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Non-technical summary 

Research Question 

Since the start of the COVID-19 pandemic, a global boom in retail investing has occurred 
in financial markets. In light of this boom, professional investors such as hedge funds and 
banks have been analyzing the communication behavior of retail investors in stock 
message boards, extracting sentiment indicators that influence their own trading behavior 
(so-called social sentiment investing). Resorting to a theoretical model, this paper 
explores the impact of social sentiment investing on financial market bubbles. Our 
research question is the following: Does social sentiment investing counteract or amplify 
financial market bubbles that stem from retail investors’ trading behavior?  

Contribution 

To the best of our knowledge, our research paper is the first to address the impact of social 
sentiment investing in financial markets within a theoretical model. Notably, there 
already exists a relevant strand of literature that deals with the trading behavior of 
professional investors collecting information on retail trading. However, all relevant 
publications have so far disregarded the phenomenon of social sentiment investing. Our 
paper thus provides new theoretical insights that are relevant to the aforementioned strand 
of literature. 

Results 

The central result of our theoretical analysis says that social sentiment investing 
potentially destabilizes financial markets and makes financial bubbles even grow further. 
This outcome contrasts sharply with the conventional wisdom derived from the relevant 
literature that professional investors who collect information on retail trading 
unequivocally stabilize financial markets. Our theoretical model reveals that social 
sentiment investing makes professional investors engage in so-called front running, 
which potentially contributes to distorting market prices. 
 



 

Nichttechnische Zusammenfassung 

Fragestellung 

Auf Finanzmärkten ist seit der Corona-Pandemie ein Kleinanleger-Boom zu beobachten. 
Professionelle Anleger wie Hedgefonds und Banken analysieren seitdem das 
Kommunikationsverhalten von Kleinanlegern auf Aktienforen und extrahieren hierbei 
Sentiment-Indikatoren, die sie bei ihrem eigenen Handelsverhalten auf Finanzmärkten 
berücksichtigen (sogenanntes Social Sentiment Investing). Dieses Papier untersucht in 
einem theoretischen Modell, welchen Einfluss Social Sentiment Investing auf 
Blasenbildungen in Finanzmärkten ausübt. Unsere Forschungsfrage lautet: Konterkariert 
Social Sentiment Investing Finanzmarktblasen, die auf dem Handelsverhalten von 
Kleinanlegern beruhen, oder verstärkt es diese womöglich?   

Beitrag 

In unserem Forschungspapier wird sich erstmals innerhalb eines theoretischen Modells 
mit den Auswirkungen von Social Sentiment Investing auf Finanzmärkten beschäftigt. Es 
existieren bereits einige Beiträge in der relevanten Literatur, welche die Effekte des 
Handelsverhaltens von professionellen Investoren, die Informationen über Kleinanleger 
sammeln, erforschen. Jedoch lassen sämtliche einschlägige Publikationen Social 
Sentiment Investing bisher außer Acht. Unser Papier liefert somit neue Erkenntnisse, die 
für den erwähnten Literaturstrang von Relevanz sind.   

Ergebnisse 

Das zentrale Ergebnis unserer theoretischen Analyse ist, dass sich Social Sentiment 
Investing potenziell destabilisierend auf Finanzmärkte auswirkt und Blasenbildungen 
zusätzlich befeuern kann. Dieses Resultat kontrastiert in starkem Maße mit dem gängigen 
Resultat in der theoretischen Finanzmarktforschung, dass professionelle Händler, die 
Informationen über Kleinanleger sammeln, stets stabilisierend auf Finanzmärkte wirken. 
Unser theoretisches Modell offenbart, dass professionelle Investoren mithilfe von Social 
Sentiment Investing sogenanntes Front-running betreiben und hierdurch Marktpreise 
verzerren können.    
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1 Introduction

This paper investigates the impact of a public signal about future noise trading in a dynamic

noisy rational expectations equilibrium (REE) model. We demonstrate that an increase in

the precision of public information about future noise trader demand potentially reduces

the efficiency of the current asset price as a signal about the asset’s fundamental value

in the unique linear equilibrium of the model. In particular, the relation between signal

precision and price efficiency cannot be monotonically increasing, but can be monotonically

decreasing. That is, informed trading based on signals about noise trading has the potential

to aggravate, rather than ameliorate, the negative impact of noise trading on price efficiency.

This contrasts sharply with the results of two related strands of the REE literature, viz.,

that information about noise increases price efficiency in a static REE (see Ganguli and

Yang, 2009; Manzano and Vives, 2011; Marmora and Rytchkov, 2018; Zeng et al., 2018) and

that public information about fundamentals increases price efficiency in a dynamic REE (see

Gao, 2008). Our result lends support to Goldstein et al.’s (2021, p. 3222) conjecture that

“[A]lthough big data provides more information for sophisticated players such as institutional

investors and firms, the impact of big data may not always be positive.”

