Carbon pricing and credit reallocation

Johanna Arlinghaus (MCC), Christian Bittner (Bundesbank), Martin Götz (Bundesbank) and Nicolas Koch (MCC)

May, 11th 2023

Disclaimer: The views expressed are our own and do not represent the views of the Deutsche Bundesbank, the ECB or the Eurosystem

Introduction

- Important tool to reduce CO2 emissions: Cap-and-Trade system
 - Set a cap on emissions
 - Companies must hold/trade permits to cover emissions (Emission Trading System (ETS))
 - ✓ Incentives to invest in abatement (Porter & van der Linde, 1995)

Introduction

- Important tool to reduce CO2 emissions: Cap-and-Trade system
 - Set a cap on emissions
 - Companies must hold/trade permits to cover emissions (Emission Trading System (ETS))

✓ Incentives to invest in abatement (Porter & van der Linde, 1995)

- · Climate change affects supply of external finance
 - Investor preferences (Pastor et al., 2021; Baker et al., 2022; Yoo, 2022)
 - Pricing of climate/transition risk (Correa et al., 2020; Starks et al., 2020; Ilhan et al., 2021)
 - Regulation (Dombrovskis, 2017; Oehmke & Opp, 2022)

Introduction

- Important tool to reduce CO2 emissions: Cap-and-Trade system
 - Set a cap on emissions
 - Companies must hold/trade permits to cover emissions (Emission Trading System (ETS))

✓ Incentives to invest in abatement (Porter & van der Linde, 1995)

- Climate change affects supply of external finance
 - Investor preferences (Pastor et al., 2021; Baker et al., 2022; Yoo, 2022)
 - Pricing of climate/transition risk (Correa et al., 2020; Starks et al., 2020; Ilhan et al., 2021)
 - Regulation (Dombrovskis, 2017; Oehmke & Opp, 2022)
- Our paper: How does introduction of ETS shape firm credit demand and bank lending?

Our paper

- To examine this:
 - Theoretical model linking permit price to credit demand & profitability
 - Investment in (1) innovation and/or (2) hedge of permit price
 - Empirical analysis using German data and exploiting shock to bank funding
 - Lending to ETS firms higher,
 - Lending to ETS firms safer

Our paper

- To examine this:
 - Theoretical model linking permit price to credit demand & profitability
 - Investment in (1) innovation and/or (2) hedge of permit price
 - Empirical analysis using German data and exploiting shock to bank funding
 - Lending to ETS firms higher,
 - Lending to ETS firms safer
- Our work relates to:
 - Bank lending & environmental risks (Benincasa et al., 2022; Correa et al., 2020; Green, Valle, 2022; Laeven & Popov, 2022)
 - Bank regulation to foster transition to cleaner environment (Oehmke & Opp, 2022)
 - Transmission of monetary policy shock (Altavilla et al., 2022; Bittner et al. 2022)

Institutional background & conceptual framework

EU Emission Trading Scheme (ETS)

- Cap-and-trade system for CO₂ emissions in Europe (EU ETS)
 - Launched in 2005, currently covers 30 countries across Europe
 - Firms need to submit permits/allowances for CO₂ emissions
 - Firms receive freely allocated permits (in declining share)
 - Permits fully tradeable
 - Abatement innovation ↑ (Calel, 2020; Calel & Dechezelpretre, 2016)
 - CO₂ permit price ↑ emission efficiency ↑ (De Jonghe et al., 2020)

EU Emission Trading Scheme (ETS)

- Cap-and-trade system for CO₂ emissions in Europe (EU ETS)
 - Launched in 2005, currently covers 30 countries across Europe
 - Firms need to submit permits/allowances for CO₂ emissions
 - Firms receive freely allocated permits (in declining share)
 - Permits fully tradeable
 - Abatement innovation ↑ (Calel, 2020; Calel & Dechezelpretre, 2016)
 - CO₂ permit price ↑ emission efficiency ↑ (De Jonghe et al., 2020)
- Whether a firm is subject to EU ETS depends on (a) activity and (b) emissions of *plant(s)*
 - Power & heat plants
 - Manufacturing plants if
 - specialize in certain industrial activities and
 - plant/installation exceeds specific capacity threshold e.g. steel plants if production capacity > 2.5 t per hour; glass and glass fiber if melting capacity > 20 t per day

Model

• Firms:

