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Non-technical summary 

Research Question 

How can central banks avoid recessions driven by self-fulfilling fluctuations in beliefs? 
Simple New Keynesian models imply that if the central bank raises nominal rates more 
than one-for-one with increases in inflation, self-fulfilling fluctuations will be ruled out. 
This prescription is known as the “Taylor principle”, and the absence of self-fulfilling 
fluctuations is known as “determinacy”. However, this is not a robust finding. In richer 
models, such as those with household heterogeneity, or with governments that do not 
adjust taxes to stabilise debt levels, satisfying the Taylor principle is neither necessary 
nor sufficient for determinacy. In such models, an aggressive response to inflation can 
lead to belief driven fluctuations in inflation, or worse, to explosive inflation. 

Contribution 

This paper presents a class of monetary rules that give determinacy under the weakest 
possible assumptions about the behaviour of households and firms. We call the rules 
“real rate rules”, as they require the central bank to adjust nominal interest rates one-
for-one with movements in real interest rates, as well as more than one-for-one with 
movements in inflation. The central bank can observe real rates from real (inflation 
protected) bonds, such as Treasury Inflation Protected Securities (TIPS). Real rate rules 
determine inflation via the Fisher equation—the arbitrage relationship between nominal 
and real bonds. They could also be implemented by the central bank intervening in 
inflation swap markets. 

Results 

Under a real rate rule: the central bank can always achieve its target for inflation, no 
matter the rest of the economy; monetary policy works in spite of, not because of, real 
rate movements; causation in the Phillips curve (if it exists) runs exclusively from 
inflation to the output gap, not the other way round; household and firm decisions, 
constraints and inflation expectations are irrelevant for inflation dynamics; and nothing 
can amplify or dampen inflation variance, except changes in the central bank’s own 
behaviour. With a time-varying inflation target, real rate rules can implement optimal 
monetary policy, or match observed dynamics. They continue to work in the presence of 
endogenous risk or liquidity premia in the Fisher equation, and with a government that 
does not adjust taxes to stabilise debt. The performance of real rate rules suggests that 
the Fisher equation is key to the monetary transmission mechanism. 



Nichttechnische Zusammenfassung 

Fragestellung 

Wie können Zentralbanken durch selbsterfüllende Erwartungen getriebene Rezessionen 
vermeiden? In einfachen neukeynesianischen Modellen ist das der Fall, wenn die 
Zentralbank bei einem Inflationsanstieg die Nominalzinsen um mehr als 1:1 erhöht. 
Dieses Verhalten der Zentralbank ist als „Taylor-Prinzip“ bekannt. Wenn keine 
selbsterfüllenden Erwartungen auftreten, bezeichnet man dies als Determiniertheit 
(„determinacy“). Robust ist diese Erkenntnis jedoch nicht. In komplexeren Modellen, 
etwa solchen, in denen auch die Heterogenität der privaten Haushalte berücksichtigt 
wird oder in denen Regierungen keine Steueranpassungen vornehmen, um die 
Schuldenstände zu stabilisieren, ist die Erfüllung des Taylor-Prinzips weder notwendig 
noch hinreichend, um Determiniertheit herzustellen. Eine aggressive geldpolitische 
Reaktion auf einen Inflationsanstieg kann in solchen Modellen zu sich selbsterfüllenden 
Inflationserwartungen führen – oder schlimmer noch, zu explosiven Inflationsdynamiken. 

Beitrag 

Die vorliegende Arbeit befasst sich mit einer Kategorie geldpolitischer Regeln, welche 
auch bei sehr schwachen zugrunde liegenden Annahmen bezüglich des Verhaltens von 
privaten Haushalten und Unternehmen Determiniertheit garantieren. Diese Regeln 
werden als „Realzinsregeln“ bezeichnet, da die Zentralbank dabei die nominalen 
Zinssätze genauso stark anpassen muss, wie sich die realen Zinssätze verändern (1:1). 
Gleichzeitig muss die Anpassung stärker sein als das Voranschreiten der Inflation (mehr 
als 1:1). Zur Bestimmung der realen Zinssätze kann die Zentralbank reale 
(inflationsgeschützte) Anleihen wie etwa Treasury Inflation Protected Securities (TIPS) 
heranziehen. Die Realzinsregeln bestimmen die Inflation mithilfe der Fisher-Gleichung, 
also der Arbitragebeziehung zwischen Nominal- und Realanleihen. Eine Zentralbank 
könnte diese Regeln auch anwenden, indem sie am Markt für Inflationsswaps interveniert. 

Ergebnisse 

Im Rahmen einer Realzinsregel gilt Folgendes: Eine Zentralbank kann ihr Inflationsziel 
unabhängig von den sonstigen wirtschaftlichen Entwicklungen immer erreichen; die 
Geldpolitik funktioniert nicht wegen, sondern trotz Schwankungen der realen Zinssätze; 
sofern in der Phillips-Kurve Kausalität existiert, verläuft sie ausschließlich von der 
Inflation in Richtung der Produktionslücke und nicht umgekehrt; Entscheidungen von 
privaten Haushalten und Unternehmen sowie deren Einschränkungen und 
Inflationserwartungen sind für die Inflationsdynamik irrelevant; außer dem Verhalten der 



  
 

Zentralbank kann nichts die Varianz der Teuerungsrate beeinflussen. Mit einem 
zeitvariablen Inflationsziel können Realzinsregeln die beobachtete Dynamik erklären und 
zur Umsetzung einer optimalen Geldpolitik verwendet werden. Die Regeln funktionieren 
auch, wenn in der Fisher-Gleichung endogene Risiken oder Liquiditätsprämien 
berücksichtigt werden. Gleiches gilt für den Fall, dass eine Regierung keine 
Steueranpassungen vornimmt, um den Schuldenstand zu stabilisieren. Die 
Zuverlässigkeit der Realzinsregeln deutet darauf hin, dass die Fisher-Gleichung für den 
monetären Transmissionsmechanismus von entscheidender Bedeutung ist. 
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Today you start work as president of the Fictian Central Bank (FCB). As FCB 
president, you have a clear mandate to stabilize inflation, even if that results in 
unemployment or output losses. How should you act? You have studied New Keynesian 
macro, so you are inclined to follow some variant of the Taylor rule. You recall the Taylor 
principle: the response of nominal rates to inflation should be greater than one to ensure 
determinacy—the existence of a unique stable solution without self-fulfilling fluctuations. 
But you also remember reading other papers which talked of the Taylor principle being 
insufficient if there are hand-to-mouth households (Gali, Lopez-Salido & Valles 2004), 
firm-specific capital (Sveen & Weinke 2005), high government spending (Natvik 2009), 
or if the inflation target is positive (Ascari & Ropele 2009), particularly in the presence 
of trend growth and sticky wages (Khan, Phaneuf & Victor 2019). Indeed, you recollect 
that the Taylor principle inverts if there are sufficiently many hand-to-mouth households 
(Bilbiie 2008), certain financial frictions (Manea 2019), or non-rational expectations 
(Branch & McGough 2010; 2018). You also recall that if real government surpluses do 
not respond to government debt levels, then following the Taylor principle can lead to 
explosive inflation (Leeper & Leith 2016; Cochrane 2022). Is there a way you could act 
to ensure determinacy and stable inflation, even if one or more of these circumstances is 
true? This paper provides a family of “robust real rate rules” that manage to do this. 
We then reassess classic questions of monetary economics through the lens of these rules. 

To illustrate the idea behind these rules, suppose that both nominal and real bonds 
are traded in an economy. If a unit of the former is purchased at 𝑡𝑡, it returns the principal 
plus a nominal yield of 𝑖𝑖𝑡𝑡 in period 𝑡𝑡 + 1. If a unit of the latter is purchased at 𝑡𝑡, it 
returns the principal plus a nominal yield of 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 in period 𝑡𝑡 + 1, where 𝜋𝜋𝑡𝑡+1 is 
realized inflation between 𝑡𝑡 and 𝑡𝑡 + 1. US Treasury Inflation Protected Securities (TIPS) 
are one example of such real bonds. 

Arbitrage between the nominal and real bond markets implies that the Fisher 
equation must hold, i.e.: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, (1) 
where 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 is the full information rational expectation of period 𝑡𝑡 + 1’s inflation rate, 
given period 𝑡𝑡’s information. We are abstracting for the moment from inflation risk 
premia, term premia and liquidity premia, all of which can generate endogenous wedges 
in the Fisher equation. However, all our results are robust to such wedges, as we 
demonstrate in Section 2. 

Suppose further that the central bank observes both the nominal and real bond 
markets, and that it can intervene in the former. Then the central bank can choose to 
set nominal interest rates according to the simple “real rate rule”: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, (2) 
where 𝜙𝜙 > 1 (the Taylor principle). Combining these two equations gives that: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, 
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which has a unique non-explosive solution of 𝜋𝜋𝑡𝑡 = 0. Determinate inflation! 
Here we have ignored the zero lower bound (ZLB), as the focus of this paper is on 

determinacy away from the ZLB. Nonetheless, in Section 4 we show that real rate rules 
continue to perform well even at the ZLB. We are also sidestepping the issues raised by 
Cochrane (2011) and following the standard New Keynesian literature in assuming 
agents select non-explosive paths for inflation. The limited memory arguments of 
Angeletos & Lian (2021) give one justification for this. Alternatively, under full 
information, the escape clause rules of Christiano & Takahashi (2018; 2020) give central 
banks a way to ensure coordination on expectations consistent with non-explosive 
inflation. We give an alternative solution in Subsection 4.3. 

Why are real rate rules so robust? Firstly, they do not require an aggregate Euler 
equation to hold, even approximately. For the Fisher equation (1) to hold (still ignoring 
risk/term/liquidity premia for now), there only need to be two deep pocketed, fully 
informed, rational agents. Arbitrage takes care of the rest. Even full information is not 
necessary. Since large markets aggregate information (Hellwig 1980; Lou et al. 2019), the 
Fisher equation can come to hold even when information about future inflation is 
dispersed amongst market participants. 

Given that the rule does not require an aggregate Euler equation to hold, it is 
automatically robust to heterogeneity, hand-to-mouth agents and non-rational consumer 
expectations. The only expectations that matter are the expectations of participants in 
the markets for nominal and real bonds. It is much more reasonable to assume that 
financial market outcomes lead to rational expectations than to assume rationality of 
households more generally. 

In fact, even financial market participants do not need to be fully rational. The 
combination of equations (1) and (2) is globally stable under learning, even when 
financial market participants start with a prior not centred at zero. In particular, suppose 
financial market participants approximate 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 with 1

𝑡𝑡+𝑤𝑤 �𝑤𝑤𝜋𝜋̌ + ∑ 𝜋𝜋𝑠𝑠
𝑡𝑡
𝑠𝑠=1 �, where 𝜋𝜋̌ is 

the mean of their prior beliefs, and 𝑤𝑤 ≥ 0 gives the weight placed on these priors. For 
convenience, define 𝜋𝜋0 ≔ �̌�𝜋

𝜙𝜙. Then, for 𝑡𝑡 ≥ 1, 𝜋𝜋𝑡𝑡 solves: 

𝜙𝜙𝜋𝜋𝑡𝑡 = 1
𝑡𝑡 + 𝑤𝑤

�𝑤𝑤𝜋𝜋̌ + �𝜋𝜋𝑠𝑠

𝑡𝑡

𝑠𝑠=1
� = 𝑡𝑡 − 1 + 𝑤𝑤

𝑡𝑡 + 𝑤𝑤
𝜙𝜙𝜋𝜋𝑡𝑡−1 + 1

𝑡𝑡 + 𝑤𝑤
𝜋𝜋𝑡𝑡, 

which implies that if 𝜙𝜙 > 1, then 𝜋𝜋𝑡𝑡 → 0 as 𝑡𝑡 → ∞.1 This guarantee of global stability 
under learning is a large improvement over standard monetary rules, for which at best 
local stability can be proven (see e.g., Bullard & Mitra 2002). 

 
1 We have that: 

𝜋𝜋𝑡𝑡 =
𝑡𝑡 + 𝑤𝑤 − 1

𝑡𝑡 + 𝑤𝑤 − 𝜙𝜙−1 𝜋𝜋𝑡𝑡−1 =
𝜋𝜋̌
𝜙𝜙

�
𝑠𝑠 + 𝑤𝑤 − 1

𝑠𝑠 + 𝑤𝑤 − 𝜙𝜙−1

𝑡𝑡

𝑠𝑠=1
=

Γ(𝑡𝑡 + 𝑤𝑤)
Γ(𝑤𝑤)

Γ(𝑤𝑤 + 1 − 𝜙𝜙−1)
Γ(𝑡𝑡 + 𝑤𝑤 + 1 − 𝜙𝜙−1)

𝜋𝜋̌
𝜙𝜙
. 

Hence, by Gautschi’s inequality, 𝜋𝜋𝑡𝑡 = 𝑂𝑂 �(𝑡𝑡+𝑤𝑤+1)�1
𝜙𝜙�

𝑡𝑡+𝑤𝑤 � as 𝑡𝑡 → ∞. 
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Real rate rules also have a second source of robustness: they do not require an 
aggregate Phillips curve to hold. The slope of the Phillips curve can have no impact on 
the dynamics of inflation. If a central bank is unconcerned with output, they do not even 
need to know if the Phillips curve holds, let alone its slope. Nor does it matter how firms 
form inflation expectations. Inflation is pinned down by the Fisher and monetary rules, 
so while non-rational firm expectations could affect output fluctuations, they will not 
alter the dynamics of inflation. The only requirement is that at least some prices are 
updated each period using current information. 