Our analysis of public information about noise trading is motivated by two current develop-

ments going on in the finance industry: rapid growth in the amount of data related to retail

investing propagated via social media and intensifying use of these data by professional

investors based on new methods in big data processing. Information about retail traders’

investments comes from money blogs, the online financial press, search queries, and, in par-

ticular, stock message boards. The January 2021 GameStop short squeeze is a popular case

in point. The buy orders that caused the GameStop stock to rise from $ 20 to $ 480 were

coordinated via stock message boards such as WallStreetBets.1 Subsequently, the shares of

AMC Entertainment and BlackBerry became meme stocks, with soaring prices after going

viral online.2 Financial analysts and professional investors make use of advances in textual

analysis, machine learning, and computing power in order to exploit the big data propagated

in the social media for the development of new investment strategies. Social sentiment invest-

ing (or “Trading on Twitter”, see Sul et al., 2017) takes on different forms. Analysts produce

1See https://www.businessinsider.com/melvin-capital-lost-53-percent-january-after-

gamestop-shares-skyrocketed-2021-1.
2See https://www.thebalance.com/what-is-a-meme-stock-5118074.
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and sell social sentiment indicators, such as S-scores, which yield quantitative information

about social media users’ mood or sentiment and can be used as an input in the development

of trading strategies. Other market participants do not disclose the output of their big data

analyses of retail investing, but use it to devise their own investment strategies. In March

2021, VanEck, an investment management company, launched the first social sentiment ETF,

called “BUZZ”, based on textual analysis of X (then Twitter) and several other social media

platforms.3 The growing importance of sentiment investing has been acknowledged by SEC

chairman Gary Gensler in his testimony before the U.S. House Committee on Financial Ser-

vices on May 6, 2021 relating to the recent volatility in the prices of GameStop and other

meme stocks:

“it’s no longer just retail investors or even humans who are following these online

conversations, but institutional investors and their algorithms. Developments in

machine learning, data analytics, and natural language processing have allowed

sophisticated investors to monitor various forms of public communication to see

relationships between words and prices. This practice, called sentiment analysis,

has picked up steam in the last couple of years, and it has grown to include online

communities.”4

The framework we use in order to analyze the impact of information about future social

sentiment on price efficiency is the canonical dynamic REE model with noise traders. The

noise trader approach to finance has been popularized by Black (1986) and Shleifer and

Summers (1990).5 Following Barber et al. (2009), Foucault et al. (2011), Peress and Schmidt

(2019, 2021), Barber et al. (2022), and Eaton et al. (2022), among others, we interpret

noise traders as retail investors acting on social sentiment. Total noise trader demand is

exogenous. That is, we do not model the interactions between different noise traders caused

by the dissemination of social sentiment (see Semenova and Winkler, 2021), but treat noise

trader demand as the aggregate outcome of these social interactions.

We introduce information about current and future noise trading as costless public signals.

3See https://www.cnbc.com/2021/03/04/buzz-etf-tracking-social-media-sentiment-launches-
thursday-amid-reddit-manias-in-stocks.html.

4See https://www.sec.gov/news/testimony/gensler-testimony-20210505.
5Shocks to net asset supply can alternatively be interpreted as shocks to rational investors’ asset endow-

ments. The two alternative interpretations lead to similar results. Given our focus on information about
noise, we adopt the noise trader interpretation. Vives (2008, Section 4.4) explains how fluctuations in net
supply can be endogenized by incorporating risk-averse hedgers.
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The fact that advances in machine learning algorithms, textual analysis, and computing

power allow quick and cheap evaluation of sentiment data (cf. Zhou, 2018, Subsection 4.3)

justifies the assumption that observing the signals involves little cost for the rational traders.

The fact that the data stem from the same publicly available internet sources supports

the assumption that different traders observe the same signal. The assumption that social

sentiment reveals information about future noise trading is motivated by evidence that social

sentiment indicators have predictive power for future prices and stock returns. This has been

shown, e.g., for postings on Yahoo! message boards (see Wysocki, 1998; Antweiler and Frank,

2004; Das and Chen, 2007), Facebook’s Gross National Happiness Index (Karabulut, 2013;

Siganos et al., 2014), internet search behaviour of private households (Da et al., 2015), and

Tweets (Sul et al., 2017; Duz and Tas, 2020). Zhou (2018, p. 250) notes that “[I]n comparison

with market- and survey-based measures, . . .measures based on textual analysis perform

better by far” (Baker and Wurgler, 2006, is the classic study of market-based sentiment

indicators).

Price efficiency is a central outcome measure for financial markets with asymmetric informa-

tion. High price efficiency means that market participants that do not have access to other

signals than prices still have available valuable information for informed portfolio decisions.

Following Hayek (1945), it is often held that price efficiency also contributes to an efficient

allocation of resources (i.e., to real efficiency) by providing accurate signals to investors.