- Produce a good, earn revenue R and face costs of production per emission $c \cdot e$ over period
- Have no funds of their own

Model

• Firms:

- Produce a good, earn revenue R and face costs of production per emission $c \cdot e$ over period
- Have no funds of their own
- Differ whether they need to participate in ETS; ETS firms:
 - Need to surrender CO_2 permit per emission e at the end of the period
 - Receive free allowance \bar{e} (where $\bar{e} < e$)
 - Price of permit now: 1; Expected price at the end of the period: E(p)

Model

• Firms:

- Produce a good, earn revenue R and face costs of production per emission $c \cdot e$ over period
- Have no funds of their own
- Differ whether they need to participate in ETS; ETS firms:
 - Need to surrender CO_2 permit per emission e at the end of the period
 - Receive free allowance \bar{e} (where $\bar{e} < e$)
 - Price of permit now: 1; Expected price at the end of the period: E(p)

ETS firms $E(\pi) = R - c \cdot e - E(p) \cdot (e - \overline{e})$ Non-ETS firms $E(\pi) = R - c \cdot e$

• Innovation technology:

- Requires set-up costs of $I \ (\rightarrow \text{ firms need external finance to start})$
- Success with probability α : reduces firm emissions to $\gamma \cdot e$, with $\gamma < 1$

Institutional background Theoretical framework

Decision to invest in technology (I - E(p))

ETS firms may want to "hedge"

- Additionally, ETS firms:
 - Can acquire e ē permits at the beginning at price= 1 ("hedge")
 - Prefer to hedge...
 - ... if expected permit price above 1 even if *I* very large
 - and innovate if price large/innovation success probability small i.e. $p > (2\alpha - 1)^{-1}$

Credit demand (1) Hedging

- If cost of innovation *I* high: firms will not innovate
- If expected permit price larger than 1:
 - ETS firms prefer to hedge

Credit demand (2) Innovation

If cost of innovation *I* low:
 ⇒ both firms innovate

Carbon pricing and credit reallocation

Credit demand (2) Innovation

- If cost of innovation *I* low:
 ⇒ both firms innovate
- If permit price large, ETS firms ...
 - ... are willing to pay higher I, and also ... hedge CO₂ exposure.

Carbon pricing and credit reallocation

Credit demand (2) Innovation

- If cost of innovation *I* low:
 ⇒ both firms innovate
- If permit price large, ETS firms ...

... are willing to pay higher I, and also ... hedge CO₂ exposure.

⇒ ETS firms' demand for external funds larger

Firm profits

- If both firms innovate:
 - Non-ETS firms in general more profitable
 - ETS firms more profitable if
 - expected permit price high (and hedge)

Firm profits

- If both firms innovate:
 - Non-ETS firms in general more profitable
 - ETS firms more profitable if
 - expected permit price high (and hedge)
- If both firms do not innovate:
 - Non-ETS firms generally more profitable
 - ETS firms more profitable if
 - expected permit price much larger (and hedge)

Take-away from model

Interpreting these results through a financier's point of view:

- 1 ETS firms have greater demand for financing...
 - ... to invest in innovation
 - ... and/or invest in hedging
- 2 Lending to ETS firms can be safer if
 - ETS firms more profitable

Introduction Empirical strategy stitutional background & conceptual framework Data, Variables, Empirical Design Empirical Analysis Results

Empirical Analysis

Empirical Strategy

- Challenge: Identify exogenous link between firm's participation in ETS and bank lending
 - Non-random selection of firms into ETS
 - Self-selection of firms to banks

Empirical Strategy

- Challenge: Identify exogenous link between firm's participation in ETS and bank lending
 - Non-random selection of firms into ETS
 - Self-selection of firms to banks
- Approach: Difference-in-differences methodology & matched sample
 - (Exogenous) Shock to bank funding (introduction of negative interest rate policy)
 - Utilize micro-level data on bank lending to firms before/after shock
 - Selection into ETS based on *plant* emissions
 - Matched sample: Identify control firms based on (pre-shock) balance sheet characteristics

Empirical strategy Data, Variables, Empirical Design Results

Negative Interest Rate Policy and Data Sources

- June 5th 2014: Introduction of negative interest rate policy by ECB
 - Interest rate on the deposit facility \downarrow to -0.1%
 - Shock to bank funding costs (esp. for banks with greater deposit funding)
 - Affected banks increased lending more (Heider et al., 2019; Altvilla et al., 2022, Bittner et al., 2022)