The possibility of decoupling inflation from the rest of the economy has wide ranging 
implications. For example, there is a tradition in monetary economics of examining model 
features producing amplification or dampening of monetary shocks. Under a real rate 
rule, assuming the Fisher equation holds, then no change to the model can ever produce 
amplification or dampening, except perhaps a change to the monetary rule. Thus, such 
amplification/dampening results were always highly dependent on the particular 
monetary rule being used. With a greater than unit response to real rates, amplification 
can be flipped to dampening, and vice versa. 

Likewise, a persistent question in monetary economics has been “which shocks drive 
inflation?”. Here too, the answer must be crucially sensitive to the monetary rule being 
used. Under a real rate rule, only monetary policy shocks or shocks to the Fisher equation 
could possibly move inflation. The central bank has the power to almost perfectly control 
inflation, so ultimate responsibility for inflation must rest with them. 

The rest of this paper further examines “real rate rules”, along with the classic 
questions of monetary economics they help answer. The next section generalizes the 
simple rule of equation (2) along various dimensions, including examining monetary 
policy shocks, and rules that respond to other endogenous variables. We also look at the 
implication of real rate rules in simple New Keynesian models. Section 1 goes on to show 
that with a time varying inflation target, real rate rules can determinately implement an 
arbitrary path for inflation, robustly across models. Hence, real rate rules can attain high 
welfare, and could explain observed inflation dynamics. Section 1 also shows that interest 
rate smoothing gives additional robustness to real rate rules. 

Next, Section 2 examines some potential challenges to the performance of real rate 
rules. We show they also work in fully non-linear models and that they are robust to 
endogenous wedges in the Fisher equation. We also show that, generically, real rate rules 
continue to work even when inflation is determined by something other than monetary 
policy, as under the fiscal theory of the price level, and we address a technical criticism 
about implementability out of equilibrium. 

Section 3 discusses how a real rate rule could be implemented in practice. We show 
that it is easy to adapt real rate rules to work with longer bonds, and that neither 
information lags nor indexation lags present a challenge to the performance of these 
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rules. Finally, Section 4 presents a tweaked real rate rule designed to ensure determinacy 
even in the presence of the zero lower bound. Section 4 also gives one way to rule out 
equilibria with explosive inflation or permanent ZLB traps. 

Prior literature. Rules like equation (2) have appeared in Adão, Correia & Teles 
(2011), Lubik, Matthes & Mertens (2019) and Holden (2021) amongst other places. 
However, in the prior literature they have chiefly been introduced for analytic 
convenience, rather than as serious proposals. One exception is the work of Cochrane 
(2017; 2022) who briefly discusses rules of this form within the context of a wider 
discussion of rules that hold 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant (i.e. rules with 𝜙𝜙 = 0). Cochrane (2018) 
further explores rules holding 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant. 

The “indexed payment on reserve” rules of Hall & Reis (2016) also rely on observable 
real rates, but use a different mechanism to achieve determinacy. They propose that the 
CB issues an asset (“reserves”) with nominal return from $1 of $(1 + 𝑟𝑟𝑡𝑡)

𝑝𝑝𝑡𝑡+1
𝑝𝑝𝑡𝑡

∗  or 
$(1 + 𝑖𝑖𝑡𝑡)

𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡

∗. Additionally, in older work, Hetzel (1990) proposes using the spread between 

nominal and real bonds to guide monetary policy, and Dowd (1994) proposes targeting 
the price of futures contracts on the price level. This has a similar flavour to a real rate 
rule, as these rules effectively use expected inflation as the instrument of monetary policy. 

There is also an established literature looking at rules tracking the efficient 
(“natural”) real interest rate, see e.g. Cúrdia et al. (2015). This is a very different idea. 

1 Generalizations and generality 
This section considers assorted generalizations to real rate rules, and further 

examines the sources of their robustness. We look at real rate rules 1) in the presence of 
monetary policy shocks, 2) in the three equation NK model, 3) with responses to other 
endogenous variables, 4) with time varying inflation targets and 5) with interest rate 
smoothing. 

1.1 Monetary policy shocks 

While the simple rule (2) always produces zero inflation, slight extensions of the rule 
allow inflation to move. For example, we can add a monetary policy shock, 𝜁𝜁𝑡𝑡 to the rule, 
giving: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. (3) 
One source of monetary policy shocks could be the central bank’s limited 

information. If the central bank does not perfectly observe current inflation, and sets 
interest rates to 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋�̃�𝑡, where 𝜋𝜋�̃�𝑡 is its signal about inflation, then it will end up 
setting a slightly different level for nominal rates than that dictated by the rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 +
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𝜙𝜙𝜋𝜋𝑡𝑡, effectively generating monetary policy shocks.2 However, this kind of limited 
information is inconsistent with our simple model’s assumptions. Real bonds purchased 
at 𝑡𝑡 − 1 give a return in period 𝑡𝑡 which is a function of 𝜋𝜋𝑡𝑡. Hence, 𝜋𝜋𝑡𝑡 must be available 
to all parties in period 𝑡𝑡. (It is not “true” inflation that matters, but whatever inflation 
measure is used in the real bond contract.) Of course, in reality inflation is released with 
a lag, and real bonds have additional indexation lag. We explicitly model these lags in 
Section 3, and our conclusions remain the same. 

The central bank might also deliberately decide to introduce monetary policy shocks 
correlated with the economy’s structural shocks. For example, by lowering 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 
following a positive mark-up or cost-push shock, the central bank can lessen the 
movement in the output gap.3 This has no effect on the determinacy region as structural 
shocks are exogenous. For now though, we assume that 𝜁𝜁𝑡𝑡 is independent of other 
structural shocks. 

From combining (3) with the Fisher equation (1) we have: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

which (with 𝜙𝜙 > 1) has the unique solution 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡, if 𝜁𝜁𝑡𝑡 follows an AR(1) process 

with persistence 𝜌𝜌𝜁𝜁. 
A contractionary (positive) monetary policy shock results in a fall in inflation, as 

expected. If the central bank is more aggressive, so 𝜙𝜙 is larger, then inflation is less 
volatile. Only monetary policy shocks affect inflation. Of course, if there is a nominal 
rigidity in the model, such as sticky prices or wages, monetary shocks may have an 
impact on real variables. But as long as the central bank follows rules like this, these 
real disruptions have no feedback to inflation. We can understand inflation without 
worrying about the rest of the economy. 

In line with this, an extensive body of empirical evidence finds no role for the Phillips 
curve in forecasting inflation (see e.g. Atkeson & Ohanian 2001; Ang, Bekaert & Wei 
2007; Stock & Watson 2009; Dotsey, Fujita & Stark 2018). In a recent contribution, 
Dotsey, Fujita & Stark (2018) find that in the post-1984 period, Phillips curve based 
forecasts perform worse than those of a simple IMA(1,1) model, both unconditionally 
and conditional on various measures of the state of the economy. This provides strong 
support for models in which the causation in the Phillips curve runs in only one direction: 
from inflation to the output gap.4 

 
2 Lubik, Matthes & Mertens (2019) look at the determinacy consequences of a central bank that filters 
inflation signals in order to retrieve the optimal estimate. The determinacy problems they highlight all 
disappear if the central bank directly responds to its signal. 
3 Ireland (2007) presents evidence that the US Federal Reserve has reacted to mark-up shocks.  
4 McLeay & Tenreyro (2019) provide an alternative explanation based on the fact that optimal policy 
prescribes a negative correlation between inflation and output, making difficult empirical identification 
of the Phillips curve. 
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Additionally, Miranda-Agrippino & Ricco (2021) find that a contractionary 
monetary policy shock causes an immediate fall in the price level, while impacts on 
unemployment materialise much more slowly. Again, this suggests that causation in the 
Phillips curve runs from inflation to unemployment, not the other way round. 

1.2 Robust real rate rules in the three equation NK world 

To understand how the real rate rule of equation (3) can explain causation running 
from inflation to the output gap in the Phillips curve, suppose the rest of the model 
comprises the Phillips curve:5 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (4) 
and the discounted/compounded Euler equation: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), (5) 
where 𝑥𝑥𝑡𝑡 is the output gap, 𝜔𝜔𝑡𝑡 is a mark-up/cost-push shock, and 𝑛𝑛𝑡𝑡 is the exogenous 
natural real rate of interest. This form of discounted/compounded Euler equation 
appears in Bilbiie (2019) and (under discounting) in McKay, Nakamura & Steinsson 
(2017). The latter paper shows it provides a good approximation to a heterogeneous 
agent model with incomplete markets. The standard Euler equation is recovered if 𝛿𝛿 = 1 
and 𝜍𝜍 is the elasticity of intertemporal substitution. This specification also nests the 
limited asset market participation or “TANK” model of Bilbiie (2008) when 𝛿𝛿 = 1, but 
𝜍𝜍 is allowed to be negative. 

Since 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡, and 𝜁𝜁𝑡𝑡 is AR(1) with persistence 𝜌𝜌𝜁𝜁, the Phillips curve (4) 

implies that 𝑥𝑥𝑡𝑡 = − 1
𝜅𝜅

1−𝛽𝛽𝜌𝜌𝜁𝜁
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡 − 𝜔𝜔𝑡𝑡. The Phillips curve is determining the output gap, 

given the already determined level of inflation. Does 𝑥𝑥𝑡𝑡 help forecast 𝜋𝜋𝑡𝑡 here? Clearly 
no. 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = − 1

𝜙𝜙−𝜌𝜌𝜁𝜁
𝔼𝔼𝑡𝑡𝜁𝜁𝑡𝑡+1 = − 𝜌𝜌𝜁𝜁

𝜙𝜙−𝜌𝜌𝜁𝜁
𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁𝜋𝜋𝑡𝑡. Once you know 𝜋𝜋𝑡𝑡, you already have all 

the information you need to form the optimal forecast of 𝜋𝜋𝑡𝑡+1. The correlation in 𝜋𝜋𝑡𝑡 and 
𝑥𝑥𝑡𝑡 provides no extra information.6 

This model also enables us to show the robustness of our rule’s determinacy in 
practice. Note that with 𝑥𝑥𝑡𝑡 expressed as a linear combination of exogenous variables, 
there is no need to solve the Euler equation (5) forward, so the degree of discounting (𝛿𝛿) 
can have no effect on determinacy. Not needing to solve the Euler equation forward also 
gives robustness to a missing transversality constraint on household assets, as under an 
overlapping generations structure. The only role of the Euler equation is to pin down 
real rates, given inflation and the output gap. For example, if 𝜔𝜔𝑡𝑡 is independent across 
time, then the Euler equation implies 𝑟𝑟𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 1

𝜍𝜍 �1
𝜅𝜅

�1−𝛽𝛽𝜌𝜌𝜁𝜁��1−𝛿𝛿𝜌𝜌𝜁𝜁�
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡 + 𝜔𝜔𝑡𝑡�. 

 
5 Throughout this paper, we multiply the mark-up shock by 𝜅𝜅 as the ratio of the response to 𝑥𝑥𝑡𝑡 and the 
response to 𝜔𝜔𝑡𝑡 is not a function of either the (Calvo) price adjustment probability or the (Rotemberg) 
price adjustment cost. See Khan (2005) for derivations. 
6 This result is robust to generalizing to an ARMA(1,1) process for 𝜁𝜁𝑡𝑡. See Appendix E.1. 
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The irrelevance of Euler equation parameters for determinacy contrasts with the 
prior literature on determinacy under standard monetary rules. For example, under 
standard monetary rules, Bilbiie (2019) finds that when 𝜍𝜍 > 0 and 𝛽𝛽 ≤ 1, the Taylor 
principle (𝜙𝜙 > 1) is only sufficient for determinacy in the discounting case (𝛿𝛿 ≤ 1),7 and 
Bilbiie (2008) finds that when 𝛿𝛿 = 1 and 𝜍𝜍 < 0, the Taylor principle (𝜙𝜙 > 1) is neither 
necessary nor sufficient for determinacy.8 Under our rule (3), the Taylor principle is 
necessary and sufficient for determinacy whether there is discounting or compounding, 
and whether 𝜍𝜍 is positive or negative (at least given 𝜙𝜙 ≥ 0).9 

The rule is also robust to the presence of lags in the Euler or Phillips curve. For 
example, suppose the Phillips curve and Euler equation are instead given by: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽�̃�𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (6) 
𝑥𝑥𝑡𝑡 = 𝛿𝛿(̃1 − 𝜚𝜚𝑥𝑥)𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 + 𝛿𝛿�̃�𝜚𝑥𝑥𝑥𝑥𝑡𝑡−1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

where 𝛽𝛽 ̃and 𝛿𝛿 ̃may not have the same structural interpretation as 𝛽𝛽 and 𝛿𝛿 (depending 
on the precise micro-foundation). These equations have no impact on the solution for 
inflation, which remains 𝜋𝜋𝑡𝑡 = − 1

𝜙𝜙−𝜌𝜌𝜁𝜁
𝜁𝜁𝑡𝑡. Instead, the lag in the Euler equation changes 

the dynamics of real interest rate, with no impact on inflation or output gaps, while the 
lag in the Phillips curve affects both output gap and real rate dynamics, with no impact 
on inflation. For example, if 𝜁𝜁𝑡𝑡’s law of motion is given by 𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡, where 
𝔼𝔼𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 = 0, then: 

𝑥𝑥𝑡𝑡 = 1
𝜅𝜅

1
𝜙𝜙 − 𝜌𝜌𝜁𝜁

��𝛽𝛽�̃�𝜚𝜋𝜋 − 𝜌𝜌𝜁𝜁�1 − 𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)𝜌𝜌𝜁𝜁�� 𝜁𝜁𝑡𝑡−1 − �1 − 𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)𝜌𝜌𝜁𝜁�𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. 