While recent research has shown that the nexus between price efficiency and real efficiency

is not as close as originally suspected (see Bond et al., 2012; Goldstein and Yang, 2017, Sec-

tion 4), the argument still carries weight. Finally, the extraction of information from market

prices can be helpful for regulators and other policymakers. We focus on the most commonly

used metric for price efficiency, viz., the inverse of the variance of fundamentals conditional

on prices (see Goldstein and Yang, 2017, p. 106; see also Vives, 2008, pp. 121-122; Ganguli

und Yang, 2009, p. 99; Manzano and Vives, 2011, Subsection 4; Marmora und Rytchkov,

2018, Section 4.1; Zeng et al., 2018, Section 3; Farboodi und Veldkamp, 2020, Section 2;

among others). We show that the use of alternative measures of price efficiency proposed

in the literature (e.g., by Grossman and Stiglitz, 1980; Mendel and Shleifer, 2012; Li, 2022)

leads to similar conclusions. Bai et al. (2016) and Farboodi et al. (2022) provide interesting

recent attempts to quantify price efficiency empirically. They find that growth of finance

was accompanied by increases in price efficiency in the U.S. since the 1960s. Interestingly,

however, the descriptive statistics in Farboodi et al. (2022, Table 2, p. 3115) show a strong

3
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Figure 1: The impact of an increase in the precision of a signal about future noise trading is
not unambiguously positive

decline in price efficiency in the 2010s (the end of their sample), which, consistently with

our model, coincides with the rise of sentiment investing.

Our main result, illustrated in Figure 1, is that in the unique REE of our model, an increase

in the precision of public information about future noise trader demand potentially reduces

the efficiency of the current asset price about the asset’s fundamentals. This holds true

both in a version of the dynamic model with long-lived agents (LLA) and in a variant

with overlapping generations (OLG) of investors and short-term trading. Contemporaneous

price efficiency depends on three factors. First, current noise trader demand reduces price

efficiency. Second, by trading against noise traders, rational traders weaken the impact of

noise trading. These two effects are also present in a static setting, and higher precision of

a signal about contemporaneous noise makes the net effect smaller, thereby raising price

efficiency. The additional, third effect present in the dynamic model is due to the fact that,

other than in the static model, the return on investment is determined by the resale price

rather than fundamentals prior to the final trading date. A signal about future noise helps

rational investors anticipate the effect of future noise on the resale price. The ensuing effect

on current asset demand comes at the expense of reduced contemporaneous price efficiency.

The net effect of an increase in the precision of a signal about future noise via these three

channels is possibly negative. A simple example is the special case of the LLA model with no

signal about contemporaneous noise trading. The strengths of the two effects also present in

the static setting are independent of the precision of the signal about future noise in this case,

so that the changes in signal precision affect price efficiency only through the additional, third
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channel, operating through the resale price. Zero precision implies maximum price efficiency,

because this is the only finite value for which traders ignore the signal, so that the additional

negative effect vanishes. Generally, price efficiency is higher with a very imprecise than with

a very precise signal, meaning that the relation between the two cannot be monotonically

increasing, whereas it can be monotonically decreasing. In the OLG version of the model,

price efficiency is generally lower than in the LLA model (with identical model parameters),

but an increase in the precision of the signal about future noise trading is less likely to reduce

price efficiency.

Related literature includes models that investigate the impact of non-fundamental informa-

tion on price efficiency in REE models, such as Ganguli and Yang (2009), Manzano and

Vives (2011), Marmora and Rytchkov (2018), and Zeng et al. (2018). Information about

noise is conducive to price efficiency in these models in stable static equilibria. More pre-

cise non-fundamental information can lead to a fall in price efficiency in unstable equilibria

(see Manzano and Vives, 2011, Section 4). However, price efficiency is always higher in the

presence than in the absence of non-fundamental information. We show that these results

do not carry over to information about future sentiment in the dynamic setting. Gao (2008)

shows that noisy public information about fundamentals is conducive to price efficiency in

the dynamic REE model. Our analysis demonstrates that the same does not hold true for

non-fundamental information. Farboodi and Veldkamp (2020) analyze a model with growth

in information processing capacity that can be used to produce combinations of fundamen-

tal and private non-fundamental information (similar as in Marmora and Rytchkov, 2018).

They show that not only fundamental information but also the non-fundamental information

traders acquire is conducive to price efficiency. Again, this contrasts with our finding that

the impact of non-fundamental information on price efficiency can be negative. Finally, our

model is related to papers that analyze the interaction between rational traders and noise

traders using different setups than the REE setup of Grossman and Stiglitz (1980), Hellwig

(1980), and Diamond and Verrecchia (1981). De Long et al. (1990) show that rational in-

vestors may drive prices away from fundamentals if noise traders follow a positive feedback

investment strategy. Similarly, Madrigal (1996) and Yang and Zhu (2017) show that in a

Kyle (1985) setup with endogenous market making and strategic behavior, the presence of

a non-fundamental speculator can harm price efficiency. In a similar framework, Sadzik and

Woolnough (2021) demonstrate that a trader with information about the persistent com-

ponent of noise trader demand can destabilize prices by amplifying its impact on prices.
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Brunnermeier et al. (2022) show that rational investors may harm price efficiency by specu-

lating on information about noise originating from government intervention in the financial

market.