Negative Interest Rate Policy and Data Sources

- June 5th 2014: Introduction of negative interest rate policy by ECB
 - Interest rate on the deposit facility \downarrow to -0.1%
 - Shock to bank funding costs (esp. for banks with greater deposit funding)
 - Affected banks increased lending more (Heider et al., 2019; Altvilla et al., 2022, Bittner et al., 2022)
- Data Sources:
 - German Credit registry (BAKIS-M)
 - Balance sheet information for banks (BISTA) and firms (JANIS)
 - European Union Transaction Log (EUTL)

Empirical strategy Data, Variables, Empirical Design Results

Sample construction and variable definitions

Sample

- Quarterly bank-firm panel on outstanding credit (Q1/2013 to Q2/2015)
- Matched sample of ETS/non-ETS firms
 - Variables (pre-2014): sector, assets, sales/assets, profit/sales, equity/assets, collateral/assets
 - Control firms: Nearest 1(3/5) neighbors

• Results hold if analyzing companies in manufacturing and electricity supply sectors

Empirical strategy Data, Variables, Empirical Design Results

Sample construction and variable definitions

Sample

- Quarterly bank-firm panel on outstanding credit (Q1/2013 to Q2/2015)
- Matched sample of ETS/non-ETS firms
 - Variables (pre-2014): sector, assets, sales/assets, profit/sales, equity/assets, collateral/assets
 - Control firms: Nearest 1(3/5) neighbors
- Results hold if analyzing companies in manufacturing and electricity supply sectors

Characteristics:

- 571 banks and lending to 496 ETS and 366 non-ETS firms
 - Avg credit exposure per bank: \approx 8.8 million \in
 - Avg number of bank relationship: pprox 3.5
 - Avg firm size: pprox 315 million \in

Panel regression model

$$ln(credit_{bft}) = \beta_1 \frac{D}{A^b} \cdot ETS_f + \beta_2 ETS_f \cdot Post_t + \beta_3 ETS_f \cdot \frac{D}{A^b} \cdot Post_t + FEs + \varepsilon_b$$

 β_3 Differential credit effect within bank-firm for ETS firms after NIRP-shock

- Fixed effects (FEs) account for time-varying effects at firm and bank-level
- Main Variables:
 - log of credit from bank b to firm f in quarter t
 - Deposit / asset ratio for bank b (averaged over 6 month period prior to June 2014)
 - Post = 1 if after Q2/2014
- Standard errors clustered at bank level

Empirical strategy Data, Variables, Empirical Design Results

Results

Dependent variable:	Ln(Credit)			
Post	-0.015			
	(0.059)			
Post \times ETS	-0.226	-0.226		
	(0.236)	(0.236)		
$Post \times D/A$	-0.100	-0.098	-0.055	
	(0.116)	(0.116)	(0.104)	
$ETS \times D/A$	-0.120*	-0.120*	-0.128**	
	(0.070)	(0.070)	(0.059)	
$ETS \times D/A \times Post$	0.260**	0.259**	0.216**	0.420**
	(0.125)	(0.125)	(0.112)	(0.168)
N	27,010	27,010	26,449	22,114
Bank	Yes	Yes	Yes	
Firm	Yes	Yes	Yes	
Time		Yes	Yes	
Bank-Firm			Yes	Yes
Bank-Date				Yes
Firm-Date				Yes

Empirical strategy Data, Variables, Empirical Design Results

Dynamic effect

$$ln(credit_{bft}) = \sum_{j=Q1/2012}^{Q1/2016} \alpha_j \cdot T_j \cdot \frac{D}{A}_b \cdot ETS_f + \alpha_{bt} + \alpha_{ft} + \alpha_{bf} + \epsilon_{bft},$$

Arlinghaus, Bittner, Götz, Koch

Carbon pricing and credit reallocation

Empirical strategy Data, Variables, Empirical Design Results

Interpretation

- Lending increases more to ETS firms
 Consistent with theoretical framework
- Does exposure risk also change?