As before, the output gap has a closed form solution in terms of the monetary policy 
and cost push shocks. Despite appearances, inflation is not a true endogenous state, as 
it must always equal − 1

𝜙𝜙−𝜌𝜌𝜁𝜁
𝜁𝜁𝑡𝑡. Monetary policy shocks are still always contractionary, 

but they only have a short-lived impact on the output gap if 𝜚𝜚𝜋𝜋 is around 𝜌𝜌𝜁𝜁�1−𝛽𝛽𝜌𝜌𝜁𝜁�
𝛽𝛽�1−𝜌𝜌𝜁𝜁

2� . 

1.3 Responding to other endogenous variables 

The original Taylor rule contained a response to output. Even with a unit coefficient 
on the real interest rate, responding to output will change determinacy conditions, 
though it still preserves some robustness. To see this, consider the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥𝑥𝑥𝑡𝑡 + 𝜁𝜁𝑡𝑡. 
Assuming the lag-augmented NK Phillips curve (6) continues to hold, this monetary rule 
is equivalent to the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�𝜋𝜋𝑡𝑡 − 𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽�̃�𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1� − 𝜙𝜙𝑥𝑥𝜔𝜔𝑡𝑡 + 𝜁𝜁𝑡𝑡. 

 
7 See equation (40) of Appendix C.1 of Bilbiie (2019). 
8 See Proposition 7 of Appendix B.1 of Bilbiie (2008). 
9 In Appendix E.2 we prove that this is robust to monetary responses to the real rate which are not 
exactly equal to 1. This is also a corollary of the more general result proven in Appendix E.4. 
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(This is produced by using the Phillips curve to substitute out the output gap.) 
Combined with the Fisher equation, we have that: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�𝜋𝜋𝑡𝑡 − 𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽�̃�𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1� − 𝜙𝜙𝑥𝑥𝜔𝜔𝑡𝑡 + 𝜁𝜁𝑡𝑡. 
This has a determinate solution if the quadratic: 

�1 + 𝜅𝜅−1𝜙𝜙𝑥𝑥𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)�𝐴𝐴2 − (𝜙𝜙𝜋𝜋 + 𝜅𝜅−1𝜙𝜙𝑥𝑥)𝐴𝐴 + 𝜅𝜅−1𝜙𝜙𝑥𝑥𝛽𝛽�̃�𝜚𝜋𝜋 = 0 
has a unique solution for 𝐴𝐴 inside the unit circle. It is sufficient that the quadratic is 
positive at 𝐴𝐴 = −1 but negative at 𝐴𝐴 = 1, which holds if and only if: 

1 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�1 + 𝛽𝛽�̃ + 𝜙𝜙𝜋𝜋 > 0, 1 − 𝜅𝜅−1𝜙𝜙𝑥𝑥�1 − 𝛽𝛽�̃ − 𝜙𝜙𝜋𝜋 < 0. 
So, if 𝜅𝜅 > 0, 𝜙𝜙𝑥𝑥 ≥ 0 and 𝛽𝛽 ̃ ∈ [0,1] as expected, then it is sufficient that 𝜙𝜙𝜋𝜋 > 1 as before.10 
This is still considerable robustness. Providing there is something like a Phillips curve 
linking inflation and the output gap, the standard 𝜙𝜙𝜋𝜋 > 1 condition will be sufficient for 
determinacy. This would not hold with a more standard monetary rule without a 
response to real rates: in that case determinacy depends on 𝛿𝛿 ̃and 𝜍𝜍, as shown by the 
Bilbiie (2008; 2019) results discussed in the last subsection. 

Responding to real rates provides additional robustness even with a response to 
output as it disconnects the Euler equation from the rest of the model. The only 
remaining role of the Euler equation is to give a path for real rates, given the already 
determined paths of output and inflation.11 The Fisher equation, not the Euler equation 
is central to monetary policy transmission under real rate rules. 

For greater robustness, the central bank can replace the response to the output gap 
with a response to the cost push shock 𝜔𝜔𝑡𝑡. With an appropriate response to 𝜔𝜔𝑡𝑡, this is 
observationally equivalent to responding to the output gap, but ensures determinacy 
under the standard Taylor principle. 

However, it may be hard for the central bank to observe the cost push shock. To get 
round this, suppose that the central bank knows that a Phillips curve in the form of 
equation (6) holds. (Our results would generalize to other links between real and nominal 
variables.) For now, suppose the central bank also knows the coefficients in equation (6). 
Then the central bank could use a rule of the form: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥 �𝑥𝑥𝑡𝑡 − 𝜅𝜅−1�𝜋𝜋𝑡𝑡 − 𝛽𝛽(̃1 − 𝜚𝜚𝜋𝜋)𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽�̃�𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1�� + 𝜁𝜁𝑡𝑡. 

By equation (6), this implies that: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 − 𝜙𝜙𝑥𝑥𝜔𝜔𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

 
10 This is stronger than necessary. The second condition states that 𝜙𝜙𝜋𝜋 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�1 − 𝛽𝛽�̃ > 1 so a response 
to the output gap can substitute for a response to inflation. This condition is identical to that for the 
standard (purely forward looking) three equation NK model with Taylor type rule found in Woodford 
(2001). 
11 This is analogous to how the Euler equation is slack when solving for optimal monetary policy. In 
that case, the combined Euler equation and Fisher equation give the level of nominal rates required to 
hit the optimal output gap and inflation. The author thanks Florin Bilbiie for this observation. 
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as desired. Of course, the central bank is also unlikely to know the exact coefficients in 
the Phillips curve. However, we show in Appendix E.3 that the central bank may learn 
these coefficients in real time, without changing the determinacy conditions, at least 
under reasonable parameter restrictions.12 

If the central bank wishes to respond to other endogenous variables, a similar 
approach should be possible if they are aware of the broad form of the model’s structural 
equations. However, the central bank may legitimately worry about having fundamental 
misconceptions about how the economy works. They can be reassured though that the 
Taylor principle is sufficient for determinacy if the response to other endogenous variables 
is small enough, no matter the form of the model’s other equations. We prove this in 
Appendix E.4. This also implies that a precise unit response to real rates is not needed 
for determinacy. Real rates are just another endogenous variable, so determinacy only 
requires a response sufficiently close to one. 

Classic results on determinacy in monetary models can be reinterpreted through this 
lens. Even if the central bank is not responding to real interest rates, it is still likely to 
be responding to variables that are highly correlated with them. Determinate rules will 
be ones sufficiently close to a real rate rule. 

For example, many models contain an Euler equation of the form: 

1 = 𝛽𝛽(exp 𝑟𝑟𝑡𝑡)𝔼𝔼𝑡𝑡 �
𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡+1
�

1
𝜍𝜍
, 

where 𝐶𝐶𝑡𝑡 is real consumption per capita and 𝜍𝜍 is the elasticity of intertemporal 
substitution. Additionally, in many models, in equilibrium, consumption growth roughly 
follows an ARMA(1,1) process: 

𝑔𝑔𝑡𝑡 ≔ log �
𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡−1
� = �1 − 𝜌𝜌𝑔𝑔�𝑔𝑔 + 𝜌𝜌𝑔𝑔𝑔𝑔𝑡𝑡−1 + 𝜀𝜀𝑔𝑔,𝑡𝑡 + 𝜃𝜃𝑔𝑔𝜀𝜀𝑔𝑔,𝑡𝑡−1, 𝜀𝜀𝑔𝑔,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝑔𝑔

2�. 

(This is a good approximation to US post-war data.13) Combining these two equations 
gives that: 

𝑟𝑟𝑡𝑡 = − log 𝛽𝛽 +
1 − 𝜌𝜌𝑔𝑔

𝜍𝜍
𝑔𝑔 − 1

2 �
𝜎𝜎𝑔𝑔

𝜍𝜍 �
2
+

𝜌𝜌𝑔𝑔

𝜍𝜍
𝑔𝑔𝑡𝑡 +

𝜃𝜃𝑔𝑔

𝜍𝜍
𝜀𝜀𝑔𝑔,𝑡𝑡, 

implying that a (roughly) 𝜌𝜌𝑔𝑔
𝜍𝜍  response to consumption growth can substitute for a 

(roughly) unit response to real rates. 
Of course, output (growth, level or gap) is in turn highly correlated with 

consumption growth, so output (growth, level or gap) may also substitute for real rates. 
For example, in the Smets & Wouters (2007) model of the US economy, the monetary 

 
12 It is sufficient (but not necessary) that 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽 ̃ ∈ [0,1], 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌𝜁𝜁 ∈ [0,1) and 

𝜙𝜙𝜋𝜋 > max � 1
𝛽𝛽(̃1−𝜚𝜚𝜋𝜋)

, 2(1 − 𝜚𝜚𝜋𝜋), 𝜙𝜙𝑥𝑥�1+𝛽𝛽�̃
𝜅𝜅 �. 

13 Estimating on US data from 1947Q1 to 2021Q4 (BEA series: A794RX) with T-distributed shocks 
gives 𝜌𝜌𝑔𝑔 = 0.69, 𝜃𝜃𝑔𝑔 = −0.50 (p-values both below 10−5). Using Gaussian shocks on less volatile sub-
periods gives similar results. 
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rule is of the form 𝑖𝑖𝑡𝑡 = 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝑧𝑧𝑡𝑡 + 𝜁𝜁𝑡𝑡, where 𝑧𝑧𝑡𝑡 is a linear combination of other 
endogenous variables and 𝜁𝜁𝑡𝑡 is the monetary shock. At the estimated posterior mode, 
the correlation between 𝑧𝑧𝑡𝑡 and the real interest rate is 0.63, with both variables having 
standard deviation of 0.46%. Thus, the Smets & Wouters (2007) estimates imply that 
the Fed is already about two thirds of the way to using a simple robust real rate rule. 

There is one final way of allowing an interest rate response to other endogenous 
variables that is both simple and robust. Rather than placing the endogenous variables 
directly within the rule, the central bank can follow a time-varying inflation target which 
is a function of these endogenous variables. We examine this approach in the next 
subsection. 

1.4 Implementing arbitrary inflation dynamics 

Instead of responding directly to other endogenous variable or exogenous shocks, the 
central bank could instead adopt a time-varying inflation target. With this target 
responding to other endogenous variables or shocks, very similar outcomes can be 
obtained. In this subsection, we show that real rate rules can determinately implement 
any target path for inflation, no matter the rest of the model. This implies they can also 
implement optimal policy, and so attain high welfare. It also implies that any observed 
inflation and interest rate dynamics are consistent with a real rate rule. 

Let 𝜋𝜋𝑡𝑡
∗ be the central bank’s inflation target. This may be a function of other 

endogenous variables, and of the economy’s shocks.14 For example, in order to dampen 
the output response to mark-up shocks, the central bank could set 𝜋𝜋𝑡𝑡

∗ either as a 
decreasing function of 𝑥𝑥𝑡𝑡, or as an increasing function of 𝜔𝜔𝑡𝑡. The central bank should 
publish this target each period, else the limited information of market participants could 
lead to additional volatility. 

With a time-varying inflation target, the real rate rule becomes: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). (7) 

From the Fisher equation (1), this implies: 
𝔼𝔼𝑡𝑡(𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ ) = 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). 

Again with 𝜙𝜙 > 1, there is a unique non-explosive solution for 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗, now with 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗ 
for all 𝑡𝑡. I.e., at all periods of time, and in all states of the world, realised inflation is 
equal to 𝜋𝜋𝑡𝑡

∗. Effectively, the central bank is able to choose an arbitrary path for inflation 
as the unique, determinate equilibrium outcome. 

There are only two constraints on the targeted path for inflation. The first is that 
the central bank must be capable of calculating a reasonable approximation to 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ . 
One way to ensure this is to make 𝜋𝜋𝑡𝑡

∗ only a function of 𝑡𝑡 − 1 dated variables. 
Alternatively, the central bank could respond to variables for which there are liquid 

 
14 Ireland (2007) also allows the central bank’s inflation target to respond to other structural shocks. 
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futures or option markets, or the central bank could form these expectations using a 
forecasting model. Errors in these forecasts will show up as monetary policy shocks, 
increasing the variance of 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗, but this can be dampened with large 𝜙𝜙. 
The second constraint on the target inflation path is that it should not induce 

explosive dynamics in inflation. For example, if 𝜋𝜋𝑡𝑡
∗ ≔ 2𝜋𝜋𝑡𝑡−1 + 𝜀𝜀∗,𝑡𝑡, for some target shock 

𝜀𝜀∗,𝑡𝑡, then with 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗, 𝜋𝜋𝑡𝑡 = 2𝜋𝜋𝑡𝑡−1 + 𝜀𝜀∗,𝑡𝑡, which is an explosive process. One way to 

ensure this is for 𝜋𝜋𝑡𝑡
∗ to only be a function of exogenous variables, but this is far from 

necessary. However, even were 𝜋𝜋𝑡𝑡
∗ constrained to not be a function of endogenous 

variables, this would still not be much of a limitation, since in stationary equilibrium, 
endogenous variables must have a representation as a function of the infinite history of 
the economy’s shocks. This means that even with an exogenous 𝜋𝜋𝑡𝑡

∗, rules in the form of 
(7) can mimic the outcomes of any other monetary policy regime. We show this formally 
in Appendix E.5. 

