.100 0.236 0.067 0.307 0.205 0.065 0.195

MDD -446.363 / -448.189 -449.958 / -448.847 -393.203 / -400.407 -398.474 / -400.559

Table 8: Comparison of estimation results across models for the pre-crisis sample from 1983-2008. Models with
financial shock instead of MEI shock (FRANK-R and FTANK-R) and estimations including the GZ spread
(FRANK-S and FTANK-S).
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Prior Posterior
RANK TANK FRANK FTANK

dist. mean sd/df mean sd mode mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.339 0.138 1.328 1.237 0.128 1.244 1.116 0.128 0.995 0.983 0.095 0.951
σl normal 2.000 0.750 2.999 0.462 3.201 2.873 0.478 2.924 2.803 0.469 2.356 2.601 0.470 2.701
βtpr gamma 0.250 0.100 0.145 0.049 0.123 0.144 0.049 0.152 0.156 0.049 0.174 0.178 0.056 0.161
h beta 0.700 0.100 0.676 0.052 0.665 0.692 0.047 0.673 0.713 0.045 0.717 0.733 0.045 0.646
S′′ normal 4.000 1.500 5.047 0.960 4.965 5.181 1.014 4.503 5.923 0.962 5.644 6.104 1.089 5.145
ιp beta 0.500 0.150 0.230 0.079 0.246 0.235 0.080 0.144 0.221 0.071 0.168 0.237 0.078 0.257
ιw beta 0.500 0.150 0.380 0.110 0.377 0.391 0.116 0.497 0.357 0.117 0.288 0.369 0.121 0.267
α normal 0.300 0.050 0.185 0.010 0.179 0.186 0.009 0.188 0.202 0.010 0.194 0.202 0.009 0.209
ζp beta 0.500 0.100 0.914 0.015 0.922 0.915 0.013 0.925 0.917 0.015 0.906 0.918 0.015 0.922
ζw beta 0.500 0.100 0.827 0.030 0.839 0.827 0.031 0.838 0.873 0.030 0.900 0.877 0.028 0.889
Φp normal 1.250 0.125 1.335 0.057 1.358 1.349 0.059 1.300 1.308 0.058 1.305 1.328 0.056 1.357
ψ beta 0.500 0.150 0.739 0.073 0.734 0.746 0.075 0.756 0.623 0.064 0.642 0.638 0.061 0.641
φπ normal 1.500 0.250 0.911 0.189 0.850 0.946 0.157 0.849 1.114 0.187 1.080 1.095 0.165 0.997
φy normal 0.125 0.050 0.287 0.027 0.279 0.286 0.027 0.293 0.245 0.030 0.250 0.239 0.029 0.247
φdy normal 0.125 0.050 0.191 0.040 0.243 0.190 0.039 0.172 0.201 0.042 0.207 0.179 0.042 0.188
ρ beta 0.750 0.100 0.654 0.050 0.652 0.661 0.041 0.641 0.727 0.035 0.726 0.718 0.037 0.685
ρr beta 0.500 0.200 0.882 0.053 0.899 0.882 0.031 0.896 0.662 0.072 0.658 0.676 0.063 0.644
ρg beta 0.500 0.200 0.985 0.029 0.987 0.987 0.023 0.990 0.929 0.045 0.915 0.911 0.045 0.908
ρz beta 0.500 0.200 0.984 0.008 0.984 0.983 0.008 0.984 0.988 0.011 0.994 0.985 0.016 0.995
ρu beta 0.500 0.200 0.880 0.035 0.892 0.872 0.035 0.884 0.873 0.031 0.881 0.870 0.029 0.897
ρp beta 0.500 0.200 0.579 0.098 0.537 0.569 0.111 0.701 0.664 0.096 0.721 0.691 0.078 0.744
ρw beta 0.500 0.200 0.718 0.096 0.680 0.725 0.084 0.671 0.640 0.092 0.433 0.596 0.090 0.572
ρi beta 0.500 0.200 0.813 0.053 0.824 0.836 0.048 0.854 0.909 0.017 0.923 0.916 0.016 0.923
μp beta 0.500 0.200 0.523 0.084 0.480 0.508 0.088 0.640 0.450 0.161 0.420 0.452 0.155 0.498
μw beta 0.500 0.200 0.501 0.133 0.436 0.505 0.120 0.437 0.414 0.113 0.204 0.357 0.108 0.334
ρgz normal 0.500 0.250 0.316 0.081 0.362 0.321 0.082 0.283 0.391 0.117 0.431 0.429 0.112 0.473
σg IG 0.100 2.000 0.258 0.016 0.249 0.259 0.016 0.253 0.266 0.017 0.254 0.262 0.019 0.232
σu IG 0.100 2.000 0.461 0.161 0.374 0.488 0.139 0.420 0.418 0.127 0.373 0.438 0.119 0.267
σz IG 0.100 2.000 0.333 0.028 0.356 0.329 0.028 0.346 0.324 0.027 0.319 0.325 0.030 0.298
σr IG 0.100 2.000 0.104 0.014 0.097 0.104 0.009 0.098 0.140 0.022 0.136 0.136 0.017 0.146
σp IG 0.100 2.000 0.287 0.052 0.305 0.290 0.067 0.236 0.200 0.066 0.150 0.177 0.050 0.153
σw IG 0.100 2.000 0.564 0.099 0.595 0.553 0.085 0.637 0.653 0.110 0.991 0.698 0.119 0.707
σi IG 0.100 2.000 0.566 0.076 0.539 0.536 0.067 0.550 0.612 0.062 0.609 0.611 0.071 0.638
γ normal 0.440 0.050 0.417 0.037 0.441 0.424 0.031 0.431 0.337 0.041 0.296 0.329 0.034 0.301

l normal 0.000 2.000 2.433 0.532 2.308 2.509 0.580 2.327 0.656 0.805 0.321 0.295 0.837 0.677
π gamma 0.625 0.100 0.703 0.057 0.693 0.704 0.057 0.684 0.582 0.050 0.566 0.580 0.049 0.581

spread normal 0.500 0.100 0.451 0.059 0.444 0.447 0.061 0.487
ζspb beta 0.050 0.005 0.051 0.004 0.051 0.050 0.004 0.046
λ beta 0.300 0.100 0.142 0.041 0.107 0.200 0.063 0.204