Interpretation

Lending increases more to ETS firms

Consistent with theoretical framework

- Does exposure risk also change?
- Two risk measures: Collateral share and probability of default
 - 1 Collateral/ Credit exposure
 - Higher collateral associated with lower borrower risk (Jimenez et al., 2006)
 - Probability of default (PD)
 - · Banks need to estimate borrower's likelihood of default
 - Only available for banks with internal risk rating models (large banks)

Empirical strategy Data, Variables, Empirical Design Results

Results

Dependent variable:	Collatera	l share		Probability	/ of default	(PD)
$ETS \times D/A$	-0.074			-0.012		
	(0.058)			(0.020)		
$ETS \times Post$	0.013	0.025*		0.019**	0.015*	
	(0.012)	(0.013)		(0.008)	(0.008)	
$Post \times D/A$	0.049	0.062**		-0.011	-0.007	
	(0.039)	(0.029)		(0.016)	(0.017)	
$ETS \times D/A \times Post$	-0.019	-0.051*	-0.073*	-0.054**	-0.042	-0.051*
	(0.027)	(0.027)	(0.038)	(0.025)	(0.026)	(0.027)
Bank	Yes	Yes		Yes	Yes	
Firm	Yes	Yes		Yes	Yes	
Time	Yes	Yes		Yes	Yes	
Bank-Firm		Yes	Yes		Yes	Yes
Bank-Date			Yes			Yes
Firm-Date			Yes			Yes
Observations	26,917	26,355	22,024	13,873	13,670	11,051

Conclusion

- Theoretical framework:
 - Cost of surrendering CO₂ permits shapes ETS firms' credit demand:
 - Willingness to incur larger set-up costs when permit price increases
 - "Hedging" if permit price increases

Conclusion

- Theoretical framework:
 - Cost of surrendering CO₂ permits shapes ETS firms' credit demand:
 - Willingness to incur larger set-up costs when permit price increases
 - "Hedging" if permit price increases
 - ETS firms can be more profitable (and safer) than non-ETS firms
- Empirical evidence:
 - Panel data set of lending at bank-firm-quarter level
 - Shock to bank funding: Introduction of NIRP
 - · Credit exposure to ETS firms larger when banks increase overall lending
 - Marginal exposure to ETS firms less risk (less collateral, lower PD)

Introduction Empirical strategy nstitutional background & conceptual framework Data, Variables, Empirical Design Empirical Analysis Results

Thank you

Empirical strategy Data, Variables, Empirical Design Results

Differences between ETS and non-ETS firms

	ETS	Non-ETS		
	Mean	Mean	Diff	p-value
Number of banks	5.71	1.45	4.26	0.00
Credit (thsd €)	6,050	2,420	3,630	0.00
Collateral / Credit	0.43	0.29	0.14	0.00
PD	3.09	6.09	-3.00	0.00
Total Assets (MM \in)	543.80	67.09	476.71	0.00
Profit / Sales	0.44	0.65	-0.21	0.39
Sales / Assets	1.46	1.82	-0.36	0.00
Age	49	33	16	0.00
Equity / Assets	0.31	0.35	-0.04	0.00

🕨 return

Descriptive statistics and differences

• Even after matching: ETS firms...

- ... larger (total assets and # of banks), and
- ... less risky (lower PD)

	Non-ETS	ETS		
	Mean	Mean	Diff	p-value
Number of banks with credit relationship	3.23	3.94	0.70	0.09
Average In(Credit brutto)	7.15	7.13	-0.02	0.91
Average Credit brutto	5.77	6.36	0.60	0.37
Average (PD)	5.35	3.17	-2.18	0.07
Total Assets (MM EUR)	276	434	158	0.00
Sales /Assets	1.42	1.4921	0.08	0.35
Profit /Sales	0.42	0.46	0.03	0.21
Age	50.86	49.55	-1.32	0.72

Empirical strategy Data, Variables, Empirical Design Results

Results: full sample

Post	-0.074***			
	(0.013)			
$ETS \times D/A$	-1.522***	-1.521***		
	(0.322)	(0.322)		
$Post \times D/A$	-0.013	-0.014	0.026	
	(0.023)	(0.023)	(0.023)	
$ETS \times Post$	-0.046	-0.047	-0.049	
	(0.044)	(0.044)	(0.031)	
$ETS \times Post \times D/A$	0.149**	0.152**	0.199***	0.105*
	(0.068)	(0.068)	(0.046)	(0.062)
Observations	411,431	411,431	405,375	215,998
Bank	Yes	Yes	Yes	
Firm	Yes	Yes	Yes	
Time		Yes	Yes	
Bank-Firm			Yes	Yes
Bank-Date				Yes
Firm-Date				Yes