This has two important implications. Firstly, it means that appropriately designed 
real rate rules can implement (timeless/unconditional/etc.) optimal policy, and thus 
attain the highest possible level of welfare.15 In Appendix C we look at welfare in New 
Keynesian models when the central bank is constrained to follow a real rate rule that 
produces simple inflation dynamics. We show that even with such a constraint, real rate 
rules can still come close to fully optimal policy. 

Secondly, it means that it is impossible to test empirically if a central bank is using 
a general real rate rule. Any dynamics of inflation and interest rates are consistent with 
a real rate rule like (7), for an appropriately chosen 𝜋𝜋𝑡𝑡

∗. Thus, real rate rules are 
observationally equivalent to any other specification for central bank behaviour. While 
in the last subsection we found that the Fed was not exactly using a simple real rate 
rule, we now see that a slightly more sophisticated real rate rule could fully explain Fed 
behaviour. 

1.5 Adding interest rate smoothing 

High degrees of interest rate smoothing are often thought to be a good description 
of actual central bank behaviour given the rarity of large interest rate changes. However, 
since the rule (7) can generate arbitrary inflation dynamics (and hence arbitrary nominal 
rate dynamics), we cannot conclude based on observed nominal rates that the central 
bank is actually smoothing rates. Nonetheless, interest rate smoothing is worth 
investigating in our context, as it can be a source of additional robustness. 

For example, suppose that the central bank sets interest rates according to the fully 
 

15 Other papers have examined the implementation of optimal policy in specific models using instrument 
rate rules (see e.g. Svensson & Woodford 2003; Dotsey & Hornstein 2006; Evans & Honkapohja 2006; 
Evans & McGough 2010). Ours is unique in enabling the implementation of a certain inflation path 
robustly across models. 
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smoothed real rate rule:16 
𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡
∗ + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), 
where 𝜃𝜃 > 0 and where 𝜋𝜋𝑡𝑡

∗ is the inflation target, as before. Under a real rate rule, the 
central bank should attempt to smooth 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡, not just 𝑖𝑖𝑡𝑡. This ensures real rates can 
still be substituted out from the Fisher equation. Hence, we have 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1 on the right-
hand side. 

Combining this monetary rule with the Fisher equation gives: 
𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡
∗ + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) = 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
Now, from the lagged Fisher equation, 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1 = 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡, so: 

𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗) = 𝔼𝔼𝑡𝑡(𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ ) − 𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). 

To solve this equation, first let 𝑝𝑝𝑡𝑡 ≔ ∑ (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗)𝑡𝑡

𝑠𝑠=1  be the price level relative to its 
target trend, normalized to 𝑝𝑝0 = 0. Thus: 

𝜃𝜃(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1) = 𝔼𝔼𝑡𝑡(𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡) − 𝔼𝔼𝑡𝑡−1(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1). 
Summing this equation over time (from period 1 to period 𝑡𝑡) then gives that: 

𝜃𝜃𝑝𝑝𝑡𝑡 = 𝔼𝔼𝑡𝑡(𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡) − 𝔼𝔼0𝑝𝑝1. 
Hence, if we define 𝑝𝑝�̂�𝑡 ≔ 𝑝𝑝𝑡𝑡 + 1

𝜃𝜃 𝔼𝔼0𝑝𝑝1, then: 
(1 + 𝜃𝜃)𝑝𝑝�̂�𝑡 = 𝔼𝔼𝑡𝑡𝑝𝑝�̂�𝑡+1. 

For 𝜃𝜃 > 0, this has the unique equilibrium 𝑝𝑝�̂�𝑡 = 0, so 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ for all 𝑡𝑡, as required. 

In equilibrium then, our smoothed real rate rule produces the same inflation (and 
hence the same nominal rates) as our unsmoothed real rate rule, equation (7). However, 
it is more robust in one crucial respect. Whereas the rule in equation (7) required a 
response to current inflation of 𝜙𝜙 > 1, the fully smoothed real rate rule just needs a 
response to current inflation of 𝜃𝜃 > 0. 

In practice, it may be hard for central banks to commit to responding more than 
one for one to inflation. Even if they manage this, it is likely to be hard for them to 
convince other economic agents that they really will be so aggressive all the time. Since 
inflation and nominal rates are identical for any 𝜙𝜙 > 1, there is no way for these agents 
to observe 𝜙𝜙. Even with 𝜙𝜙 < 1, there are equilibria which are observationally equivalent 
to the equilibria with 𝜙𝜙 > 1. It is likely to be far easier for central banks to convince 
economic agents that they just respond positively to inflation. This is all that is needed 
for a fully smoothed real rate rule. 

For the rest of this paper, we return to looking at unsmoothed rules. However, all 
our results would generalize to smoothed rules. There is a strong case for the preferability 
of such smoothing. 

2 Challenges to real rate rules 
We have established the excellent properties of real rate rules when the linear Fisher 

 
16 We examine partially smoothed real rate rules in Appendix E.6. 
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equation holds. However, the linear Fisher equation may fail to hold exactly due to risk 
premia or other wedges. We address risk premia in the first subsection here, via 
examining real rate rules in fully non-linear models, and then we look at other wedges 
in the following subsection. We show real rate rules still retain their robustness. 

We then examine whether the possibility of inflation being determined independently 
of monetary policy represents a challenge to robust real rate rules. This is relevant under 
active fiscal policy, for example. We show that with long maturity debt, a solution with 
stable inflation and stable real variables always exists, independent of whether fiscal 
policy is active or passive. This implies that the fiscal theory of the price level fails to 
determine a unique outcome in general, a result which may be of independent interest. 

Finally, we verify that it is actually possible for a central bank to apply a real rate 
rule out of equilibrium. This concern disappears once out of equilibrium behaviour is 
fully specified.  

2.1 Risk premia and non-linear models 

Our examples so far have been linearized models. Linearization removes the risk premium 
that enters the Fisher equation due to inflation risk. It is thus important for us to verify 
that real rate rules still work in fully non-linear models. 

Suppose that Ξ𝑡𝑡+1 is the real stochastic discount factor (SDF) between period 𝑡𝑡 and 
period 𝑡𝑡 + 1, and that 𝐼𝐼𝑡𝑡 is the gross nominal interest rate (so 𝑖𝑖𝑡𝑡 = log 𝐼𝐼𝑡𝑡) and that 𝑅𝑅𝑡𝑡 is 
the gross real interest rate (so 𝑟𝑟𝑡𝑡 = log 𝑅𝑅𝑡𝑡). Then the pricing equations for one-period 
nominal and real bonds imply: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1, 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

The nonlinear version of equation (2) is the following rule: 

𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π∗ �
Π𝑡𝑡
Π∗�

𝜙𝜙
, 

where we allow for a constant gross inflation target of Π∗. Combining this rule with the 
bond pricing equations implies that: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

=
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π∗ �
Π∗

Π𝑡𝑡
�

𝜙𝜙
, 

so: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π∗

Π𝑡𝑡+1
= �

Π∗

Π𝑡𝑡
�

𝜙𝜙
. 

It is easy to see that Π𝑡𝑡 = Π∗ is always one solution of this equation, as 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
= 1. 

Thus, robust real rate rules are always consistent with stable inflation, even in fully non-
linear models. 

Furthermore, under mild assumptions, there exists a constant 𝑍𝑍 ≥ 1 such that for 
all sufficiently high 𝜙𝜙, 1 ≤ Π∗

Π𝑡𝑡
≤ 𝑍𝑍

1
𝜙𝜙−1. This upper bound tends to 1 as 𝜙𝜙 goes to ∞, thus 

for large 𝜙𝜙, any solution must have Π𝑡𝑡 ≈ Π∗. This holds even if the SDF, Ξ𝑡𝑡, is a 
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complicated function of inflation and its history. Under slightly stronger assumptions on 
the SDF, we can even guarantee that Π𝑡𝑡 = Π∗ is the unique solution for all sufficiently 
large 𝜙𝜙. These results are proven in Appendix A. For the sake of tractability, we return 
to the linearized world for the bulk of the rest of this paper. 

2.2 Wedges in the Fisher equation 

One natural concern is that real rate rules may lose their robust determinacy if the 
Fisher equation does not hold exactly. Risk premia are one source of a wedge in the 
Fisher equation, but we showed in the previous subsection that real rate rules continue 
to perform well in the presence of endogenous risk premia. However, there are other 
reasons why there may be a wedge in the Fisher equation. For example, nominal bonds 
may provide greater liquidity services than real bonds, and so nominal bonds may 
command a premium. Such a premium is documented by Fleckenstein, Longstaff & 
Lustig (2014), based on comparing synthetic treasury bonds constructed from TIPS and 
inflation swaps to actual treasury bonds. Furthermore, TIPS provide deflation 
protection, which may result in TIPS also commanding a premium, giving another source 
of a wedge in the Fisher equation. A Fisher equation wedge could even come from 
bounded rationality of market participants. 

Suppose then that the linearized Fisher equation takes the form: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡, 

where 𝜈𝜈𝑡𝑡 is a potentially endogenous wedge term. We assume though that 𝜈𝜈𝑡𝑡 is stationary, 
and that there exists some 𝜇𝜇̅0, 𝜇𝜇1̅, 𝜇𝜇2̅, 𝛾𝛾̅0, 𝛾𝛾̅1, 𝛾𝛾̅2 ≥ 0 such that for any stationary solution 
for 𝜋𝜋𝑡𝑡, |𝔼𝔼𝜈𝜈𝑡𝑡| ≤ 𝜇𝜇0̅ + 𝜇𝜇1̅|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝜇𝜇2̅ Var 𝜋𝜋𝑡𝑡 and Var 𝜈𝜈𝑡𝑡 ≤ 𝛾𝛾̅0 + 𝛾𝛾̅1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝛾𝛾̅2 Var 𝜋𝜋𝑡𝑡, for all 𝑡𝑡 ∈
ℤ. This assumption is extremely mild, as all of these coefficients may be arbitrarily large. 
For example, if 𝜈𝜈𝑡𝑡 were to come purely from an inflation risk premium, we would expect 
𝜇𝜇2̅ > 0 and 𝛾𝛾̅0 > 0 but all other coefficients to be zero. Alternatively, if 𝜈𝜈𝑡𝑡 were to come 
purely from the liquidity services provided by nominal bonds, we would expect 𝜇𝜇0̅, 𝛾𝛾0̅ 
and 𝜇𝜇̅1 to be positive (the latter as the value of liquidity services might vary over the 
cycle), but all other coefficients to be zero. 

Combining the modified Fisher equation with the simple rule in (2) gives: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡, 

so: 
𝜋𝜋𝑡𝑡 = 𝜙𝜙−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜙𝜙−1𝜈𝜈𝑡𝑡 = 𝜙𝜙−2𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+2 + 𝜙𝜙−2𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+1 + 𝜙𝜙−1𝜈𝜈𝑡𝑡 = ⋯ 

= 𝔼𝔼𝑡𝑡 �𝜙𝜙−𝑘𝑘−1𝜈𝜈𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
+ lim

𝑘𝑘→∞
[𝜙𝜙−𝑘𝑘𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+𝑘𝑘] = 𝔼𝔼𝑡𝑡 �𝜙𝜙−𝑘𝑘−1𝜈𝜈𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
, 

assuming as ever that we select the stationary equilibrium for inflation.17 Thus, with 𝜙𝜙 >
1: 

 
17 Ireland (2015) finds a role for risk premia in explaining US inflation fluctuations, so it is empirically 
plausible that the Fisher equation wedge should appear in the solution for inflation. 
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|𝔼𝔼𝜋𝜋𝑡𝑡| = |𝔼𝔼𝜈𝜈𝑡𝑡|
𝜙𝜙 − 1

≤ 𝜇𝜇0̅ + 𝜇𝜇1̅|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝜇𝜇2̅ Var 𝜋𝜋𝑡𝑡
𝜙𝜙 − 1

, 

and:18 

Var𝜋𝜋𝑡𝑡 = ��𝜙𝜙−𝑗𝑗−1𝜙𝜙−𝑘𝑘−1 Cov�𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘�
∞

𝑘𝑘=0

∞

𝑗𝑗=0
≤ ��𝜙𝜙−𝑗𝑗−1𝜙𝜙−𝑘𝑘−1 Var 𝜈𝜈𝑡𝑡

∞

𝑘𝑘=0

∞

𝑗𝑗=0
 

≤ 𝛾𝛾̅0 + 𝛾𝛾̅1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝛾𝛾̅2 Var 𝜋𝜋𝑡𝑡
(𝜙𝜙 − 1)2 . 