The remainder of this paper is organized as follows. As a benchmark for the subsequent

dynamic analysis, Section 2 analyzes the static version of the REE model with a public signal

about noise. Sections 3 and 4 analyze the LLA and OLG versions of the dynamic model,

respectively. Section 5 concludes. Proofs of propositions are collected in the Appendix.

2 Static model

This section shows that in a static setup, public information about noise trading increases

the efficiency of the asset price (cf., e.g., Manzano and Vives, 2011).

Model

Consider a static one-good economy populated by a unit mass of rational investors indexed

by the interval [0, 1] and by a set of noise traders. Rational agents value consumption π

according to the CARA utility function − exp(−γ−1π), where γ (> 0) is their risk tolerance

(i.e., the inverse of the degree of absolute risk aversion). There are one risky and one safe

asset. The net supply of the risky asset is fixed and normalized to zero for simplicity. One

unit of the risky asset pays off θ units of consumption.6 The safe asset is in perfectly elastic

supply. Its rate of return is zero. Initial endowments are also normalized to zero. Agents trade

the assets in the financial market. Noise trader demand for the risky asset s is exogenous.

Rational agents maximize expected utility conditional on available information. Agent i

obtains a private signal xi = θ+ εi about θ. In addition, there is a public signal about noise

trader demand

Y = s+ η (1)

observed by each rational trader. The assumption that the signal is costless and the same for

each rational trader is motivated in the Introduction by the observation that social sentiment

investors search the same internet sources for data, which can be processed at relatively low

6The simplifying assumption that the net supply of the risky asset is zero on average is taken from Vives’
(2008, Section 4.2) canonical REE model. It implies that, here as well as in the dynamic model in the
subsequent section, the (unconditionally) expected asset price coincides with Eθ. With positive mean net
supply, there would be a positive risk premium that compensates rational traders for the risk they bear in
equilibrium (see Vives, 2008, p. 120).
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cost. The random variables ξ ∈ {θ, s, εi, η | i ∈ [0, 1]} are jointly normally and independently

distributed. The means of these variables are normalized to zero. The precision of ξ is denoted

τξ (i.e., the variance of ξ is τ−1
ξ ). Our focus is on the impact of τη on price efficiency.7

Rational expectations equilibrium

Suppose the price of the risky asset is a linear function of θ, s, and Y :

P = aθ + bs− cY (2)

for real numbers a, b, and c. Investor i extracts information about the asset payoff θ from the

two signals she receives as well as from the asset price. The vector of her signals is denoted

Ii = (P, xi, Y ). Her investment in the risky asset and her final wealth are denoted Di and

πi = (θ − P )Di, respectively.

Definition (rational expectations equilibrium): A price function (2) and asset demands

Di, i ∈ [0, 1], are a linear rational expectations equilibrium (REE) if Di maximizes expected

utility E[−exp(γ−1πi) | Ii] for all i ∈ [0, 1] and the market for the risky asset clears, i.e.,∫ 1

0
Didi+ s = 0.

Expected utility maximization yields the asset demands

Di = γ
E(θ |Ii)− P

var(θ | Ii)
. (3)

The market clearing price P contains useful information about fundamentals θ since it aggre-

gates individuals’ private signals xi. The public signal about noise Y also conveys valuable

information about θ, even though the two random variables are uncorrelated. This is because

it helps to disentangle the impacts of the private signals about fundamentals on the one hand

and noise trader demand on the other hand on P . Define

P ∗ ≡ 1

a

[
P −

(
τη

τs + τη
b− c

)
Y

]
. (4)

Using (1) and (2),

P ∗ = θ +
1

ρ

τss− τηη

τs + τη
,

7Incorporating costly information acquisition in an “information market” raises the issue of complemen-
tarity and multiplicity of equilibria (see Ganguli and Yang, 2009; Manzano and Vives, 2011; Zeng et al., 2018;
Russ, 2022). The absence of complementarities and, hence, multiple equilibria ensures that the comparative
statics with respect to τη are well defined in our model.
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where ρ ≡ a/b. P ∗ is a signal about θ with precision ρ2(τs+τη). It aggregates the information

contained in P and Y , so E(θ | Ii) = E(θ |P ∗, xi) and var(θ | Ii) = var(θ |P ∗, xi) (formally,

this follows from the projection theorem). The conditional moments in i’s asset demand

function (3) are thus

E(θ | Ii) =
τεxi + ρ2(τs + τη)P

∗

τθ + τε + ρ2(τs + τη)

var(θ |Ii) =
1

τθ + τε + ρ2(τs + τη)
.