MDD -629.690 / -634.650 -634.127 / -639.451 -640.957 / -638.910 -642.827 / -642.182

Table 9: Comparison of estimation results across models for the full sample including the crisis (1983–2019).
MDD (marginal data density) given as Modified Harmonic Mean and Laplace Approximations.
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Prior Posterior
1998–2020 1983–2008 1983–2020

dist. mean sd/df mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.013 0.105 0.969 1.445 0.142 1.430 1.326 0.140 1.274
σl normal 2.000 0.750 1.718 0.412 2.119 2.243 0.545 2.369 2.923 0.442 2.639
βtpr gamma 0.250 0.100 0.142 0.051 0.106 0.145 0.046 0.149 0.146 0.047 0.083
h beta 0.700 0.100 0.825 0.027 0.828 0.698 0.047 0.737 0.665 0.046 0.695
S′′ normal 4.000 1.500 5.716 0.915 5.428 5.528 1.022 5.768 4.937 0.931 5.617
ιp beta 0.500 0.150 0.195 0.069 0.173 0.295 0.097 0.221 0.230 0.079 0.221
ιw beta 0.500 0.150 0.386 0.118 0.388 0.413 0.121 0.422 0.387 0.122 0.334
α normal 0.300 0.050 0.175 0.011 0.157 0.214 0.010 0.212 0.186 0.009 0.176
ζp beta 0.500 0.100 0.822 0.038 0.878 0.842 0.034 0.835 0.916 0.012 0.916
ζw beta 0.500 0.100 0.692 0.042 0.752 0.783 0.052 0.769 0.828 0.034 0.785
Φp normal 1.250 0.125 1.321 0.092 1.203 1.539 0.066 1.611 1.337 0.057 1.334
ψ beta 0.500 0.150 0.775 0.078 0.754 0.620 0.087 0.578 0.742 0.072 0.725
φπ normal 1.500 0.250 1.400 0.185 1.223 1.317 0.245 1.533 0.880 0.127 0.867
φy normal 0.125 0.050 0.216 0.029 0.206 0.216 0.044 0.190 0.288 0.026 0.266
φdy normal 0.125 0.050 0.172 0.041 0.184 0.206 0.039 0.234 0.191 0.037 0.149
ρ beta 0.750 0.100 0.819 0.035 0.808 0.711 0.044 0.743 0.644 0.038 0.643
ρr beta 0.500 0.200 0.750 0.080 0.760 0.814 0.061 0.789 0.894 0.022 0.884
ρg beta 0.500 0.200 0.904 0.029 0.934 0.971 0.015 0.975 0.990 0.005 0.992
ρz beta 0.500 0.200 0.989 0.011 0.983 0.952 0.017 0.950 0.984 0.007 0.982
ρu beta 0.500 0.200 0.844 0.030 0.871 0.715 0.090 0.684 0.887 0.023 0.859
ρp beta 0.500 0.200 0.536 0.130 0.587 0.766 0.077 0.794 0.576 0.094 0.642
ρw beta 0.500 0.200 0.457 0.088 0.310 0.691 0.098 0.709 0.718 0.095 0.822
ρi beta 0.500 0.200 0.757 0.101 0.680 0.779 0.058 0.744 0.825 0.047 0.819
μp beta 0.500 0.200 0.507 0.117 0.548 0.580 0.140 0.504 0.521 0.083 0.575
μw beta 0.500 0.200 0.258 0.078 0.155 0.405 0.135 0.408 0.499 0.132 0.650
ρgz normal 0.500 0.250 0.627 0.096 0.565 0.354 0.081 0.299 0.322 0.072 0.304
σg IG 0.100 2.000 0.220 0.027 0.197 0.238 0.017 0.242 0.257 0.015 0.253
σu IG 0.100 2.000 0.775 0.182 0.632 1.060 0.419 1.293 0.423 0.078 0.495
σz IG 0.100 2.000 0.398 0.043 0.393 0.307 0.028 0.283 0.329 0.027 0.346
σr IG 0.100 2.000 0.108 0.015 0.101 0.130 0.013 0.133 0.102 0.009 0.102
σp IG 0.100 2.000 0.316 0.086 0.284 0.132 0.046 0.095 0.288 0.051 0.258
σw IG 0.100 2.000 1.279 0.267 1.869 0.438 0.075 0.420 0.560 0.094 0.478
σi IG 0.100 2.000 0.562 0.153 0.713 0.634 0.107 0.647 0.552 0.067 0.520
γ normal 0.440 0.050 0.341 0.055 0.418 0.465 0.024 0.481 0.427 0.025 0.431

l normal 0.000 2.000 1.605 0.774 1.213 2.293 0.640 2.714 2.401 0.569 3.011
π gamma 0.625 0.100 0.629 0.058 0.678 0.701 0.066 0.714 0.701 0.053 0.721
λ uniform 0.000 0.700 0.081 0.062 0.010 0.090 0.066 0.103 0.046 0.036 0.037

MDD -394.627 / -400.194 -446.100 / -450.807 -634.260 / -640.259

Table 10: Comparison of estimation results for TANK models with a flat prior on the share λ of H2M agents
for the different data samples.
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A.5 Data

Our measurement equations contain eight variables:

• GDP: ln(GDP/GDPDEF/CNP16OV ma)*100

• CONS: ln((PCEC-PCEDG)/GDPDEF/CNP16OV ma)*100

• INV: ln((GPDI+PCEDG)/GDPDEF/CNP16OV ma)*100

• LAB: demeaned(ln((13*AWHNONAG*CE16OV)/CNP16OV ma)*100)

• INFL: ln(GDPDEF)

• WAGE: ln(COMPNFB/GDPDEF)*100

• FFR: FEDFUNDS/4

• GZ: (GZspread)/4

For GDP, CONS, INV, INFL and WAGE we use the log changes in our mea-
surement equations.