So, for sufficiently large 𝜙𝜙:19 

|𝔼𝔼𝜋𝜋𝑡𝑡| ≤ [(𝜙𝜙 − 1)2 − 𝛾𝛾̅2]𝜇𝜇0̅ + 𝜇𝜇2̅𝛾𝛾̅0
(𝜙𝜙 − 1 − 𝜇𝜇1̅)[(𝜙𝜙 − 1)2 − 𝛾𝛾̅2] − 𝜇𝜇2̅𝛾𝛾̅1

= 𝑂𝑂 �
1
𝜙𝜙�, 

Var 𝜋𝜋𝑡𝑡 ≤ (𝜙𝜙 − 1 − 𝜇𝜇1̅)𝛾𝛾̅0 + 𝜇𝜇0̅𝛾𝛾̅1
(𝜙𝜙 − 1 − 𝜇𝜇1̅)[(𝜙𝜙 − 1)2 − 𝛾𝛾̅2] − 𝜇𝜇2̅𝛾𝛾̅1

= 𝑂𝑂 �
1
𝜙𝜙2�. 

Hence, as 𝜙𝜙 → ∞, 𝔼𝔼𝜋𝜋𝑡𝑡 → 0 and Var 𝜋𝜋𝑡𝑡 → 0. While the central bank can no longer 
guarantee precisely zero inflation in the presence of an endogenous wedge, if they are 
aggressive enough, they can ensure the mean and variance of inflation are arbitrarily 
close to zero. Thus, wedges in the Fisher equation do not present a substantial challenge 
to the performance of real rate rules. 

However, if the pricing of nominal bonds is indeed highly distorted by the liquidity 
services they provide (for example), then the central bank may attain lower inflation bias 
and variance for a given 𝜙𝜙 by intervening in inflation swap markets rather than nominal 
bond ones. In our notation, an inflation swap is a contract agreed in period 𝑡𝑡 between 
two parties, A and B, in which party A promises to make a net payment of Π𝑡𝑡+1 − 𝐾𝐾𝑡𝑡 
to party 𝐵𝐵 in period 𝑡𝑡 + 1, where 𝐾𝐾𝑡𝑡 is the negotiated contract rate. Writing Ξ𝑡𝑡+1 for 
the real SDF between periods 𝑡𝑡 and 𝑡𝑡 + 1, this contract rate must solve: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

(Π𝑡𝑡+1 − 𝐾𝐾𝑡𝑡) = 0. 

So, from log-linearizing: 
𝑘𝑘𝑡𝑡 = log 𝐾𝐾𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 

to first order. 
The central bank can then use the inflation swap real rate rule: 

𝑘𝑘𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡. 
Combined with the inflation swap pricing equation, this gives 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, just like 
when the central bank intervenes in nominal bond markets. The advantage of directly 
targeting inflation swap contract rates is that inflation swaps are unlikely to provide 
liquidity services, unlike nominal bonds, meaning the inflation swap pricing equation will 

 
18 Here we use the fact that by the Cauchy-Schwarz inequality, the law of total variance and stationarity:  
Cov�𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘� ≤ ��Var 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗�(Var 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘) =

��Var 𝜈𝜈𝑡𝑡+𝑗𝑗 − 𝔼𝔼 Var𝑡𝑡 𝜈𝜈𝑡𝑡+𝑗𝑗�(Var 𝜈𝜈𝑡𝑡+𝑘𝑘 − 𝔼𝔼 Var𝑡𝑡 𝜈𝜈𝑡𝑡+𝑘𝑘) ≤ Var 𝜈𝜈𝑡𝑡. 
19 In particular, we need 𝜙𝜙 − 1 > 𝜇𝜇1̅, (𝜙𝜙 − 1)2 > 𝛾𝛾̅2 and (𝜙𝜙 − 1 − 𝜇𝜇1̅)[(𝜙𝜙 − 1)2 − 𝛾𝛾2̅] > 𝜇𝜇2̅𝛾𝛾̅1. 



16 

be less distorted than the Fisher equation. One final benefit of directly targeting inflation 
swap contract rates is that inflation swaps do not include the deflation protection given 
by TIPS. This removes one additional source of distortion in the 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 gap. 

2.3 The fiscal theory of the price level and the risk of over 
determinacy 

As long as the linear Fisher equation holds, robust real rate rules can never fail to 
rule out sunspots. However, in an economy in which the price level is determinate 
independent of monetary policy, they may still produce explosive inflation.20 This is true 
of any monetary rule respecting the Taylor principle, not just the real rate rules we 
examine in this paper. Inflation becomes “over determined”, and an explosive solution is 
all that remains. 

For example, suppose that government debt is all one period and nominal, and that 
real government surpluses are not responsive to government debt levels, meaning fiscal 
policy is “active”. Then the price level is pinned down by the government debt valuation 
equation (see e.g. Cochrane (2022)), in line with the fiscal theory of the price level 
(FTPL). In particular, to a first order approximation with flexible prices and constant 
real interest rates:21 

𝜋𝜋𝑡𝑡 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = −𝜀𝜀𝑠𝑠,𝑡𝑡, (8) 
where 𝜀𝜀𝑠𝑠,𝑡𝑡 is an exogenous shock to the present value of real primary government 
surpluses, scaled by the value of outstanding real government debt, with 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑠𝑠,𝑡𝑡 = 0. 
Suppose in this world that the central bank did follow the basic real rate rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 +
𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝜁𝜁,𝑡𝑡, where 𝜙𝜙 > 1 and 𝔼𝔼𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 = 0. Then, from the Fisher equation, 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 =
𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1, implying from (8) that: 

𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝜀𝜀𝑠𝑠,𝑡𝑡. 
With 𝜙𝜙 > 1, this is an explosive process. We know from Subsection 1.1 that if there were 
to be a stationary solution for 𝜋𝜋𝑡𝑡, it must have 𝜋𝜋𝑡𝑡 = − 1

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡. But this is inconsistent with 
equation (8) as long as 𝜀𝜀𝜁𝜁,𝑡𝑡 ≠ 𝜙𝜙𝜀𝜀𝑠𝑠,𝑡𝑡, so only the non-stationary solution remains. 

However, this is a knife edge result. For example, suppose that the government issues 
multi-period (geometric coupon) debt, and that both monetary and fiscal policy are 
active (i.e., real primary government surpluses do not respond to debt, and the monetary 
rule satisfies the Taylor principle). Based on results with one period debt, researchers 
have tended to assume that this “active-active” combination will inevitably produce 
explosive inflation. This is incorrect. 

 
20 Note: it is certainly not the case though that in any model in which an interest rate peg is determinate, 
a real rate rule would produce explosive inflation. For example, in the New Keynesian model with a 
discounted Euler equation, from Subsection 1.2, if 𝛿𝛿 ∈ �− 1+𝛽𝛽+𝜅𝜅𝜍𝜍

1+𝛽𝛽 , 1−𝛽𝛽−𝜅𝜅𝜍𝜍
1−𝛽𝛽 � then an interest rate peg is 

determinate. We saw that the real rate rule is also determinate (and non-explosive) in this model. 
21 See Cochrane (2022), Subsection 2.5 and following. 
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In Appendix B.1 we examine the equilibria of a non-linear model with multi-period 
debt under flexible prices. We show that under active fiscal policy, there is a valid 
equilibrium in which real variables and inflation are stable and independent of surpluses, 
whether or not monetary policy is active. These equilibria feature a growing bubble in 
the price of government debt which is balanced by declining debt quantities. The initial 
debt price jumps to ensure the transversality condition is still satisfied, giving a “Fiscal 
Theory of the Debt Price”. These equilibria exist as long as the geometric decay factor 
for the bond coupons is not precisely equal to zero (the one-period debt case). 
Furthermore, under passive monetary policy, we find a continuum of equilibria, contrary 
to the usual claim that the active fiscal, passive monetary, combination ensures unique 
outcomes (which is again only true with one period debt). These equilibria feature 
arbitrarily high inflation. 

These results are not specific to the particular model set-up we use in Appendix B.1. 
Firstly, in Appendix B.2 we show that these results also hold in a linearised model with 
sticky prices. Then, in Appendix B.3 we show that generically, any model achieving 
determinacy via an FTPL-type mechanism must admit a stable solution under a real 
rate rule. There are only two main restrictions for this result. Firstly, the potentially 
explosive variables such as bond prices must not feed back to the real economy. Secondly, 
the equations determining the potentially explosive variables must not be too forward 
looking. Both of these assumptions are satisfied by standard FTPL models under 
geometric coupon debt.22 Therefore, only in knife edge cases will following the Taylor 
principle guarantee explosive inflation. 

2.4 Setting nominal rates out of equilibrium 

Real rate rules work so well thanks to the cancellation of the real rates in both the 
rule and the Fisher equation. The reader may worry that this cancellation masks a type 
of singularity that would prevent the central bank from setting rates according to a real 
rate rule. 

To see the apparent problem, we suppose that the economy is currently in period 0, 
and that all in future periods, the central bank’s behaviour will be given by the simple 
real rate rule of equation (2). We assume the Fisher equation (1) holds in all periods. 
Then for 𝑡𝑡 > 0: 

𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡. 
Our discussion up to now would naturally lead the reader to conclude that 𝜋𝜋𝑡𝑡 = 0 

for all 𝑡𝑡 > 0, unconditional on whatever happens in period 0. Suppose this were true. 

 
22 Note that the geometric coupon bond first order condition 𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

(1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1) can be rewritten 

as the two equations 𝐸𝐸𝑡𝑡 = 1+𝜔𝜔𝑄𝑄𝑡𝑡
𝑄𝑄𝑡𝑡−1

, and 1 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

𝐸𝐸𝑡𝑡+1. Here 𝑄𝑄𝑡𝑡 is potentially explosive, but is determined 

by a backward-looking equation, while 𝐸𝐸𝑡𝑡 is asymptotically stable. 
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Then, the period 0 Fisher equation would imply that 𝑖𝑖0 = 𝑟𝑟0. Thus, apparently, nothing 
the central bank could do in period 0 could ever produce 𝑖𝑖0 ≠ 𝑟𝑟0. In particular, it seems 
that the central bank cannot apply a real rate rule in period 0 if 𝜋𝜋0 ≠ 0. This is incorrect, 
as if a real rate rule applies from period 0 onwards, it is only the case that 𝜋𝜋𝑡𝑡 = 0 for all 
𝑡𝑡 > 0 if it happens that 𝜋𝜋0 = 0. 

This confusion stems from us having given an incomplete description of equilibrium 
up to now. A full equilibrium description specifies the outcome for every possible history, 
not just those on the equilibrium path. We glossed over off equilibrium behaviour till 
now to simplify our presentation, but these details do matter. 

A full description of the standard equilibrium of the Fisher equation (1) and real 
rate rule (2) is as follows. Suppose the rule was introduced in period 0. Then, for all 𝑡𝑡 ≥
0, if 𝜋𝜋𝑠𝑠 = 0 for all 𝑠𝑠 ∈ {0,1,… , 𝑡𝑡 − 1}, then 𝜋𝜋𝑡𝑡 = 0. Otherwise, 𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1. In period 0, 
the first condition holds vacuously, so on the equilibrium path, 𝜋𝜋0 = 0, and hence 𝜋𝜋𝑡𝑡 = 0 
for all 𝑡𝑡 ∈ ℕ. However, suppose that off the equilibrium path, 𝜋𝜋0 ≠ 0. Then 𝜋𝜋1 = 𝜙𝜙𝜋𝜋0, 
and hence the period 0 Fisher equation states that 𝑖𝑖0 − 𝑟𝑟0 = 𝜙𝜙𝜋𝜋0. Thus, 𝑖𝑖0 − 𝑟𝑟0 is not 
fixed; it is a function of period 0 inflation, something that the central bank can affect in 
period 0 via open market operations. There is no singularity.23 

The only way the singularity could reappear would be if financial market participants 
did not have rational expectations. For example, suppose they had learned that 𝜋𝜋𝑡𝑡 = 0 
for all 𝑡𝑡, without understanding why this is. Then it would again be the case that the 
Fisher equation would imply 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 for all 𝑡𝑡, even out of equilibrium. A slight tweak to 
real rate rules can address this without otherwise compromising their performance. 

In particular, suppose that the central bank uses the modified real rate rule: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜓𝜓𝜋𝜋𝑡𝑡−1. 

Then, from the Fisher equation: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜓𝜓𝜋𝜋𝑡𝑡−1. 