Substituting the demands into the asset market clearing condition, applying the strong law

of large numbers (i.e.,
∫ 1

0
εidi = 0), using the definition of P ∗, and solving for P yields

P =
aτεθ + aγ−1s+ [ρ2(τs + τη)c− aρτη]Y

a(τθ + τε) + (a− 1)ρ2(τs + τη)
.

By matching coefficients with (2), we obtain:

Proposition 1: There exists a unique linear REE, with

ρ = γτε

a =
τε + ρ2(τs + τη)

τθ + τε + ρ2(τs + τη)

b =
a

γτε

c =
aρτη

τε + ρ2(τs + τη)
.

Proposition 1 provides a closed-form solution for the parameters that characterize a linear

REE. The linear REE is unique.

The special case with τη = 0 is the textbook REE model with no useful information about

noise (cf. Vives, 2008, Section 4.2). From Proposition 1 and (4), c = 0 and P ∗ = P/a, so

E(θ| Ii) is a weighted sum of the private signal xi and the asset price P in this case. For

τη > 0, the coefficient of Y in (4) is negative:

−
(

τη
τs + τη

b

a
− c

a

)
= −1

ρ

τη
τs + τη

[
1− ρ2(τs + τη)

τε + ρ2(τs + τη)

]
< 0.

Thus, for a given private signal and a given asset price, an increase in the value of the signal

8



Y decreases P ∗ and E(θ| Ii), as it makes it more likely that high noise trader demand rather

than sound fundamentals support the asset price. From (3), rational traders’ asset demand

goes down, and, from (2), the strength of the ensuing drop in the equilibrium market price

P is given by c. As one would expect, c is large when the precision of the signal τη is high.

c/a measures how strongly the asset price reacts to the public signal about noise relative to

the average of the private signals about fundamentals (i.e., to
∫ 1

0
xidi = θ).

Rational traders are compensated for the risk they carry in an REE. So noise traders un-

derperform the market on average, as their buy orders drive up the price and their short

sales drive it down. The presence of the signal about noise Y reduces their expected losses,

as it allows rational traders to partly offset the impact of noise trading on the asset price.

Formally, this follows from

E[(θ − P )s] = −E(Ps) = −(b− c)
1

τs
< 0

(from (2) and Proposition 1) and b > c for τη > 0.

Price efficiency

The measure of price efficiency we focus on is the inverse of the variance of fundamentals

conditional on the price, i.e., var−1(θ |P ). Appendix B shows that the use of two alternative

measures leads to analogous results, viz., the squared correlation between θ and P (cf.

Grossman and Stiglitz, 1980, p. 399; Li, 2022) and the ratio of “good variance” to “bad

variance” proposed by Li (2022) (based on Mendel and Shleifer, 2012, p. 314).

Normality of θ and P implies that var−1(θ |P ) is non-random. Since P ∗∗ ≡ P/a is informa-

tionally equivalent to P , price efficiency is given by

var−1(θ|P ∗∗) = τθ + var−1(P ∗∗| θ).

It is inversely related to

var(P ∗∗| θ) =
(
1

ρ
− c

a

)2
1

τs
+
( c
a

)2 1

τη
(5)

(where use is made of (1) and (2)). var−1(θ|P ∗∗) is a weighted sum of noise trader de-

mand volatility 1/τs and the volatility inherent in the signal about noise trading 1/τη (from

Proposition 1, c/a < 1/ρ). We call the respective contributions to the total variance the

9



“CON (COntemporaneous Noise trading)” and “COMESCON (COMmon Errors in the Sig-

nal about COntemporaneous Noise trading)” effects in what follows.

An increase in the precision of the signal about noise trading τη raises price efficiency by

reducing the CON effect (as c/a rises). The additional impact via the COMESCON effect is

ambiguous, as rational traders react more strongly to the less volatile signal (i.e., 1/τη falls,

but its coefficient in (5) rises). To determine the net impact on price efficiency, substitute

the coefficients in Proposition 1 to get

var−1(θ|P ∗∗) = τθ +
ρ2τs [1 + ργ(τs + τη)]

2

1 + ργτs [2 + ργ(τs + τη)]
.

As the fraction on the right-hand side is an increasing function of 1 + ργ(τs + τη), we have:

Proposition 2: An increase in the precision of the signal about noise trader demand raises

price efficiency: ∂[var−1(θ|P ∗∗)]/∂τη > 0.

This confirms the findings of Ganguli and Yang (2009), Manzano and Vives (2011), and Zeng

et al. (2018) that more precise information about noise ameliorates its negative impact on

price efficiency.

3 Dynamic model

This section shows that higher precision of a public signal about noise trading is not un-

ambiguously beneficial to price efficiency if there is more than one trading date before the

asset pays off: more precise information about future noise trader demand can make the

contemporaneous asset price less efficient.