Data sources:

• GDP: GDP - Gross Domestic Product, Billions of Dollars, Quarterly, Sea-
sonally Adjusted Annual Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator, Index 2012=100,
Quarterly, Seasonally Adjusted, FRED

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly,
Seasonally Adjusted Annual Rate, FRED

• PCEC: Personal Consumption Expenditures: Durable Goods, Billions of
Dollars, Quarterly, Seasonally Adjusted Annual Rate, FRED

• GPDI: Gross Private Domestic Investment, Billions of Dollars, Quarterly,
Seasonally Adjusted Annual Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory
Employees: Total private, Hours, Weekly, Seasonally Adjusted, FRED

• CE16OV: Civilian Employment Level, Thousands of Persons, Seasonally Ad-
justed, FRED

• CNP16OV ma46: trailing MA(5) of the Civilian Noninstitutional Population,
Thousands of Persons, Quarterly, Not Seasonally Adjusted, FRED

• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100,
Quarterly, Seasonally Adjusted, FRED

• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED

• GZspread: Credit spread constructed by Gilchrist and Zakraǰsek (2012),
Percent, Board of Governors of the Federal Reserve System

46As in Boehl et al. (2020), we use a trailing MA(5) of the civilian non-institutional population
index to normalize GDP, its components and labor hours, instead of the index itself at it is often
done. This helps us to purge our observables of jumps in the index itself that reflect artifacts in
its construction.
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A.6 Model Descriptions

We build on the canonical framework developed by and , and allow for two inde-
pendent extensions: hand-to-mouth consumers that are unable to save and only
consume their current-period wage income and financial frictions in the vein of .
We dub the model with only a representative agent the RANK model to distin-
guish it from our two-agent new Keynesian (TANK) model. The TANK model
therefore features Ricardian and hand-to-mouth households. The model vintages
including financial frictions will be referred to as financial representative agent NK
model – FRANK – and FTANK respectively for the two-agent version of FRANK.

In all models, labor is differentiated by unions with monopoly power that face
nominal rigidities for their wage setting process. Intermediate good producers
employ labor and capital services and sell their goods to final goods firms. Final
good firms are monopolistically competitive and face nominal rigidities as in . The
model further allows for exogenous government spending and features a monetary
authority that sets the short-term nominal interest rate according to a monetary
policy rule. In TANK and FTANK, economy-wide labor supply and consumption
are aggregates of the respective contributions by Ricardian and hand-to-mouth
households. In FRANK and FTANK, we assume that frictionless financial inter-
mediates collect funds from households. These funds are lent with a spread, which
reflects default risk, to entrepreneurs, who use it together with their own equity
to purchase physical capital. Physical capital in turn is rented out to intermediate
good producers.

A.6.1 The linearized RANK model

This subsection briefly presents the linearized equilibrium conditions. A detailed
derivation of the linearized equations is discussed e.g. in the appendix to Smets
and Wouters (2007). All variables in this section are expressed as a log-deviation
from their respective steady state values. The consumption Euler equation of
Ricardian households is given by

cRt =
h/γ

(1 + h/γ)
cRt−1 +

1

1 + h/γ
Et[c

R
t+1] +

(σc − 1)(W hL/C)

σc(1 + h/γ)
(lRt − Et[lRt+1])

− (1− h/γ)

(1 + h/γ)σc
(rt − Et[πt+1] + ut),

(44)

where cRt is consumption by Ricardian agents, and lRt is their supply of labor.
Parameters h, σc and σl are, respectively, the degree of external habit formation in
consumption, the coefficient of relative risk aversion, and the inverse of the Frisch
elasticity. γ denotes the steady-state growth rate of the economy. rt is the nominal
interest rate, πt is the inflation rate, and ut is an exogenous risk premium shock,
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which drives a wedge between the lending/savings rate and the riskless real rate.
Equation (45) is the linearized relationship between investment and the relative

price of capital,

it =
1

1 + β
[it−1] +

β

1 + β
Et[it+1] +

1

(1 + β)γ2S ′′
qt + vi,t. (45)

Here, it denotes investment in physical capital and qt is the price of capital. It
holds that β = βγ(1−σc) where β is the households’ discount factor. Investment is
subject to adjustment costs, which are governed by S ′′, the steady-state value of
the second derivative of the investment adjustment cost function, and an exogenous
process, vi,t. While Smets and Wouters (2007) interpret ei,t as an investment spe-
cific technology disturbance, Justiniano, Primiceri, and Tambalotti (2011) stress
that this shock can as well be viewed as a reduced-form way of capturing financial
frictions, as it drives a wedge between aggregate savings and aggregate investment.
We henceforth refer to this disturbance as a shock on the marginal efficiency of
investment (MEI).

The accumulation equation of physical capital is given by

kt = (1− δ)/γkt−1 + (1− (1− δ)/γ)it + (1− (1− δ)/γ)(1 + β)γ2S ′′vi,t, (46)

where k denotes physical capital, and parameter δ is the depreciation rate. The
following Equation (47) is the no-arbitrage condition between the rental rate of
capital, rkt , and the riskless real rate:

rt − Et[πt+1] + ut =
rk

rk + (1− δ)Et[r
k
t+1] +

(1− δ)
rk + (1− δ)Et[qt+1]− qt. (47)

As the use of physical capital in production is subject to utilization costs, which
in turn can be expressed as a function of the rental rate on capital, the relation
between the effectively used amount of capital kt and the physical capital stock is

kt =
1− ψ
ψ

rkt + kt−1, (48)

where ψ ∈ (0, 1) is the parameter governing the costs of capital utilization. Equa-
tion (49) is the aggregate production function

yt = Φ(αkt + (1− α)lt + zt). (49)