If 𝜙𝜙 > |1 − 𝜓𝜓|, this has a unique stationary solution in which 𝜋𝜋𝑡𝑡 = 𝜚𝜚𝜋𝜋𝑡𝑡−1, where 𝜚𝜚 =
𝜙𝜙−�𝜙𝜙2+4𝜓𝜓

2 ∈ (−1,1).24 Hence, on the equilibrium path, the period 𝑡𝑡 Fisher equation implies 
that 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜚𝜚𝜋𝜋𝑡𝑡. Importantly, if 𝜓𝜓 ≠ 0, then 𝜚𝜚 ≠ 0, so even with expectations fixed at 
their values on the equilibrium path, the central bank can still affect 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 at 𝑡𝑡 via 

 
23 It is worth noting that there are other equilibria of equations (1) and (2) that imply an identical 
equilibrium path but generate more plausible behaviour off this path. Suppose that in period 0 when 
the rule is introduced, the economy starts in state A. Suppose also that each period a biased coin is 
tossed which comes up heads with probability 𝑞𝑞 ∈ (0,1]. If the economy is in state A in period 𝑡𝑡, then 
𝜋𝜋𝑡𝑡 = 0, whereas if the economy is in state B in period 𝑡𝑡, then 𝜋𝜋𝑡𝑡 = 𝜙𝜙

𝑞𝑞 𝜋𝜋𝑡𝑡−1. For 𝑡𝑡 > 0, the economy is in 
state A at 𝑡𝑡 if and only if either (i) the economy was in state A at 𝑡𝑡 − 1 and 𝜋𝜋𝑡𝑡−1 = 0, or (ii) the coin 
comes up tails. Otherwise, the economy is in state B at 𝑡𝑡. Thus, in state B, 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝑞𝑞 𝜙𝜙

𝑞𝑞 𝜋𝜋𝑡𝑡 + (1 − 𝑞𝑞)0 =
𝜙𝜙𝜋𝜋𝑡𝑡, as required. Hence, explosions need not last for ever following a deviation. 
24 Proven in Appendix E.7. 
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affecting 𝜋𝜋𝑡𝑡 through open market operations. Since 𝜓𝜓 may be arbitrarily small, by 
continuity, the other desirable properties of real rate rules will be unaffected. Under 
learning, financial market participants would have learned that 𝜋𝜋𝑡𝑡 ≈ 𝜚𝜚𝜋𝜋𝑡𝑡−1, and so this 
mechanism would still work. We show in Appendix D.1 that real rate rules responding 
to the price level are also robust to this additional concern. 

3 Practical implementation of real rate rules 
Until recently, central banks concentrated their monetary interventions in overnight 

debt markets. However, with the rise of quantitative easing, many central banks have 
been purchasing substantial quantities of longer maturity sovereign debt. There is no 
reason then that central banks could not conduct open market operations to fix the 
interest rate on longer maturity bonds. This is convenient as in most countries, inflation 
protected securities are only issued a few times per year, and at long maturities, e.g., 
five years. As a result, markets in shorter maturity inflation protected securities may be 
illiquid or even unavailable, and it can be difficult to reconstruct the short end of the 
real yield curve. 

Inflation indexation lags further complicate the use of short maturity inflation 
protected securities (see e.g. Gürkaynak, Sack & Wright (2010)). For example, with time 
measured in quarters, 3-month maturity US TIPS have a period 𝑡𝑡 + 1 realized yield of 
𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡, not 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 as one might expect. Additionally, there is an information lag as 
inflation is not observed contemporaneously. By using longer maturity bonds, the impact 
of these indexation and information lags are greatly reduced. 

This section examines the performance of real rate rules when the central bank 
implements them using multiperiod debt in the presence of indexation and information 
lags. 

3.1 Set-up 

We aim to describe a set-up with many of the frictions that would be problematic 
for a naïve implementation of real rate rules. The central bank’s trading desk would be 
tasked with maintaining a particular level of the gap between nominal and real rates 
according to the market for bonds of a certain maturity. We let 𝑇𝑇  be the time to maturity 
of these bonds, measured in periods. The units of time do not need to coincide with the 
maturity of the bond. For example, 𝑇𝑇  may be 60 if periods are months and five-year 
bonds are used. 

We allow for the possibility that inflation is not observed contemporaneously. For 
example, US CPI is observed with a one-month lag. To capture this, while keeping to 
the convention that 𝔼𝔼𝑡𝑡𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡 for all 𝑡𝑡-dated endogenous variables 𝑣𝑣𝑡𝑡, we assume that 
market participants and the central bank use the 𝑡𝑡 − 𝑆𝑆 information set in period 𝑡𝑡 (i.e. 
they know the values of all 𝑡𝑡 − 𝑆𝑆, 𝑡𝑡 − 𝑆𝑆 − 1,… dated variables), for some 𝑆𝑆 ≥ 0. Thus, 
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since the central bank does not know 𝜋𝜋𝑡𝑡 at 𝑡𝑡, we instead assume that they respond to 
deviations of 𝜋𝜋𝑡𝑡−𝑆𝑆 from target, rather than 𝜋𝜋𝑡𝑡. 

We write 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 for the nominal yield per-period on a 𝑇𝑇 -period nominal bond at 𝑡𝑡, 
and 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 for the real yield per-period on a 𝑇𝑇 -period inflation protected bond at 𝑡𝑡. This 
notation captures the fact that period 𝑡𝑡 nominal and real yields must be fixed in period 
𝑡𝑡 − 𝑆𝑆: market participants and the central bank only have access to the period 𝑡𝑡 − 𝑆𝑆 
information set at 𝑡𝑡, and these agents must know period 𝑡𝑡 nominal and real rates. 

We allow for a wedge in the Fisher equation to capture inflation risk premia, liquidity 
premia, asymmetric term premia and even departures from full information rational 
expectations amongst market participants. Since only 𝑡𝑡 − 𝑆𝑆 dated variables are known 
in period 𝑡𝑡, we denote the period 𝑡𝑡 value of this shock by 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆. I.e., risk premia (etc.) 
will be determined 𝑆𝑆 periods in advance, though market participants and the central 
bank will not act on this, as they use 𝑆𝑆 period old data. 

Furthermore, we allow for the possibility of an indexation lag in the return of the 
real bond. We assume that the lag is 𝐿𝐿 periods. If periods are months, then 𝐿𝐿 would be 
3 for the US. 

3.2 The generalized Fisher equation and monetary rule 

Given all this, the Fisher equation coming from arbitrage between nominal and real 
bonds states that: 

𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 = 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇

�𝜋𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

𝑇𝑇

𝑘𝑘=1
. 

The central bank’s actions in period 𝑡𝑡 cannot possibly impact 𝜋𝜋𝑡𝑡−1, 𝜋𝜋𝑡𝑡−2, … as these are 
already predetermined. Hence, for the central bank to be able to have some impact on 
𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 we require that 𝑇𝑇 − 𝐿𝐿 ≥ 0. So, for the US, the central bank would have to 
use bonds with maturity of at least three months. 

Slightly generalizing our previous rule (7), we suppose that the central bank 
intervenes in 𝑇𝑇 -period nominal bond markets to ensure that it is always the case that: 

𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 = 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 + 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇

�𝜋𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿
∗

𝑇𝑇

𝑘𝑘=1
+ 𝜙𝜙(𝜋𝜋𝑡𝑡−𝑆𝑆 − 𝜋𝜋𝑡𝑡−𝑆𝑆

∗ ), 

where 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 is the central bank’s period 𝑡𝑡 belief about the level of 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆, and where 𝜙𝜙 >
1. 𝜈𝜈�̅�𝑡|𝑡𝑡−𝑆𝑆 could also include a monetary policy shock component. We stress that the 𝑡𝑡|𝑡𝑡 −
𝑆𝑆 index here does not mean that the private sector knows monetary policy shocks 𝑆𝑆 
periods in advance, as the private sector (and the central bank) uses the 𝑡𝑡 − 𝑆𝑆 
information set at 𝑡𝑡. 

Also note that while under conventional monetary policy, targeted nominal interest 
rates are (approximately) constant between monetary policy committee meetings, this 
may not be the case here. The rule effectively specifies a period 𝑡𝑡 level for 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆, 
not for 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆. The level of 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 may fluctuate (perhaps in part due to unexpected 
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changes in 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆), so the central bank’s trading desk could have to continuously tweak 
the level of 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 to hold 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 at its desired level. While this represents a 
departure from previous operating procedure, there is no reason why holding 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 −
𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 approximately constant should be any harder than holding 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 approximately 
constant. This is thanks to real-time observability of 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 via inflation protected bonds. 

The central bank could also directly control 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 by promising to freely 
exchange $1 face value of real debt for $ exp�𝑇𝑇 �𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆�� face value of nominal 
debt, as suggested by Cochrane (2017; 2018). Alternatively, the central bank could buy 
or sell a long-short portfolio containing $1 face value of nominal debt, and −$1 face value 
of real debt to hold the portfolio’s per-period return fixed at $�𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆�.25 Or, the 
central bank could directly pin down the contract rate on inflation swaps, as suggested 
in Subsection 2.2. 

3.3 Solution and robustness 

Combining the multi-period Fisher equation and the monetary rule implies that the 
dynamics of inflation are governed by the single equation: 

𝔼𝔼𝑡𝑡
1
𝑇𝑇

�(𝜋𝜋𝑡𝑡+𝑘𝑘+𝑆𝑆−𝐿𝐿 − 𝜋𝜋𝑡𝑡+𝑘𝑘+𝑆𝑆−𝐿𝐿
∗ )

𝑇𝑇

𝑘𝑘=1
+ �𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡� = 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). 

When 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 is exogenous, this expectational difference equation has a unique 
solution if and only if it has a unique solution when 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 = 0 for all 𝑡𝑡. In this 
case, via the substitution 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗ = 𝑐𝑐𝜆𝜆𝑡𝑡 we have the characteristic equation 
1
𝑇𝑇 ∑ 𝜆𝜆𝑘𝑘+𝑆𝑆−𝐿𝐿𝑇𝑇

𝑘𝑘=1 = 𝜙𝜙. The roots of this equation decide the determinacy of 𝜋𝜋𝑡𝑡. For 
determinacy, we need max{0,−(1 + 𝑆𝑆 − 𝐿𝐿)} roots strictly inside the unit circle, 
corresponding to the lags of inflation in our difference equation, and max{0, 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿} 
roots strictly outside the unit circle, corresponding to the leads of inflation in our 
difference equation.26 This is indeed the case, as we prove in Appendix E.8 (given 𝜙𝜙 >
1). Thus, at least when 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 is exogenous, there is a unique solution for 
inflation.27 In the special case in which the central bank observes 𝜈𝜈𝑡𝑡 so 𝜈𝜈�̅�𝑡 = 𝜈𝜈𝑡𝑡, then 
|𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗| → 0 as 𝑡𝑡 → ∞. (There may not be equality for finite 𝑡𝑡 due to the impact of 
initial conditions.) 

In the general case in which 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 is potentially endogenous, as long as 
𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 is stationary, the solution must take the form: 

𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ + 𝔼𝔼𝑡𝑡 � 𝐴𝐴𝑗𝑗�𝜈𝜈𝑡𝑡+𝑗𝑗+𝑆𝑆|𝑡𝑡+𝑗𝑗 − 𝜈𝜈�̅�𝑡+𝑗𝑗+𝑆𝑆|𝑡𝑡+𝑗𝑗�

∞

𝑗𝑗=−∞
. 

Substituting this solution into our expectational difference equation, then taking 𝑡𝑡 +
 

25 The author thanks Peter Ireland for this suggestion. 
26 In fact, our assumptions that 𝑇𝑇 − 𝐿𝐿 ≥ 0 and 𝑆𝑆 ≥ 0, imply 𝑇𝑇 + 𝑆𝑆 − 𝐿𝐿 ≥ 0. 
27 We do not have the indeterminacy issues for rules setting long-rates that were noted by McGough, 
Rudebusch & Williams (2005), due to the presence of the real rate in our rule. 



22 

min{0,1 + 𝑆𝑆 − 𝐿𝐿} dated expectations, and matching terms, gives that: 

𝐴𝐴𝑗𝑗 = 1
𝜙𝜙

𝟙𝟙[𝑗𝑗 = 0] + 1
𝜙𝜙𝑇𝑇

�𝐴𝐴𝑗𝑗−𝑘𝑘−𝑆𝑆+𝐿𝐿

𝑇𝑇

𝑘𝑘=1
. 

With 𝜙𝜙 > 1, this difference equation has a unique solution for �𝐴𝐴𝑗𝑗�𝑗𝑗∈ℤ in which 𝐴𝐴𝑗𝑗 ≥ 0 
for all 𝑗𝑗 ∈ ℤ, as proven in Appendix E.9. 

Furthermore, under essentially identical conditions to those used in Subsection 2.2, 
we have that 𝜋𝜋𝑡𝑡 ≈ 𝜋𝜋𝑡𝑡

∗ for large 𝜙𝜙, even when 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈�̅�𝑡+𝑆𝑆|𝑡𝑡 is endogenous (proven in 
Appendix E.10). These conditions are very mild, as already argued in Subsection 2.2. 
Thus, with 𝜙𝜙 large, even if the central bank imperfectly tracks the risk (etc.) premium 
𝜈𝜈𝑡𝑡, and even if their error is endogenous, it will still be the case that 𝜋𝜋𝑡𝑡 ≈ 𝜋𝜋𝑡𝑡

∗ in all 
periods. I.e., even in the presence of unobservable endogenous wedges in the Fisher 
equation, the central bank can still determinately implement an arbitrary path for 
inflation. The presence of information or indexation lags makes no fundamental difference 
to this. While such lags may slow down the convergence of 𝐴𝐴𝑗𝑗 to 0 as 𝑗𝑗 → ±∞, increasing 
the variance of 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗, still for a large enough 𝜙𝜙, inflation will be very close to its target. 

4 The zero lower bound 
All our examples so far have ignored the zero lower bound (ZLB) on nominal interest 

rates. The zero lower bound is problematic for real rate rules as it prevents the central 
bank from fixing 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 when 𝑖𝑖𝑡𝑡 = 0. This means that at the ZLB, the Euler equation 
again becomes relevant for outcomes, reducing robustness. This section presents a simple 
solution to restore robustness in the presence of the zero lower bound. In Appendix D 
we give two other potential solutions: price level real rate rules, and perpetuity real rate 
rules. 