Model

There are now two trading dates t (= 1, 2) before the assets pay off (cf. Brown and Jennings,

1989). There are a fixed net supply equal to zero of a risky asset that pays off θ and a

perfectly elastic supply of a safe asset with a zero rate of return. There is a unit mass of

rational investors indexed by the interval [0, 1], whose lifespan encompasses both trading

dates and the final date, at which the assets pay off. These long-lived agents (LLA) value

final-date consumption according to the same CARA utility function as in Section 2. Noise

traders demand exogenous and independent amounts of the risky asset s1 and s2 at trading

dates 1 and 2, respectively (as, e.g., in Allen et al., 2006; Gao, 2008; Farboodi and Veldkamp,
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2020; and Farboodi et al., 2023).8 Rational agent i receives a private signal xi = θ+εi about

fundamentals at date 1. In addition, each rational agent i observes costless public signals

about current and future noise trader demand

Yt = st + ηt, t = 1, 2, (6)

at date 1 (there is no updating of Y2 at date 2). Information about future noise trading is

the crucial novel ingredient of the model. As explained in the Introduction, it is motivated

by evidence of predictive power of social sentiment indicators. The random variables ξ ∈
{θ, st, εi, ηt | t = 1, 2, i ∈ [0, 1]} are jointly normally and independently distributed. The

means are normalized to zero. The precision of ξt is denoted τξt.

Equilibrium

Let Pt denote the asset price at trading date t (= 1, 2). Suppose

P1 = a1θ + b1s1 − c11Y1 + c12Y2 (7)

P2 = a2θ + b2s2 − c21Y1 − c22Y2 + d2P1, (8)

for real numbers at, bt, ct1, ct2 (t = 1, 2), and d2. Let Ii1 = (P1, xi, Y1, Y2) and Ii2 =

(P1, xi, Y1, Y2, P2) denote the vectors of signals available to i at dates 1 and 2, respectively.Di1

andDi2 denote her asset demands at the two trading dates, and πi = (P2−P1)Di1+(θ−P2)Di2

is her final wealth.

Definition (dynamic REE): Price functions (7) and (8) and asset demands Dit, t =

1, 2, i ∈ [0, 1], are a linear dynamic REE if Di2 maximizes date-2 expected utility

E[−exp(γ−1πi) | Ii2] and Di1 maximizes date-1 expected utility E[−exp(γ−1πi) | Ii1] given

Di2 for all i ∈ [0, 1] and the market for the risky asset clears at both trading dates, i.e.,∫ 1

0
Ditdi+ st = 0, t = 1, 2.

Agent i’s asset demands result from solving her expected utility maximization problem

recursively. They are given by Proposition A3 in Brown and Jennings (1989, p. 544) or

8On the consequences of persistence in noise trading, see Cespa and Vives (2012, 2015) and Avdis (2016).
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Proposition B.1 in Avdis (2016, p. 579):

Di2 = γ
E(θ | Ii2)− P2

var(θ | Ii2)
(9)

Di1 = γ
E [P2 − h(θ − P2) | Ii1]− P1

var [P2 − h(θ − P2) | Ii1]
, (10)

where

h =
cov(θ − P2, P2 | Ii1)
var(θ − P2 |Ii1)

.

The date-2 demand function (9) is analogous to the demand function (3) in the static model.

As the payoff on date-1 investments is given by the date-2 resale price, P2 rather than θ

appears in the conditional moments in (10). While a decrease in P2 reduces the payoff on

date-1 investments, it increases the payoff on date-2 investments. This negative correlation

between the payoffs at dates 1 and 2 makes rational traders less reluctant to take risks at the

first trading date: for h < 0 and E[(θ − P2)| Ii1] > 0, the additional term E[−h(θ − P2)| Ii1]
in (10) contributes positively to date-1 asset demand.

In maximizing their utility, rational agents use the signals they receive to predict θ at date

2 and to predict θ and P2 at date 1 (see (9) and (10)). Analogous as in the static model, the

signals Y1 and Y2 about noise trader demand are informative, as they help to disentangle the

impacts of fundamentals and noise on prices. Let

P ∗
1 ≡ 1

a1

[
P1 −

(
τη1

τs1 + τη1
b1 − c11

)
Y1 − c12Y2

]
P ∗
2 ≡ 1

a2

[
P2 + c21Y1 −

(
τη2

τs2 + τη2
b2 − c22

)
Y2 − d2P1

]
.

Using ρt ≡ at/bt and (6), it follows that

P ∗
t = θ +

1

ρt

τstst − τηtηt
τst + τηt

.

That is, P ∗
t is a signal about θ with precision ρ2t (τst + τηt). At date 2, analogous as in the

static case, (P ∗
1 , xi, P

∗
2 ) conveys the same information as Ii2 = (P1, xi, Y1, Y2, P2). At date 1,

(P ∗
1 , xi) conveys the same information as Ii1 = (P1, xi, Y1, Y2). Formally, this follows from

the projection theorem.

Substituting the updated moments into (9) and the resulting demands Di2 into the date-
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2 market clearing condition yields P2 as a linear function of θ, s2, Y1, Y2, and P1. The

coefficients of these variables are matched with those in (8). Likewise, inserting the date-1

demands (10) with the updated moments into the date-1 market clearing condition yields

P1 as a linear function of θ, s1, Y1, and Y2, whose coefficients are matched with those in (7).