Intermediate good firms employ labor and capital services. Let zt be the exogenous
process of total factor productivity. Parameter α is the elasticity of output with
respect to capital and Φ enters the production function due to the assumption of
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a fixed cost in production. Real marginal costs for producing firms, mct, can be
written as

mct = wt − zt + α(lt − kt). (50)

wt denotes the real wage, which are set by labor unions. Furthermore, cost mini-
mization for intermediate good producers results in condition (51):

kt = wt − rkt + lt. (51)

The aggregate resource constraint (52) contains an exogenous demand shifter, gt,
which comprises exogenous variations in government spending and net exports, as
well as the resource costs of capital utilization:

yt =
G

Y
gt +

C

Y
ct +

I

Y
it +

RkK

Y

1− ψ
ψ

rkt . (52)

Final good producers are assumed to have monopoly power and face nominal
rigidities as in Calvo (1983) when setting their prices. This gives rise to a New
Keynesian Phillips Curve (NKPC) of the form

πt =
β

1 + ıpβ
Etπt+1 +

ıp

1 + ıpβ
πt−1 +

(1− ζpβ)(1− ζp)
(1 + βıp)ζp((Φ− 1)εp + 1)

mct + vp,t. (53)

Here, ζp is the probability that a firm cannot update its price in any given period.
In addition to Calvo pricing, we assume partial price indexation, governed by the
parameter ıp. The Phillips Curve is hence both, forward and backward looking.
εp denotes the curvature of the Kimball (1995) aggregator for final goods. Due
to the Kimball aggregator, the sensitivity of inflation to fluctuations in marginal
cost is affected by the market power of firms, represented by the steady state price
markup, Φ − 1.47 Furthermore, the curvature of the Kimball aggregator affects
the adjustment of prices to marginal cost as the higher εp, the higher is the degree
of strategic complementarity in price setting, dampening the price adjustment to
shocks. The last term in the NKPC, vp,t, represents exogenous fluctuations in the
price markup.

While final good producers set prices on the good market, wages are set by
labor unions. Unions bundle labor services from households and offer them to
firms with a markup over the frictionless wage, wht , which reads

wht =
1

(1− h)
(ct − hct−1) + σllt. (54)

47Note that in equilibrium, the steady state price markup is tied to the fixed cost parameter
by a zero profit condition.
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As with price setting, we assume that the nominal rigidities in the wage setting
process are of the Calvo type, and include partial wage indexation. The wage
Phillips curve thus is

wt =
1

1 + βγ
(wt−1 + ıwπt−1) +

βγ

1 + βγ
Et[wt+1 + πt+1]− 1 + ıwβγ

1 + βγ
πt

+
(1− ζwβγ)(1− ζw)

(1 + βγ)ζw((λw − 1)εw + 1)
(wht − wt) + vw,t.

(55)

The term wht − wt is the inverse of the wage markup. Analogous to equation
(53), the terms λw and εw are the steady state wage markup and the curvature of
the Kimball aggregator for labor services, respectively. The term vw,t represents
exogenous variations in the wage markup.

We take into account the fact that the central bank is constrained in its interest
rate policy by a zero lower bound (ZLB) on the nominal interest rate. Therefore,
in the linear model, it is that

rt = max{r̄, rnt }, (56)

with r̄ being the lower bound value. Whenever the policy rate is away from the
constraint, it corresponds to the notational rate, rnt , which follows the feedback
rule

rnt = ρrnt−1 + (1− ρ) (φππt + φyỹt + φdy∆ỹt) + vr,t. (57)

Here, ỹt is the output gap and ∆ỹt = ỹt − ỹt−1 its growth rate. Parameter ρ
expresses an interest rate smoothing motive by the central bank. φπ, φy and φdy
are feedback coefficients. When the economy is away from the ZLB, the stochastic
process vr,t represents a regular interest rate shock. When the nominal interest
rate is zero, however, vr,t may not directly affect the level of the nominal interest
rate. However, through the persistence of the stochastic process that drives vr,t,
it affects the expected path of the notational rate and can therefore alter the
expected duration of the lower bound spell. It can hence be viewed as a forward
guidance shock whenever the economy is at the ZLB.
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Finally, the stochastic drivers in our model are the following seven processes:

ut =ρuut−1 + εut , (58)

zt =ρzzt−1 + εzt , (59)

gt =ρggt−1 + εgt + ρgzε
z
t , (60)

vr,t =ρrvr,t−1 + εrt , (61)

vi,t =ρivi,t−1 + εit, (62)

vp,t =ρpvp,t−1 + εpt − µpεpt−1, (63)

vw,t =ρwvw,t−1 + εwt − µwεwt−1, (64)

where εkt
iid∼ N(0, σ2

k) for all k = {r, i, p, w}, and likewise for {ut, zt, gt}.

A.6.2 A TANK extension

Our first extension is the addition of hand-to-mouth households to the RANK
model, which thereby becomes a two-agent New Keynesian (TANK) model. We
assume that, for any given reason, a share λ of households does not have any
savings technology at its disposal and therefore consumes whatever it earns from
its labor services provided.48 The linearized budget constraint of hand-to-mouth
consumers simply reads

cHt = wt + lHt , (65)

with cHt and lHt denoting hand-to-mouth agents’ consumption and labor supply.
While Ricardian and hand-to-mouth consumers differ in their ability to save, we
assume that they share the same preferences. Thus, the linearized labor supply
equation that would prevail in frictionless labor markets has the same structure
for hand-to-mouth consumers as it has for optimizing consumers. It is therefore
given by

wht =
1

(1− h)
(cHt − hcHt−1) + σll

H
t . (66)

We assume that hand-to-mouth agents are represented by the same labor unions
as Ricardian agents. As such both types of agents earn the same wage. Aggregate
consumption and labor hours can be obtained in the linearized form as

ct = λcHt + (1− λ)cRt , (67)

lt = λlHt + (1− λ)lRt . (68)

48In contrast to HANK, the TANK model does not capture uncertainty effects or time-
variations of the share of constrained agents on consumption.
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Note that for λ set to zero, the TANK model nests the RANK model without
hand-to-mouth consumers as a special case.

