Welfare Consequences of Sustainable Finance

HARRISON HONG

Columbia University and NBER

NENG WANG

Columbia University and NBER

JINQIANG YANG

Shanghai University of Finance & Economics (SUFE)

Bundesbank Spring Conference Climate Change and Central Banks

May 11, 2023

Motivating Stylized Facts

- Sustainable finance mandates (Net-Zero Financial Alliance, NGFS)
 - Portfolio restrictions around 20% AUM (SIF)
- Incentivize firms to decarbonize (carbon removal) via cost-of-capital channel
 - Sovereign bonds issued with climate penalties in exchange for greenium (Financial Times)
 - ▶ Literature estimates of greenium (WACC) ≈ 100 bps (stdev 200 bps) (Hong and Shore (2023))
 - Annual investments in low carbon alternatives (decarbonization stock) around 0.10% of capital stock (Bloomberg)

Our Paper

- Two capital-stock model that can address these stylized facts
- Use model to …
 - 1. Clarify economics of greeniums
 - 2. Can sustainable finance be a viable carbon policy tool (approx. planner's solution)?
 - 3. How to optimally set mandates?
- Sanity check of model using Renewable Power Standards for utilities in US 1991-2020*

Model: Climate States

- $\blacktriangleright \ \mathcal{S}_t = \mathcal{G}, \ \mathcal{B}$
- Economy starts in the G state and transitions to the B state
 - Time-varying endogenous transition rate $\zeta_t > 0$
- ▶ Weather disasters are more frequent in the $\mathcal B$ state than the $\mathcal G$ state: $\lambda_t^{\mathcal G} < \lambda_t^{\mathcal B}$
 - Both $\lambda_t^{\mathcal{G}}$ and $\lambda_t^{\mathcal{B}}$ are endogenous

Firm Production and Capital Accumulation

- Output in both S: $Y_t = AK_t$
- Capital stock K in state S_t follows

$$dK_t = \Phi(I_{t-}, K_{t-})dt + \sigma K_{t-} d\mathcal{B}_t - (1 - Z)K_{t-} d\mathcal{J}_t$$

- If a jump occurs, i.e., dJ_t = 1, capital changes from K_{t−} to K_t = ZK_{t−} where Z ∈ (0, 1) is the stochastic fraction of capital that survives the jump shock
- Homogeneity: $\Phi(I, K) = \phi(i)K$ where i = I/K
- State-dependent weather disaster arrival rate: $\lambda_{t-}^{\mathcal{S}_t}$

Two Capital Stocks

- Emissions: $\mathbf{E}_t = \mathbf{e}\mathbf{K}_t$
- Removals: $\mathbf{R}_t = \tau \mathbf{N}_t$
- Aggregate mitigation spending: X_t
- Evolution of aggregate decarbonization stock N_t:

 $d\mathbf{N}_{t} = \omega(\mathbf{X}_{t-}/\mathbf{N}_{t-})\mathbf{N}_{t-}dt + \sigma\mathbf{N}_{t-}d\mathcal{B}_{t} - (1-Z)\mathbf{N}_{t-}d\mathcal{J}_{t}$

Tipping Point and Disaster Arrival Rates

► Tipping point arrival, ζ(·), and arrival rates, λSt(·), are functions of

$$\mathbf{n}_{t-} = \frac{\mathbf{N}_{t-}}{\mathbf{K}_{t-}}$$

Transition dynamics for n_t:

$$\frac{d\mathbf{n}_t}{\mathbf{n}_{t-}} = [\omega(\mathbf{x}_{t-}/\mathbf{n}_{t-}) - \phi(\mathbf{i}_{t-})]dt$$

Market Economy with Welfare-Maximizing Mandate

- Given α of total wealth restricted, the planner announces a qualification spending threshold {M_t; t ≥ 0} at t = 0 and commits to the announcement with the goal of maximizing the representative agent's utility
- The representative agent and firms take the mandate as given and optimize in market places
- ► To qualify as a sustainable (S) firm at t, it has to spend at least M_t at t on mitigation:

$$X_t \geq M_t$$

Qualifying for Sustainable Investment Mandate

- ► Homogeneity: $M_t = m(\mathbf{n}_t; S_t)K_t$, where $m(\mathbf{n}_t; S_t)$ is the firm's scaled minimal level of mitigation
- Mandate α creates inelastic demand for sustainable (S) firms
- ► The remaining (1 − α) of total wealth invested in U-portfolio

Risk Preferences and Complete Markets

- Epstein-Zin non-expected utility
- Dynamically complete markets
- ▶ Representative investor allocate between risk-free, sustainable (S−) and unsustainable (U−) portfolios
- All markets clear