Solving the resulting system of equations yields the coefficients in (7) and (8). The algebra,

carried out in Appendix A, yields:

Proposition 3: There exists a unique linear dynamic REE, with

ρ1 = γτε

ρ2 = γτε

∆ = τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2)

a2 =
τε + ρ22(τs2 + τη2)

∆

b2 =
1 + γρ2(τs2 + τη2)

γ∆

Γ1 =
[
τθ + τε + ρ21(τs1 + τη1)

]−1

Γ2 = (τs2 + τη2)
−1

h =
a2(1− a2)Γ1 − b22Γ2

(1− a2)2Γ1 + b22Γ2

a1 =
[τε + ρ21(τs1 + τη1)] Γ1Γ2b

2
2

(1− a2)2Γ1 + b22Γ2

+ (1 + h)
ρ21(τs1 + τη1)

∆

b1 =
a1
ρ1

c11 = a1
ρ1τη1

(
1 + 1−a2

∆b22Γ2

)
τε + ρ21(τs1 + τη1)

(
1 + 1−a2

∆b22Γ2

)
c12 = a1

1−a2
b2

τη2

(
1− ρ2

b2Γ2∆

)
τε + ρ21(τs1 + τη1)

(
1 + 1−a2

b22Γ2∆

)
c21 =

−ρ21(τs1 + τη1)
c11
a1

+ ρ1τη1

∆

c22 =
ρ21(τs1 + τη1)

c12
a1

+ ρ2τη2

∆

d2 =
ρ21(τs1 + τη1)

a1∆
.
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As in the static model, the coefficients in the proposition are uniquely determined, so there

is a unique linear dynamic REE. The equations in the proposition provide a closed-form

solution: whenever a variable appears that is not a primitive of the model, it is determined

by the preceding equations.

From a2 < 1 and b2Γ2∆ > ρ2 (see the proof of Proposition 4 in Appendix A), it follows that

c11 > 0, c12 > 0, and c22 > 0. From (7) and (8), increases in Y1 thus reduce Pt (t = 1, 2): as

in the static model, rational traders’ asset demand responds negatively to the signal about

contemporaneous noise trading, thereby ameliorating the impact of noise trader shocks on

asset prices. By contrast, the signal Y2 rational traders receive at date 1 about future noise

trader demand raises the date-1 asset price P1. The prospect of a high resale price due to

strong noise trader demand at date 2 encourages rational traders to buy at date 1. More

generally, the fact that c12 ̸= 0 means that, in line with the empirical evidence that sentiment

indicators predict future returns, the value of Y2 observed at date 1 has predictive power for

the date-2 asset price.

The “Keynesian beauty contest” (KBC) effect identified by Allen et al. (2006) is at work

in the dynamic REE. From (9) and the date-2 market clearing condition, the date-2 asset

price P2 depends positively on average expectations of fundamentals
∫ 1

0
E(θ| Ii2)di. As a

consequence, from (10) and the date-1 market clearing condition, P1 depends positively

on average expectations of average expectations of fundamentals
∫ 1

0
E [

∫ 1

0
E(θ| Ii2)di| Ii1]di.

Allen et al. (2006) show that average expectations violate the law of iterated expectations:

the weights on public signals are higher and the weights on private signals are lower in

average expectations of average expectations than in average expectations. Applied to the

present context, extra weight on public information means that c11/a1 is “too large”.

The fact that d2 ̸= 0 means that P1 also helps to predict P2, i.e., “technical analysis . . . has

value” (Brown and Jennings, 1989, p. 527).

Analogous as in the static model, noise traders underperform on average at the final trading

date: from (8),

E[(θ − P2)s2] = −E(P2s2) = −(b2 − c22)
1

τs2
− d2c12

1

τs2
< 0.

The first term on the right-hand side of the equality captures the effects that are also present

in the static model: noise traders lose since their demand drives up the asset price at date 2,

and rational traders’ contrarian trading based on the signal Y2 dampens the expected losses.
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The second term on the right-hand side of the equality captures an additional, negative

effect: as a high value of Y2 indicates a high resale price P2, it raises rational traders’ date-1

asset demands and the date-1 asset price P1. As d2 > 0, there is a positive feedback effect

on P2, which lowers noise traders’ expected final wealth further.

From (7) and (8), noise traders’ unconditional interim expected wealth is

E[(P2 − P1)s1] = E(P2s1)− E(P1s1) = −c21
1

τs1
+ d2(b1 − c11)

1

τs1
− (b1 − c11)

1

τs1
.