A.6.3 Financial Frictions

The second extension that we consider is the inclusion of frictions in financial
markets. Here, we adopt the modeling choices by Del Negro et al. (2015), who
build on the work of Bernanke et al. (1999), and Christiano et al. (2014).

In this model, entrepreneurs obtain loans from frictionless financial interme-
diates, which in turn receive their funds from household at the riskless interest
rate. In addition to the loans, entrepreneurs use their own net worth to finance
the purchase of physical capital that they rent out to intermediate good produc-
ers. Entrepreneurs are subject to idiosyncratic shocks to their success in managing
capital. As a consequence, their revenue might fall short of the amount needed to
repay the loan, in which case they will default on their loan. In anticipation of the
risk of entrepreneurs’ default, financial intermediates pool their loans and charge
a spread on the riskless rate to cover the expected losses arising from defaulting
entrepreneurs. Therefore, in the full model, condition (47) in the RANK model is
replaced by the two conditions

Et[r̃
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t, (69)

r̃kt − πt =
rk

rk + (1− δ)r
k
t +

(1− δ)
rk + (1− δ)qt+1 − qt−1. (70)

r̃kt is the nominal return on capital for entrepreneurs, nt denotes entrepreneurs’
aggregate net worth, and σ̃ω,t allows for exogenous variations in the entrepreneurs’
riskiness. The first condition defines the spread as a function of the entrepreneurs
leverage and their riskiness, which is determined by the dispersion of the idiosyn-
cratic shocks to entrepreneurs. Note that if the elasticity of the loan rate to the
entrepreneurs’ leverage, ζsp,b, is set to zero, we are back to the case without finan-
cial frictions. Condition (70) defines the return on capital for entrepreneurs.

The evolution of aggregate entrepreneurial net worth is described by

nt = ζn,r̃k(r̃
k
t −πt)−ζn,r(rt−1−πt)+ζn,qk(qt−1 +kt−1)+ζn,nnt−1−

ζn,σω
ζsp,σω

σ̃ω,t−1. (71)

Equation (71) links the accumulated stock of entrepreneurial net worth to the real
return of renting out capital to firms, the riskless real rate, its capital holdings,
its past net worth and variations in riskiness. The coefficients ζn,r̃k , ζn,r, ζn,qk,
ζn,σω , and ζsp,σω are derived as in Del Negro et al. (2015). They depend on the
steady state calibration of the default rate of entrepreneurs, the distribution of
entrepreneurial risk, and their survival probability.
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RANK: One quarter

y c i π w r l

εg 0.117 0.006 0.000 0.000 0.000 0.001 0.138
εz 0.225 0.041 0.006 0.018 0.005 0.016 0.137
εu 0.410 0.775 0.290 0.044 0.035 0.137 0.448
εr 0.111 0.171 0.103 0.033 0.013 0.645 0.122
εi 0.130 0.002 0.598 0.001 0.001 0.002 0.152
εp 0.002 0.004 0.002 0.877 0.039 0.191 0.002
εw 0.005 0.001 0.000 0.027 0.906 0.009 0.000

Table 11

Lastly, the evolution of exogenous variations in entrepreneurial risk, the risk
shock in terms of Christiano et al. (2014), follows the process

σ̃ω,t = ρσσ̃ω,t−1 + εσ,t, (72)

with εσ,t
iid∼ N(0, σ2

σ). In the estimation of the standard financial friction versions of
the model, FRANK and FTANK, we abstain from using the risk shock, and only
focus on the role of the financial accelerator for the transmission of other shocks.
The versions FRANK-R and FTANK-R will allow for the risk shock instead of
the MEI shock. In the estimation of the models on eight observables including a
credit spread (FRANK-S and FTANK-S) will allow for both, the risk shock and
the shock on the marginal effectively of investment.

A.7 Generalized Forecasting Error Variance Decomposi-
tions

Tables 11 to 16 report the generalized forecasting error variance decomposition,
constructed as in Lanne and Nyberg (2016) and sampled from the posterior. It is
quite clear that risk premium shocks play a dominant role for the most variables
over short and long time horizons. In the short run, fluctuations in output are
primarily driven by risk premium shocks. To a lesser degree, MEI shocks play a
role as well for short run fluctuations in output.

At a time horizon of four quarters, risk premium shocks and MEI shocks are
the most important shocks for output. Whereas demand factors dominate the
explanation of output in the last decades, supply side factors, such as fluctuations
in TFP and price markups gain some importance as well at longer times horizon.
Not surprisingly, the generalized forecast error variance decomposition reflects the
divide between the driver of consumption and the driver of investment that is
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RANK: Four quarters

y c i π w r l

εg 0.012 0.009 0.001 0.001 0.000 0.002 0.016
εz 0.145 0.099 0.021 0.074 0.085 0.016 0.009
εu 0.526 0.657 0.359 0.310 0.362 0.457 0.626
εr 0.211 0.223 0.178 0.297 0.192 0.436 0.255
εi 0.098 0.006 0.434 0.012 0.019 0.007 0.088
εp 0.006 0.005 0.006 0.237 0.096 0.074 0.006
εw 0.001 0.001 0.000 0.069 0.244 0.008 0.001

Table 12

RANK: 16 quarters

y c i π w r l

εg 0.001 0.017 0.005 0.003 0.000 0.002 0.027
εz 0.804 0.787 0.421 0.301 0.588 0.024 0.048
εu 0.049 0.063 0.071 0.112 0.144 0.944 0.122
εr 0.095 0.074 0.162 0.383 0.195 0.008 0.420
εi 0.049 0.057 0.336 0.163 0.053 0.018 0.361
εp 0.001 0.001 0.002 0.014 0.014 0.001 0.004
εw 0.001 0.001 0.003 0.025 0.006 0.003 0.019