Solution: Firm Value Maximization

- Let Q^j_t = q^j(n_t; S_t)K^j_t denote the the market value of a type-j firm at t, where j = {S, U}
- A type-j firm maximizes its market value:

$$\max_{I^{j},X^{j}} \mathbb{E}\left(\int_{0}^{\infty} e^{-\int_{0}^{t} r^{j}(\mathbf{n}_{v};S_{v})dv} CF^{j}(\mathbf{n}_{t};S_{t})dt\right),$$

where

$$CF^{S}(\mathbf{n_{t}}; \mathcal{S}_{t}) = AK_{t}^{S} - I_{t}^{S}(\mathbf{n_{t}}; \mathcal{S}_{t}) - X_{t}^{S}(\mathbf{n_{t}}; \mathcal{S}_{t})$$

and

$$CF^{U}(\mathbf{n_t}; \mathcal{S}_t) = AK_t^{U} - I_t^{U}(\mathbf{n_t}; \mathcal{S}_t)$$

Optimal mitigation:

$$x_t^U = 0$$
 and $x_t^S = m(\mathbf{n}_t; S)$

Equilibrium Greenium

In equilibrium, all firms have the same Tobin's average q and the same investment-capital ratio:

$$q^{\mathcal{S}}(\mathbf{n};\mathcal{S}) = q^{\mathcal{U}}(\mathbf{n};\mathcal{S}) = \mathbf{q}(\mathbf{n};\mathcal{S})$$

and

$$i^{\mathcal{S}}(\mathbf{n};\mathcal{S}) = i^{\mathcal{U}}(\mathbf{n};\mathcal{S}) = \mathbf{i}(\mathbf{n};\mathcal{S}).$$

Greenium is

$$r^{U}(\mathbf{n};\mathcal{S}) - r^{\mathcal{S}}(\mathbf{n};\mathcal{S}) = rac{m(\mathbf{n};\mathcal{S})}{\mathbf{q}(\mathbf{n};\mathcal{S})}.$$

Mitigation at the firm level m(n) is related to the aggregate mitigation x(n):

$$m(\mathbf{n}) = \frac{\mathbf{x}(\mathbf{n})}{\alpha}$$

Interpretations

- Heterogenous investor interpretation: α investors only own sustainable, (1α) own unsustainable stocks.
 - Survival of sustainable investors in long run.
 - Sustainable investors consume less but same fraction of wealth in economy over time.
- ▶ Renewable portfolio standards (α = 1): RPS mandate utilities gradually produce a fraction of their output using renewables

Why Welfare-maximizing Mandate does not attain First Best?

- The investment FOCs are different
 - Planner's FOC: uses both i and x to achieve optimal path of n
 - Welfare-maximizing Mandate: limited to only x
 - Key difference: Too much investment in mandate economy

Two Instruments Restore First Best

1. welfare-maximizing mandate: $m_t = \mathbf{x}(\mathbf{n}_t; \mathcal{S}_t) / \alpha$

- 2. investment deviation tax:
 - if corporate investment i^j deviates from the aggregate investment i(n; S), then for each unit of capital stock, tax the firm at the rate of to discourage socially inefficient overinvestment.

Taxation to address carbon and adaptation externalities when there is learning and costly capital adjustment (see Hong, Wang and Yang (2023) "Mitigating Disaster Risks in the Age of Climate Change" forthcoming *Econometrica*.)

Specifying Functional Forms

- ► Controlled drift functions for **K** and **N** accumulation: $\phi(i) = i - \frac{\eta_{\mathsf{K}}i^2}{2} - \delta_{\mathsf{K}} \quad \omega(\mathbf{x}/\mathbf{n}) = (x/\mathbf{n}) - \frac{\eta_{\mathsf{N}}(\mathbf{x}/\mathbf{n})^2}{2} - \delta_{\mathsf{N}}$
- A power-law function for distribution of Z: Ξ(Z) = Z^β implies an expected fractional capital/output loss, ℓ, of

$$\ell = \mathbb{E}(1-Z) = \frac{1}{\beta+1}$$

▶ **n** decreases the tipping point arrival rate from $\zeta_0 > 0$ to

$$\zeta(\mathbf{n}) = \zeta_0(1 - \mathbf{n}^{\zeta_1}),$$

where $0 < \zeta_1 < 1$.

where λ_0^S

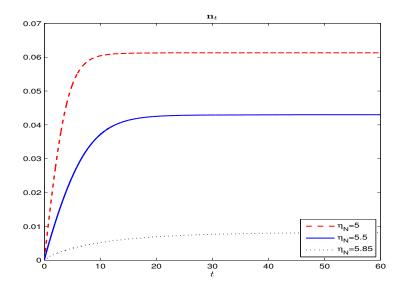
• **n** also decreases disaster arrival rate, λ_t :

$$\lambda(\mathbf{n};\mathcal{S}) = \lambda_0^\mathcal{S}(1-\mathbf{n}^{\lambda_1})\,,$$

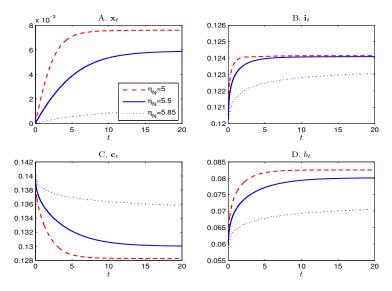
 $>$ 0, and 0 $<$ $\lambda_1 <$ 1.