Furthermore, in Subsection 4.3 we show that when households hold perpetuities, 
appropriately constructed real rate rules can rule out both permanent ZLB traps as well 
as explosive paths for inflation, answering Cochrane (2011). 

4.1 The problems caused by the ZLB for real rate rules 

We can see the problems caused by the ZLB even in the simple set-up used in this 
paper’s introduction. In the presence of the zero lower bound, under the introduction’s 
set-up, we have that: 

max{0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡} = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
While without the ZLB, we can cancel out the 𝑟𝑟𝑡𝑡 in the monetary rule with the 𝑟𝑟𝑡𝑡 from 
the Fisher equation, now this is no longer possible. Instead, we have that: 

max{−𝑟𝑟𝑡𝑡, 𝜙𝜙𝜋𝜋𝑡𝑡} = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 
Thus, real rates (and hence the Euler equation) potentially matter for inflation dynamics 
and determinacy. Holden (2021) points out that even if 𝑟𝑟𝑡𝑡 is exogenous, with 𝑟𝑟𝑡𝑡 = 0 for 
𝑡𝑡 ≠ 1, and even if we assume that 𝜋𝜋𝑡𝑡 → 0 as 𝑡𝑡 → ∞, still there are multiple solutions for 
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a value of 𝑟𝑟1 (𝑟𝑟1 = 0), and no solution for other values of 𝑟𝑟1 (𝑟𝑟1 < 0). 
Holden (2021) shows this multiplicity and non-existence of perfect foresight solutions 

is the rule for NK models with a ZLB, even with a terminal condition on inflation 
ensuring an eventual escape from the ZLB. Additionally, there are further solutions 
converging to a deflationary steady state with interest rates at zero (Benhabib, Schmitt-
Grohé & Uribe 2001). Furthermore, under rational expectations there are always at least 
as many solutions as under perfect foresight, as well as a continuum of further switching 
solutions (Holden 2021). 

4.2 Modified inflation targets 

One of the sources of non-existence is that the monetary rule is implicitly targeting 
an infeasible level for inflation when real rates are very low. A modified inflation target 
can fix this. In particular, along the lines of the rule from equation (7), consider the rule: 

𝑖𝑖𝑡𝑡 = max{0, 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋�̌�𝑡+1
∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋�̌�𝑡

∗)}, 
where: 

𝜋𝜋�̌�𝑡
∗ ≔ max{−𝑟𝑟𝑡𝑡−1 + 𝜖𝜖, 𝜋𝜋𝑡𝑡

∗}, 
with 𝜋𝜋𝑡𝑡

∗ the original inflation target, and where 𝜖𝜖 > 0 is some small constant.  
Under this modified rule, 𝜋𝜋𝑡𝑡 = 𝜋𝜋�̌�𝑡

∗ for all 𝑡𝑡 is an equilibrium. To see that it is indeed 
an equilibrium, note that with 𝜋𝜋𝑡𝑡 = 𝜋𝜋�̌�𝑡

∗ for all 𝑡𝑡, the monetary rule gives that: 
𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = max{−𝑟𝑟𝑡𝑡, 𝔼𝔼𝑡𝑡𝜋𝜋�̌�𝑡+1

∗ } = 𝔼𝔼𝑡𝑡𝜋𝜋�̌�𝑡+1
∗ = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 

as 𝔼𝔼𝑡𝑡𝜋𝜋�̌�𝑡+1
∗ = 𝔼𝔼𝑡𝑡 max{−𝑟𝑟𝑡𝑡 + 𝜖𝜖, 𝜋𝜋𝑡𝑡+1

∗ } > −𝑟𝑟𝑡𝑡, so the Fisher equation holds as required. 
Hence, under this monetary rule, no matter what the rest of the model is like, there is a 
closed form solution for inflation in terms of observables (𝑟𝑟𝑡𝑡−1 and 𝜋𝜋𝑡𝑡

∗). In particular, 
unlike under the simple rule from the previous subsection, there is always a solution. 
The existence of a closed form solution is particularly desirable as it is likely to be easier 
for agents to coordinate on simple solutions. 

Additionally, under this solution, 𝜋𝜋𝑡𝑡 is bounded below by −𝑟𝑟𝑡𝑡−1. This prevents the 
severe deflations that can accompany shocks taking the economy to the ZLB under 
standard monetary rules. It also removes all of the deflationary bias that usually 
accompanies the ZLB (Hills, Nakata & Schmidt 2019). Instead, the definition of 𝜋𝜋�̌�𝑡

∗ 
implies that 𝔼𝔼𝜋𝜋𝑡𝑡 ≥ 𝔼𝔼𝜋𝜋𝑡𝑡

∗, so there is a mild inflationary bias. 
The 𝜋𝜋𝑡𝑡 ≡ 𝜋𝜋�̌�𝑡

∗ solution is also unique, conditional on 𝜋𝜋�̌�𝑡
∗ and on an approximate 

terminal condition. For the intuition for this, first suppose that the rule is introduced in 
period 0, and that there is no uncertainty after this point. Then, from the Fisher equation 
and monetary rule, for all 𝑡𝑡 ∈ ℕ: 
𝜋𝜋𝑡𝑡+1 − 𝜋𝜋�̌�𝑡+1

∗ = max{−𝑟𝑟𝑡𝑡 − 𝜋𝜋�̌�𝑡+1
∗ , 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋�̌�𝑡

∗)} = max{−max{𝜖𝜖, 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1
∗ } , 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋�̌�𝑡

∗)}. 
Thus, since max{𝜖𝜖, 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1

∗ } > 0, if 𝜋𝜋𝑡𝑡 < 𝜋𝜋�̌�𝑡
∗, then 𝜋𝜋𝑡𝑡+1 < 𝜋𝜋�̌�𝑡+1

∗ , and if 𝜋𝜋𝑡𝑡 > 𝜋𝜋�̌�𝑡
∗, then 

𝜋𝜋𝑡𝑡+1 > 𝜋𝜋�̌�𝑡+1
∗ . So, there are three classes of perfect foresight equilibria in period 0. The 

desired one in which 𝜋𝜋𝑡𝑡 = 𝜋𝜋�̌�𝑡
∗, one in which inflation explodes to infinity, and one which 
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is at the ZLB infinitely often (at least assuming 𝜋𝜋𝑡𝑡
∗ is bounded above). If a terminal 

condition rules out the explosive and liquidity trap equilibrium classes, then only the 
𝜋𝜋𝑡𝑡 ≡ 𝜋𝜋�̌�𝑡

∗ solution remains. 
In the presence of uncertainty, essentially the same argument goes through. In 

particular, suppose that in period 𝑡𝑡, agents believe that for some 𝑘𝑘 > 0, |𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋�̌�𝑡+𝑘𝑘
∗ | <

𝜖𝜖 with probability one. Thus 𝜋𝜋𝑡𝑡+𝑘𝑘 > 𝜋𝜋�̌�𝑡+𝑘𝑘
∗ − 𝜖𝜖 ≥ −𝑟𝑟𝑡𝑡+𝑘𝑘−1, so by the Fisher equation 

𝑖𝑖𝑡𝑡+𝑘𝑘−1 = 𝑟𝑟𝑡𝑡+𝑘𝑘−1 + 𝔼𝔼𝑡𝑡+𝑘𝑘−1𝜋𝜋𝑡𝑡+𝑘𝑘 > 0. Hence, by the monetary rule, in fact 𝜋𝜋𝑡𝑡+𝑘𝑘−1 = 𝜋𝜋�̌�𝑡+𝑘𝑘−1
∗  

(so |𝜋𝜋𝑡𝑡+𝑘𝑘−1 − 𝜋𝜋�̌�𝑡+𝑘𝑘−1
∗ | < 𝜖𝜖), with probability one. By backwards induction, this means 

that for all 𝑗𝑗 ∈ {0,… , 𝑘𝑘 − 1}, 𝜋𝜋𝑡𝑡+𝑗𝑗 = 𝜋𝜋�̌�𝑡+𝑗𝑗
∗ . Thus, if agents believe the 𝜋𝜋𝑡𝑡 ≡ 𝜋𝜋�̌�𝑡

∗ solution 
will hold approximately at some point in future, then it will hold exactly today and at 
all intervening times. Furthermore, if agents believe there is some 𝐾𝐾 ≥ 0 such that there 
are infinitely many 𝑘𝑘 > 𝐾𝐾 with |𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋�̌�𝑡+𝑘𝑘

∗ | < 𝜖𝜖 with probability one, then for all 𝑗𝑗 ∈
ℕ, 𝜋𝜋𝑡𝑡+𝑗𝑗 = 𝜋𝜋�̌�𝑡+𝑗𝑗

∗ . In other words, if agents believe the solution approximately converges to 
the 𝜋𝜋𝑡𝑡 ≡ 𝜋𝜋�̌�𝑡

∗ one, then it actually equals this one in all periods. 
Conditional on a terminal condition of this form, the only remaining source of 

potential multiplicity is the bound in the definition of 𝜋𝜋�̌�𝑡
∗. Even if we assume that 𝜋𝜋𝑡𝑡

∗ is 
exogenous, 𝑟𝑟𝑡𝑡 is not, so if 𝑟𝑟𝑡𝑡 is sufficiently responsive to 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, in theory there could be 
one solution in which 𝜋𝜋𝑡𝑡+1 = 𝜋𝜋�̌�𝑡+1

∗ = 𝜋𝜋𝑡𝑡+1
∗ > −𝑟𝑟𝑡𝑡 + 𝜖𝜖 and one solution in which 𝜋𝜋𝑡𝑡+1 =

𝜋𝜋�̌�𝑡+1
∗ = −𝑟𝑟𝑡𝑡 + 𝜖𝜖 > 𝜋𝜋𝑡𝑡+1

∗ . However, this does not occur for standard models. In Appendix 
E.11, we show that with the rest of the model given by equations (4) and (5), with 𝜋𝜋𝑡𝑡

∗ 
exogenous, 𝛽𝛽𝛿𝛿 ≥ 0 and 𝜅𝜅𝜍𝜍 > 0, there is a unique perfect foresight solution satisfying the 
terminal condition 𝜋𝜋�̌�𝑡

∗ → 𝜋𝜋𝑡𝑡
∗ as 𝑡𝑡 → ∞. Furthermore, this uniqueness is robust, in the 

sense that no continuous change to the model or its parameters could overturn the 
uniqueness. Thus, the modified inflation target delivers robust uniqueness for real rate 
rules, even in the presence of the ZLB. 

4.3 Equilibrium selection with perpetuities 

The modified inflation target real rate rules of the previous subsection delivered 
uniqueness conditional on a terminal condition ruling out inflation explosions or 
permanent ZLB episodes. In this final subsection, we examine how these two classes of 
undesirable equilibria may be avoided. This will enable us to answer Cochrane’s (2011) 
argument that there is nothing to rule out non-stationary equilibria under monetary 
rules satisfying the Taylor-principle, and Benhabib, Schmitt-Grohé & Uribe’s (2001) 
argument that there is nothing to rule out permanent ZLB spells under such rules. 

We suppose that perpetuities (also called “consols”) are traded in the economy. 
While actual perpetuities are rare, households may be able to approximate the flow of 
coupons from a perpetuity via holding a portfolio of government debt of different 
maturities. Additionally, there are many regular transfers from government to households 
or firms, such as unemployment benefits. While it is hard for households to capitalize 
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and trade their flow of unemployment benefits, long-term government contracts (in 
defence, aerospace, etc.) certainly can be capitalized and traded. As long as such 
contracts enable a flow of nominal firm profits, their value will have a perpetuity-like 
component. 

Perpetuity prices are functions of the entire expected future path of nominal rates, 
and hence they embed information on the economy’s selected equilibrium. Crucially, if 
the economy is stuck at the ZLB, then perpetuity prices will be extremely high, or even 
infinite. For the sake of exposition, we will derive results for the more general class of 
geometric coupon bonds, and later specialise to the perpetuity case. 

We assume that one unit of the period 𝑡𝑡 geometric coupon bond bought at 𝑡𝑡 returns 
$1 at 𝑡𝑡 + 1, along with 𝜔𝜔 ∈ (0,1] units of the period 𝑡𝑡 + 1 geometric coupon bond. The 
𝜔𝜔 = 1 case corresponds to a perpetuity. The geometric coupon bond trades at a price of 
𝑄𝑄𝑡𝑡 at 𝑡𝑡. Thus, if Ξ𝑡𝑡+1 is the real SDF between periods 𝑡𝑡 and 𝑡𝑡 + 1, and Π𝑡𝑡+1 ≔ exp 𝜋𝜋𝑡𝑡+1 
is gross inflation between these periods, then the price of the bond must satisfy: 

𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

[𝜔𝜔𝑄𝑄𝑡𝑡+1 + 1]. 