Table 13

FRANK: One quarter

y c i π w r l

εg 0.111 0.007 0.000 0.000 0.000 0.001 0.117
εz 0.253 0.124 0.004 0.002 0.003 0.009 0.216
εu 0.295 0.758 0.082 0.026 0.016 0.106 0.312
εr 0.029 0.062 0.013 0.003 0.001 0.859 0.032
εi 0.306 0.035 0.900 0.023 0.017 0.005 0.319
εp 0.003 0.014 0.001 0.943 0.010 0.018 0.003
εw 0.003 0.000 0.000 0.004 0.952 0.001 0.000

Table 14
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FRANK: Four quarters

y c i π w r l

εg 0.011 0.013 0.000 0.000 0.000 0.003 0.016
εz 0.168 0.219 0.007 0.006 0.071 0.013 0.007
εu 0.279 0.655 0.050 0.093 0.245 0.500 0.386
εr 0.025 0.046 0.008 0.006 0.016 0.287 0.038
εi 0.513 0.063 0.933 0.089 0.383 0.075 0.550
εp 0.003 0.003 0.001 0.802 0.100 0.123 0.003
εw 0.000 0.001 0.000 0.005 0.186 0.001 0.000

Table 15

FRANK: 16 quarters

y c i π w r l

εg 0.002 0.011 0.000 0.003 0.000 0.002 0.041
εz 0.374 0.331 0.065 0.163 0.193 0.013 0.024
εu 0.031 0.080 0.017 0.506 0.122 0.798 0.212
εr 0.000 0.000 0.000 0.003 0.001 0.000 0.004
εi 0.592 0.578 0.916 0.295 0.671 0.185 0.716
εp 0.000 0.000 0.000 0.028 0.007 0.002 0.001
εw 0.000 0.000 0.001 0.002 0.005 0.000 0.001

Table 16
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exhibited in the historical shock decomposition. Consumption is predominantly
driven by risk premium shocks, which directly hit the Euler equation of households,
whereas investment is mainly driven by MEI shocks. Short-run fluctuations in
prices and wages are explained by price markup shocks and wage markup shocks,
respectively.

Over the medium and long run, these shocks lose in importance. Again at a
time horizon of four quarters, risk premium shocks account of most of the move-
ments in inflation, whereas MEI shocks dominate inflation in the long-run through
their effect on the slow-moving capital stock. Short-term movements of the nominal
interest rate are due mostly to monetary policy shocks, which represent deviations
from the policy rule and translate into forward guidance shocks at the ZLB. With
the extension of the time horizon it shows that the policy rate mainly reacts to
movements in fundamentals, which are triggered by risk premium shocks. Thus
overall, risk premium shocks are the dominant shocks for this episode.

A.8 Normalization of historic shock decompositions for
models with OBCs

We are interested in quantifying the contribution of a each type of shock to the
time series of the model variables. Such quantification is called the historic shock
decomposition (HSD). Once one or several occasionally binding constraints (OBCs)
are included in the model, the model is nonlinear and the HSD is generally not
unique. To illustrate, imagine a deflationary MEI shock εit and a risk premium
shock ut, which together cause the ZLB to bind. Assume that each, the MEI shock
and the risk premium shock alone are insufficient to force the ZLB to hold. Then,
the effect of ut conditional on the realization of εit will have a different dynamic
effect than just ut taken alone, and it is unclear which value to assign to ut within
a HSD.

More precisely, we are interested in the series of vectors

{ht,z}T0 (73)

where z ∈ {1, 2, · · · , n} is in the set of all n types of shocks. εt = (ε1
t , ε

2
t , · · · , εnt )

is the vector of all n shocks in the model. Each ht,z is the cumulative dynamic
contribution of shock z to vt. ht,z is hence recursive. We require for each period t
that

n∑
z=1

ht,z = vt, (74)

and at least that

{ht,z = 0 ∧ ht−1,z = 0 ⇐⇒ εzt = 0} ∀z = 1, 2, · · · , n (75)
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i.e. that any zero shock has a zero net contribution to the HSD.
We propose a normalization method specific to models with OBCs for historic

shock decomposition such that the result is independent of any ordering effects.
For convenience, let us repeat Equation (28):

Ls(l, k,wt) =Nmax{s−l,0} (N + cb)min{l,s} S(l, k,wt)

+ (I−N)−1(I−Nmax{s−l,0})cr̄.
(76)

Take as given the time series of smoothed shocks {εt}T0 that fully reproduces

{vt}T0 . This implies that we also have obtained the series of {l, k}. The law-of-
motion from period t to t + 1 is then given by L1(l, k,wt). Note that S(l, k,wt)
can be decomposed in a coefficient term S̄v(l, k), which is to be pre-multiplied to
wt, and a constant term S̄c(k), which only depends on k (see A.1 for details).

Recalling that wt = vt−1 + Ξεt, we can write

(xt+1,vt)
ᵀ = (77)

L1(l, k,vt−1, εt) =Nmax{1−l,0} (N + cb)min{l,1} S̄v(l, k)vt−1

+Nmax{1−l,0} (N + cb)min{l,1} S̄v(l, k)Ξεt

+Nmax{1−l,0} (N + cb)min{l,1} S̄c(k)

+(I−N)−1(I−Nmax{1−l,0})cr̄,

(78)

where we are more explicit about the shocks. The first term is linear in vt−1, the
second term is linear in εt, whereas the third and forth term are, taking as given
{l, k}, vectors of constants.