Calibration

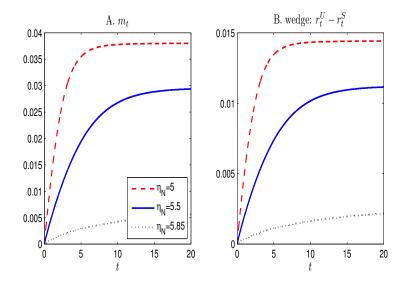
- Macro-finance moments
 - Standard risk aversion and discounting parameters + EIS > 1 (e.g., Bansal and Yaron (2004) long-run risk)
 - Capital productivity A and adjustment costs η_K from the q theory literature
- Climate-mitigation pathways
 - λ^S₀ and conditional damage ℓ = 1/(β + 1) based on estimates of how extreme temperature (above 1.5°) reduce GDP growth (1950-2003): Dell, Jones, and Olken (2012)
 - Pin down decarbonization capital accumulation parameter η_N by targeting a transition pathway (several decades) and determine the mitigation parameter, ζ₁ and λ₁, using estimates from Gates (2020)

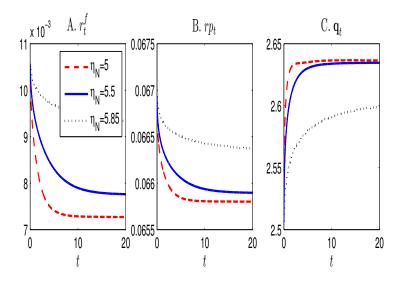

Parameter Values

Parameters	Symbol	Value
elasticity of intertemporal substitution	ψ	1.5
time rate of preference	ρ	4.2%
coefficient of relative risk aversion	γ	8
productivity for K	A	26%
adjustment cost parameter for K	η_K	5
adjustment cost parameter for N	η_N	5
diffusion volatility for N and K	σ	9%
depreciation rates for N and K	$\delta_K = \delta_{\mathbf{N}}$	6%
jump arrival baseline parameter from state ${\cal G}$ to ${\cal B}$	ζo	0.02
jump arrival sensitivity parameter from state ${\cal G}$ to ${\cal B}$	ζ_1	0.1
power-law exponent	β	39
jump arrival baseline parameter with ${f n}=0$ in state ${\cal G}$	$\lambda_0^{\mathcal{G}}$	0.05
jump arrival baseline parameter with $\mathbf{n} = 0$ in state \mathcal{B}	$\lambda_0^{\mathcal{G}}\ \lambda_0^{\mathcal{B}}$	2
mitigation technology parameter	λ_1^0	0.3

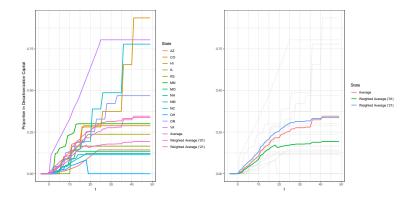

Comparing across the laissez faire, the mandated market, and the first-best economies in state \mathcal{G}

		laissez faire	mandate	first-best
scaled mitigation spending	x ^{ss}	0	0.76%	0.78%
scaled decarbonization stock	n ^{ss}	0	6.13%	6.48%
scaled aggregate investment	iss	11.83%	12.41%	12.07%
Tobin's average q	q ^{ss}	2.45	2.64	2.52
scaled aggregate consumption	c ^{ss}	14.17%	12.82%	13.15%
expected GDP growth rate	\mathbf{g}^{ss}	2.04%	2.44%	2.30%
(real) risk-free rate	rss	1.10%	0.73%	0.91%
stock market risk premium	rp ^{ss}	6.73%	6.58%	6.60%
aggregate welfare measure	bss	0.0542	0.0826	0.0830
time from $\textbf{n}=0$ to $0.99\textbf{n}^{ss}$ in $\mathcal G$		0	10.9	10.0

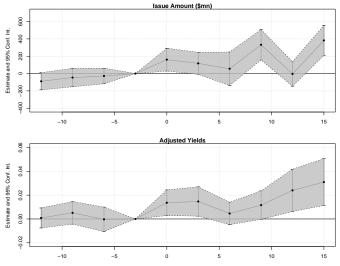

Decarbonization-to-productive capital stock


Mitigation **x**, investment **i**, consumption **c**, and welfare *b* under mandates

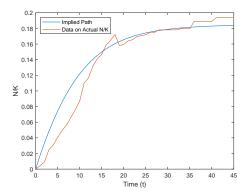
Given $\alpha = 20\%$, mandated spending for qualifying firms and cost-of-capital wedge



Asset pricing results


Application to RPS for US States 1991-2020

Hong, Kubik and Shore (2023) "Capital-Market Effects of Carbon Regulation"


RPS Target Investor-Owned But Exempted Municipal Producers

Issue Level —Event Study with Three-Year Bins

Year Relative to Treatment

Fit of Model Path of N/K versus Actual

Model can explain around half of cost-of-capital effect, i.e. higher dividend yield for targeted firms versus laissez faire counterfactual (firms that get to free ride)

Conclusions

- Sustainable finance mandates a viable policy option depending on greenium — WTP of restricted portfolios
- Realistically, a tool alongside other types of carbon regulation