We assume that the government and central bank are the only institutions trusted 
enough to issue geometric coupon bonds, since private companies generally have shorter 
lives than nations. Thus, the total stock of such bonds, 𝐵𝐵𝑡𝑡, is in the government and/or 
central bank’s control. We assume there is some 𝐵𝐵 > 0 such that in all states of the 
world 𝐵𝐵𝑡𝑡 ≥ 𝐵𝐵𝜔𝜔𝑡𝑡. For this it is enough that the government issued geometric coupon 
bonds at some point in the past, with the commitment to never buy all of them back. 
Since it is optimal for governments to fund themselves with perpetuities (Debortoli, 
Nunes & Yared 2017; 2022), this does not seem an unreasonable commitment. Then, the 
household’s period 𝑡𝑡 transversality condition on geometric coupon bond holdings states 
that: 

0 = lim
𝑠𝑠→∞

𝔼𝔼𝑡𝑡 ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
�𝑄𝑄𝑡𝑡+𝑠𝑠𝐵𝐵𝑡𝑡+𝑠𝑠 ≥ 𝐵𝐵 lim

𝑠𝑠→∞
𝔼𝔼𝑡𝑡 ��

Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
�𝑄𝑄𝑡𝑡+𝑠𝑠𝜔𝜔𝑡𝑡+𝑠𝑠 ≥ 0, 

and hence lim
𝑠𝑠→∞

𝔼𝔼𝑡𝑡 �∏ Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠
𝑘𝑘=1 �𝜔𝜔𝑠𝑠𝑄𝑄𝑡𝑡+𝑠𝑠 = 0. Thus, for all 𝑡𝑡: 

𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡 ���
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
�𝜔𝜔𝑠𝑠−1

∞

𝑠𝑠=1
= 𝔼𝔼𝑡𝑡 ��� 1

𝐼𝐼𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=0
�𝜔𝜔𝑠𝑠

∞

𝑠𝑠=0
, 

where, as usual, 𝐼𝐼𝑡𝑡 is the gross interest rate on a one period nominal bond (so 𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

=

1). 
Now suppose that 𝐼𝐼𝑡𝑡+𝑘𝑘 = 1 (with probability one, conditional on period 𝑡𝑡 

information) for all sufficiently high 𝑘𝑘. Then 𝑄𝑄𝑡𝑡+𝑠𝑠 = 1
1−𝜔𝜔 (with conditional probability 

one) for all sufficiently high 𝑠𝑠. So, the transversality condition holds if and only if: 

0 = lim
𝑠𝑠→∞

𝔼𝔼𝑡𝑡 ��
Ξ𝑡𝑡+𝑘𝑘
Π𝑡𝑡+𝑘𝑘

𝑠𝑠

𝑘𝑘=1
� 𝜔𝜔𝑠𝑠

1 − 𝜔𝜔
= lim

𝑠𝑠→∞

𝜔𝜔𝑠𝑠

1 − 𝜔𝜔
, 

i.e., if and only if |𝜔𝜔| < 1. In particular, it is violated if the bond is a perpetuity, meaning 
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𝜔𝜔 = 1. 28 
In other words, permanent stays at the ZLB do in fact violate a transversality 

constraint when the stock of perpetuities is positive. Intuitively, with households having 
infinite nominal wealth, they wish to spend some of that wealth today on real goods, 
which ends up violating (real) goods market clearing. The only way goods market 
clearing could be restored is if inflation is infinite when nominal wealth is. We show this 
carefully in Appendix E.12. However, under standard assumptions on money demand, 
infinite inflation is only possible with infinite money supply growth, which is likely to be 
physically impossible for a central bank. Infinite inflation is also ruled out by arbitrarily 
small degrees of price stickiness. Thus, as long as infinite inflation is ruled out by these 
considerations or some other, there is no equilibrium with a permanent ZLB stay.29 

We now use this fact to construct a monetary rule with both global uniqueness and 
local determinacy, the latter helping ensure learnability. We assume that the central 
bank sets nominal interest rates via a tweaked non-linear version of the modified inflation 
target real rate rule of the previous subsection. Our first tweak is that for simplicity, we 
assume that the inflation target is set one period in advance. Our second tweak is to 
introduce “punishment” in the form of a switch to the ZLB following large deviations. 
To define a large deviation, we will introduce an upper bound 𝐼𝐼 > 1 on gross nominal 
interest rates, and we will construct the modified inflation target to ensure gross nominal 
interest rates are strictly inside �1, 𝐼𝐼� in equilibrium. 

We suppose that the central bank sets: 

𝐼𝐼𝑡𝑡 =
⎩�
⎨
�⎧max �1, 𝑅𝑅𝑡𝑡Π�𝑡𝑡

∗ �
Π𝑡𝑡

Π�𝑡𝑡−1
∗

�
𝜙𝜙

� , if 𝐼𝐼𝑡𝑡−1 ∈ �1, 𝐼𝐼�

1, otherwise
, 

where: 

Π�𝑡𝑡
∗ ≔ max � ℰ

𝑅𝑅𝑡𝑡
,min � 𝐼𝐼

ℰ𝑅𝑅𝑡𝑡
, Π𝑡𝑡

∗��, 

with 𝜙𝜙 > 1 and ℰ ≔ exp 𝜖𝜖 ∈ �1,
√

𝐼𝐼�. It is easy to see that Π𝑡𝑡 = Π�𝑡𝑡−1
∗  for all 𝑡𝑡 is 

consistent with this rule and the standard nominal and real bond pricing equations: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1, 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

In the local vicinity of this equilibrium path, we have 𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π�𝑡𝑡
∗ � Π𝑡𝑡

Π�𝑡𝑡−1
∗ �

𝜙𝜙
, which implies: 

 
28 The necessity of the transversality constraint is non-obvious in the 𝜔𝜔 = 1 case. However, in Appendix 
E.12 we show that the problem with perpetuities can be transformed into a “cake eating” type problem 
with one period bonds, for which the transversality constraint is trivially necessary, even when 𝜔𝜔 = 1. 
29 Government debt leading to a violation of the household transversality constraint at the ZLB may 
remind the reader of Benhabib, Schmitt‐Grohé & Uribe (2002). However, the current proposal preserves 
fully-Ricardian fiscal policy (see Appendix E.12), and does not require the government to commit to 
take actions that are ex post undesirable (like increasing primary deficits in the face of exploding debt). 
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𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π�𝑡𝑡
∗

Π𝑡𝑡+1
= �

Π�𝑡𝑡−1
∗

Π𝑡𝑡
�

𝜙𝜙

. 

This has a unique stationary solution under mild conditions by the results of Appendix 
A. 

To analyse potential deviations from this equilibrium, we switch to an economy 
without uncertainty for simplicity. This is in line with Cochrane (2011) which is also 
primarily concerned with deterministic economies. 

First, suppose that for some reason, for some 𝑡𝑡 = 𝑡𝑡0, Π𝑡𝑡 > Π�𝑡𝑡−1
∗ , but 𝐼𝐼𝑡𝑡−1 ∈ �1, 𝐼𝐼�. 

Then: 
Π𝑡𝑡+1

Π�𝑡𝑡
∗

= max � 1
𝑅𝑅𝑡𝑡Π�𝑡𝑡

∗
, �

Π𝑡𝑡

Π�𝑡𝑡−1
∗

�
𝜙𝜙

� ≥ �
Π𝑡𝑡

Π�𝑡𝑡−1
∗

�
𝜙𝜙

, 

and so Π𝑡𝑡
Π�𝑡𝑡−1

∗  explodes upwards as 𝑡𝑡 → ∞. Now for all 𝑡𝑡, Π�𝑡𝑡
∗ ≥ ℰ

𝑅𝑅𝑡𝑡
, hence Π𝑡𝑡

Π�𝑡𝑡−1
∗ ≤ 𝑅𝑅𝑡𝑡−1Π𝑡𝑡

ℰ <

𝐼𝐼𝑡𝑡−1. Thus, 𝐼𝐼𝑡𝑡 must also (start to) explode upwards as 𝑡𝑡 → ∞. So, eventually, for some 
𝑡𝑡1 ≥ 𝑡𝑡0, 𝐼𝐼𝑡𝑡1

> 𝐼𝐼. Thus 𝐼𝐼𝑡𝑡1+1 = 𝐼𝐼𝑡𝑡1+2 = ⋯ = 1 according to the monetary rule. But this is 
only consistent with household optimality if Π𝑡𝑡 is infinite at least once in [𝑡𝑡0,… , 𝑡𝑡1], 
which in turn is physically impossible. Hence, there is no equilibrium with such a 
deviation. 

Now, suppose that for some reason, for some 𝑡𝑡 = 𝑡𝑡0, Π𝑡𝑡 < Π�𝑡𝑡−1
∗ , but 𝐼𝐼𝑡𝑡−1 ∈ �1, 𝐼𝐼�. 

Then: 
Π𝑡𝑡+1

Π�𝑡𝑡
∗

= max � 1
𝑅𝑅𝑡𝑡Π�𝑡𝑡

∗
, �

Π𝑡𝑡

Π�𝑡𝑡−1
∗

�
𝜙𝜙

�, 

and so Π𝑡𝑡
Π�𝑡𝑡−1

∗  either explodes downwards towards zero forever as 𝑡𝑡 → ∞ or hits 𝐼𝐼𝑡𝑡1
= 1 at 

some 𝑡𝑡1 ≥ 𝑡𝑡0. Now for all 𝑡𝑡, Π�𝑡𝑡
∗ ≤ 𝐼𝐼

ℰ𝑅𝑅𝑡𝑡
, hence Π𝑡𝑡

Π�𝑡𝑡−1
∗ ≥ ℰ𝑅𝑅𝑡𝑡−1Π𝑡𝑡

𝐼𝐼 = ℰ
𝐼𝐼 𝐼𝐼𝑡𝑡−1. Thus, in fact 𝐼𝐼𝑡𝑡 must 

hit 𝐼𝐼𝑡𝑡1
= 1 at some 𝑡𝑡1 ≥ 𝑡𝑡0. Thus, just as before, 𝐼𝐼𝑡𝑡1+1 = 𝐼𝐼𝑡𝑡1+2 = ⋯ = 1, which is 

inconsistent with equilibrium, ruling out the initial deviation. 
Therefore, if households hold perpetuities, this tweaked real rate rules succeeds in 

producing global uniqueness. Admittedly, the punishment reduces its robustness, but for 
moderately high ℰ and 𝐼𝐼, and high 𝜙𝜙, accidentally falling into the punishment regime 
would be very unlikely, even with additional uncertainty coming from wedges in the 
Fisher equation. 

Of course, if there is something else in the economy ruling out explosive paths for 
inflation, then the punishment regime is unnecessary, and the central bank could just 
use the rule: 

𝐼𝐼𝑡𝑡 = max �1, 𝑅𝑅𝑡𝑡Π�𝑡𝑡
∗ �

Π𝑡𝑡

Π�𝑡𝑡−1
∗

�
𝜙𝜙

� , Π�𝑡𝑡
∗ ≔ max � ℰ

𝑅𝑅𝑡𝑡
,Π𝑡𝑡

∗�. 

With households holding perpetuities, this still has no equilibria that are permanently 
stuck at the ZLB. Sticky prices are sufficient to rule out explosive equilibria, both as 
inflation is bounded above under standard price stickiness specifications (see Appendix 
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A), and because under sticky prices, exploding inflation implies exploding real costs of 
this inflation. While prices may become more flexible at high inflation rates, there are 
practical limits on how often prices can change even under extreme hyperinflation. The 
price must at least remain constant for the time between picking an item off the shelf 
and arriving with it at the check-out. If this is correct, then even without a punishment 
regime, trade in perpetuities is sufficient to ensure a unique long-run equilibrium with 
inflation at target. 

5 Conclusion 
This paper’s implications are stark. Under a real rate rule: the central bank can 

always achieve its inflation target, no matter the rest of the economy; any movement in 
inflation must be due to a monetary policy shock or a central bank choice to so move 
inflation; monetary policy works in spite of, not because of, real rate movements; 
causation in the Phillips curve (if it exists) runs exclusively from inflation to the output 
gap, not the other way round; household and firm decisions, constraints and inflation 
expectations are irrelevant for inflation dynamics; and nothing can amplify or dampen 
the impact of shocks on inflation, except changes in the central bank’s own behaviour. 
With a time-varying inflation target, real rate rules can determinately implement optimal 
monetary policy, or match observed dynamics. They continue to work in the presence of 
the ZLB, endogenous wedges in the Fisher equation, or active fiscal policy. They can be 
implemented using assets for which there is already a liquid market: either nominal and 
real long-maturity bonds, or inflation swaps. 

To a policy maker, these conclusions may be shocking. However, for readers familiar 
with New Keynesian models, perhaps they are not completely surprising. In models in 
which an aggressive response to inflation produces determinacy, with an extremely 
aggressive response, the variance of inflation can be pushed down to near zero. And 
Rupert & Šustek (2019) argue that even in New Keynesian models with a standard 
monetary rule, monetary policy does not operate via real rates. Rather, real rate rules 
just crystallise the monetary policy transmission mechanism that is at work in all New 
Keynesian models. Monetary policy acts via the Fisher equation, and via the Taylor 
principle’s promise to induce explosive inflation should inflation deviate from target. 
Accepting standard New Keynesian models means accepting this story. 

Those for whom this is unpalatable will likely be drawn towards the fiscal theory of 
the price level. However, we showed that this theory fails to determine a unique outcome 
for inflation. It is even consistent with arbitrarily high inflation. Thus, the problems with 
Taylor principle equilibrium selection raised by Cochrane (2011) apply equally well to 
fiscal theory of the price level equilibrium selection. We gave one solution to these 
problems, and Christiano & Takahashi (2018; 2020) and Angeletos & Lian (2021) give 
others. Hence, Taylor principle equilibrium selection may be less problematic than that 
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for the fiscal theory of the price level. In this case, real rate rules provide a robust way 
to implement monetary policy. 
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