Denote by Ξz the z-th column of Ξ, which corresponds to the shock εzt . For
each z we define ht,z by the recursion

(xt+1,z,ht,z)
ᵀ = (79)

L1(l, k,ht−1,z, ε
z
t ) =Nmax{1−l,0} (N + cb)min{l,1} S̄v(l, k)ht−1,z

+Nmax{1−l,0} (N + cb)min{l,1} S̄v(l, k)Ξzε
z
t

+ωt,zN
max{1−l,0} (N + cb)min{l,1} S̄c(k)

+ωt,z(I−N)−1(I−Nmax{1−l,0})cr̄,

(80)

where it is easy to show that Condition (74) is satisfied as long as
∑n

z ωt,z = 1 ∀t.49

The first two terms on the RHS of (79) are already the recursion of ht,z and
the decomposition respectively. The two other terms are left to be split up and
attributed to each shock, which – in terms of (79) – implies assigning the weights

49xt+1,z is a by-product that we do not care about. We want ht,z.
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ωt,e such that Condition (75) is satisfied.
Define

ωt,z =
bNmax{1−l,0} (N + cb)min{l,1} S̄v(l, k) (ht−1,z + Ξzε

z
t )

bNmax{1−l,0} (N + cb)min{l,1} S̄v(l, k)wt

, (81)

i.e. ωt,z is proportional to the relative contribution of εzt to the constraint value rt.
Intuitively, this acknowledges that the values of {l, k} depend on the relation

of the scalar rt relative to r̄. The further below rt is of r̄, the longer the constraint
will bind, and the higher is k (note that the constant term will be zero for any
l > 0). If the contribution of εzt to a negative rt is large, then the respective weight
ωt,z of the constant terms in (79) attributed to εzt will be high, and vice versa. If
however ht−1,z and εzt both are zero, Condition (75) is satisfied.

For our application with the ZLB this means that the weight of constant terms
for each shock is proportional to the shock’s contribution to the total level of the
shadow rate. Further note that∑

e

bNmax{1−l,0} (N + cb)min{l,1} S̄v(l, k) ([ht−1,e|εt = 0] + εe,t) =

bNmax{1−l,0} (N + cb)min{l,1} z̄v(l, k) ([vt−1|εt = 0] + εt) ,

(82)

and hence
∑

e ωt,e = 1, i.e. the weights sum up to unity.
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A.9 Economic costs of the binding ZLB

Figure 14: RANK model estimated to 1998-2019. On the left: Counterfactual
dynamics if the ZLB would not have posed a constraint to the nominal rate. On
the right: Net effect of the binding ZLB.
Note: Means over 250 simulations drawn from the posterior.

As we have seen, a negative nominal interest would have been warranted by
economic conditions over long parts of the sample. The binding ZLB therefore
is a constraint that is economically costly. Figure 14 illustrates these costs for
the RANK model estimated on the crisis sample. The bottom panels show that
without the ZLB, interest rates would have been far in negative territory, with
the credible set roughly centered at around -0.4% (1.6% in annual terms) for most
of the duration of the ZLB spell. We report that this counterfactual stimulus
would have hardly increased inflation. However, there would have been econom-
ically meaningful gains in output, which would have been up to 1% higher if the
ZLB would not have been binding. While our results are closely aligned to those
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reported by Kulish et al. (2017), they stand in contrast to findings by Gust et al.
(2017), who, in particular for the Great Recession, report a deeper fall of the
notational rate into negative territory. While they report output costs that are
roughly similar to ours, the effects of the binding ZLB on price dynamics are far
more pronounced in their framework due to their estimate of a steeper Phillips
Curve (0.07 vs. 0.007 in our estimate of the RANK model).
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A.10 Challenges for the identification of forward guidance
shocks

Figure 15: RANK model estimated to 1998-2019. The net effect of monetary policy
shocks. Red: mean over smoothed states. Blue: no shocks after 2007. Orange: no
shocks after 2008..
Note: Means over 250 simulations drawn from the posterior.

There exist an active literature on the effects of forward guidance (Eggertsson
and Woodford, 2003; Del Negro, Giannoni, and Paterson, 2015; McKay and Reis,
2016).In Section 2 we report that the monetary policy shocks εr can be interpreted
as forward guidance shocks when the economy is at the ZLB: although the actual
policy rate is unaffected, the persistence of both the exogenous process and the
shadow rate will prolong the expected duration of the ZLB spell, and promises
lower rates even after the exit. Naturally, the nonlinear filtering procedure will
also provide a series of filtered/smoothed shocks for εr. Interpreting these shocks
as forward guidance shocks, they can be used to simulate counterfactuals, and to
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Figure 16: RANK model estimated to 1998-2019. The net effect of a counterfactual
1% monetary policy shock in 2010Q4 that raises the expected ZLB spell on average
by 3 quarters.
Note: Means over 250 simulations drawn from the posterior.

quantify the effect of such policy.
Figure 16 provides counterfactual simulations assuming that forward guidance

shocks are absent after 2007 and 2008, respectively. The dashed red line corre-
sponds to the mean over the actual smoothed states, i.e. including forward guid-
ance shocks. For the blue lines, forward guidance shocks are ignored after 2007.
The right hand side of the figure illustrates the net contribution of these shocks.
Overall, our filtering procedure does not find any sensible forward guidance shocks
during the ZLB episode. The peak in the net effect of inflation and output is al-
most entirely due to the early reaction of the Fed to lower rates to the ZLB, which
was quicker than suggested by the policy rule. As inflation and the output gap
did not yet decline, this can be instead interpreted as a reaction to the turmoil in
financial markets. We find that this emergency reaction prevented a substantially
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deeper fall in inflation and output during the trough of the recession. Regarding
the exit from ZLB, we find that the smoothed nominal interest rate series leaves
the ZLB a year after the actual ZLB period ended. The very low federal fund rate
in 2016 is therefore treated as having the same effects on equilibrium dynamics as
a binding ZLB. This might capture uncertainty effects that could not explicitly
included in our modelling approach.

Why are our estimated effects of forward guidance so weak, in particular com-
pared to Gust et al. (2017)? As Figure 16 shows, a counterfactual one-percent
shock to the shadow rate in 2010Q4 would have extended the duration of the ex-
pected ZLB spell by about 3 quarters and would have had a considerable effect on
output and inflation. These strong effects are not surprising given the results by
Del Negro et al. (2015) on the forward guidance puzzle. To address the question
of what role forward guidance plays in our RANK model, note that in our model
by construction the risk premium shock always appears together with the nominal
rate. Also recall that across models the risk premium shock was one of the main,
if not the main driver of the post-2008 US economic dynamics. Throughout our
sample, the risk premium is positive.

A forward guidance shock will be very hard to distinguish from a negative risk
premium shock. While in normal times, the risk premium and monetary policy
shock are easy to identify via the response of the policy rate, this is not possible
at the ZLB. Any positive forward guidance shock would require additional risk
premium shocks to maintain the low level of consumption and investment. For this
reason it is more likely to attribute any increase in consumption or investment to
decreases in the risk premium process as these are in the nature of an stationary
AR(1) process, and not to a positive forward guidance shock. Put differently, at
the ZLB we essentially filter 6 observables with 7 structural shocks, of which two
are observationally equivalent, and one of which is already identified to be at an
elevated level. This explains why we are unable to identify strong forward guidance
shocks.

How can this finding be interpreted in the light of the results of Gust et al.
(2017) and Jones, Kulish, and Rees (2018)? The former use the particle filter to
approximate the distribution of states. This practically implies the use of consid-
erable measurement errors for the filter. The authors set the model-implied ZLB
to exactly zero, whereas we use the highest realized value of the FFR during the
ZLB episode (c.f. Section 3). This means in practice that, in the absence of any
measurement errors, their model-implied ZLB never actually binds. We suspect
that, as a binding ZLB helps to explain the large drop in output in response to a
risk premium and MEI shocks, the filter treats the actual observation of the FFR
as a measurement error and assumes the actual FFR to be straight at zero. This
way, the actual level of the FFR relative to the model-implied ZLB of zero enters
the filtering process and potentially manifests in the finding of positive forward
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guidance shocks.
As for the case of Jones et al. (2018), the authors identify the ZLB durations in

the estimation as in Kulish et al. (2017). In a second step they feed the estimated
ZLB durations and the smoothed shock series obtained in posterior sampling into
the model and use the solution method by Jones (2017) to determine the en-
dogenous ZLB-durations. Any deviation of the spell durations identified by the
posterior is then presumed to be the result from central bank communication. In
the absence of any additional data input, this setup is likely to be subject to the
same problem as in our model: forward guidance shocks will be hard to distinguish
from risk premium shocks. However, the specific setup of the authors allows to
include term premium data to the estimation. The authors argue that the term
premium contains information on the future course of interest rates, and can hence
be used to correctly identify forward guidance shocks via the estimated spell du-
rations, and distinguish their effects from those of risk premium shocks.50 While
we can not test whether this holds in practice, we considered as a sound argument
to overcome the problems sketched in this section.

50In practice, including the term premium as an observable is also possible with our methodol-
ogy. Note that we can find the expected future value in period t+ s of all variables via Equation
(28), which could easily be linked to an observable. We abstain from doing so because we feel
that the interest in the effects of forward guidance has decreased over the recent years.
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A.11 Evolution of the natural rate

Figure 17: RANK model estimated over different samples. Evolution of the natural
rate.
Note: Means over 250 simulations drawn from the posterior.

Following Laubach and Williams (2003), an active literature has used different
approaches to estimate the natural real interest rate, or ‘r-star’. While the most
prominent approach is to employ semi-structural models (see, e.g., Laubach and
Williams (2003), Holston, Laubach, and Williams (2017)), other frameworks such
as VARs, VECMs and affine term structure models have been considered in this
literature. In addition, Edge, Kiley, and Laforte (2008) and Neri and Gerali (2019)
provide examples for the use of DSGE model in obtaining estimates of the natural
rate. As a contribution to this literature, Figure 17 displays the paths of the US
natural rate that are implied by our estimates of the RANK model on several
samples. It shows that our model predicts a decline of r-star far into negative
territory after the Financial crisis as well as a return to positive territory at the
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end of the sample. This finding stands in contrasts to estimates of the natural
rate according to the models by Laubach and Williams (2003) and Holston et al.
(2017), which imply that r-star remained positive throughout the crisis. Apart
from the considerable uncertainty surrounding estimates of r-star, this discrepancy
is mainly due to the fact that DSGE model estimates of the natural rate cannot
capture its trend-component. However, according to semi-structural estimates,
the trend-growth of output supported r-star in the financial crisis and kept it
in positive territory. In contrast, the path of r-star in our DSGE model merely
captures its cyclical components. Specifically, it reflects fluctuation of the real rate
in the frictionless equilibrium around the model’s steady state.
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A.12 Additional historical shock decomposition

Figure 18: TANK Model estimated to 1998-2019. Decomposition of the smoothed
time series into the contribution of the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is
normalized as in A.8.
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Figure 19: FRANK-R model – with financial instead of MEI shock – estimated
to 1998-2019. Decomposition of the smoothed time series into the contribution of
the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is
normalized as in A.8.
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Figure 20: RANK – estimated to 1983-2008. Decomposition of the smoothed time
series into the contribution of the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is
normalized as in A.8.
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Figure 21: RANK – estimated to 1983-2019. Decomposition of the smoothed time
series into the contribution of the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is
normalized as in A.8.
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A.13 Additional impulse response functions

Figure 22: IRFs to a MEI shock in TANK estimated for 1998-2019. Compared
with mean IRFs to RANK. Note: Medians over 250 simulations drawn from the posterior
with 90% credible set for TANK. Shock size is the posterior mean standard deviation for each
model
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A.14 Exogenous processes and innovations

Figure 23: Smoothened exogenous processes for the different models, sample 1998-
2019. 95% confidence intervals of 250 draws from the posterior.
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Figure 24: Smoothened innovations to exogenous processes for the different mod-
els, sample 1998-2019. Shocks are normalized to the standard deviation of the
parameter draw. 95% confidence intervals of 250 draws from the posterior.
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