The third term on the far right-hand side is the usual cost effect (i.e., −E(P1s1)): noise

traders bid up the price at which they buy assets, and vice versa. The first term captures

their expected losses due to the fact that the resale price P2 depends negatively on their date-

1 investment s1 (from (8) and c21 > 0). The second term captures an additional effect that

works in the opposite direction, raising noise traders’ expected interim wealth: an increase in

s1, by raising P1, also has a positive effect on the resale price P2 (from (8) and d2 > 0). This

positive effect notwithstanding, noise traders’ interim expected wealth is generally negative

(see Appendix A). The fact that prior to the final trading date, there is an effect that works

in the opposite direction suggests that the conditions for noise trader survival are at least

less bleak than in the static model. A thorough investigation would require the introduction

of more trading dates and the analysis of the whole distribution of noise trader wealth over

time, however (see De Long et al., 1991; Kogan et al., 2006).

Price efficiency

We are now in a position to prove our main result: public information about future noise

trader demand potentially reduces contemporaneous price efficiency.

Define P ∗∗
1 ≡ P1/a1:

P ∗∗
1 ≡ θ +

1

ρ1
s1 −

c11
a1

Y1 +
c12
a1

Y2.

Substituting for Yt from (6), we obtain price efficiency at date 1:

var−1(θ |P ∗∗
1 ) = τθ +

[(
1

ρ1
− c11

a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)]−1

, (11)

where the term in square brackets is var(P ∗∗
1 | θ). As in the static case, the squared correlation

between θ and P and the ratio of “good variance” to “bad variance” as measures of price

efficiency yield analogous results (see Appendix B). The first two terms in the sum in square
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brackets in (11) are the CON and COMESCON effects identified in the static model (cf. the

right-hand side of (5)). They capture the effects on price efficiency of contemporaneous noise

trading and the common error term in the corresponding signal, respectively. The third term

in the sum in square brackets has no counterpart in the static case. It captures the impact

of the signal about future noise trader demand Y2 on price efficiency at date 1. We call this

additional component of the conditional price variance the “COMSFUN (COMmon Signal

about FUture Noise trading)” effect. The weights of the variances 1/τst and 1/τηt in (11) are

determined by ρ1 and the expressions (c1t/a1)
2 (t = 1, 2), which indicate how strongly the

date-1 asset price responds to the signals about noise compared to fundamentals.

To assess the impact of changes in the precision of the signal about future noise trader

demand τη2 on date-1 price efficiency, it is instructive to start with the special case of the

model without an informative signal about contemporaneous noise trader demand at date

1, i.e., with τη1 = 0. Loosely speaking, noise traders’ social media activity consists of rumors

which only allow inferences about their future trading behavior in this case. Price efficiency

is maximum in this case if the signal about future noise Y2 is also completely uninformative:

Proposition 4: Let τη1 = 0. Then var−1(θ |P ∗∗
1 ) is greater for τη2 = 0 than for any finite

τη2 > 0.

The proof is in Appendix A. P1 is unrelated to Y1 if Y1 is uninformative: c11/a1 =

(c11/a1)
2/τη1 = 0 (cf. (7)). As a consequence, the CON effect boils down to 1/(ρ21τs1), which

is independent of τη2, and the COMESCON effect vanishes altogether. So τη2 affects date-1

price efficiency var−1(θ |P ∗∗
1 ) only via the COMSFUN effect

(
c12
a1

)2(
1

τs2
+

1

τη2

)
.

The COMSFUN effect vanishes for τη2 = 0, as the signal about future noise is also useless

(as, from Proposition 3, c12/a1 = (c12/a1)
2/τη2 = 0). The assertion of Proposition 4 follows

from the fact that the COMSFUN effect is strictly positive for all other finite values of τη2.

Actually, the COMSFUN effect also vanishes in the limit as τη2 → ∞. The date-2 price

becomes perfectly informative in this case: P2 = θ (since a2 → 1, b2 → 1/ρ2, c21 → 0,

c22 → 1/ρ2, and d2 → 0; see the proof of Proposition 5). As a result, the signal Y2 about

future noise s2 is of no use in predicting the payoff on date-1 investments (i.e., the resale

price P2) and does not affect date-1 asset demand. So the term c12Y2 drops out of (7) and
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Figure 2: The impact of the precision of public information about future noise trader de-
mand on current price efficiency in the LLA (solid curve) and OLG (dashed curve) models
(parameters: τη1 = 0, γ = 2, τθ = 4.5, τε = 0.1, τs1 = 0.6, τs2 = 2.5)

the COMSFUN term drops out of (11) (formally, c12/a1 → 0, as τη2(1− a2)/b2 converges to

a constant and b2Γ2∆ → ρ2; see the proof of Proposition 5 in Appendix A).

In fact, the relation between var−1(θ |P ∗∗
1 ) and τη2 has the U-shape depicted in Figure 2: the

marginal impact of increases in τη2 on price efficiency is negative at first and turns positive

at higher levels (see Appendix A for the formal proof). The economic intuition behind this

result is the following: As τη2 rises, the weight traders put on the signal about future noise

(relative to fundamentals), expressed by the ratio c12/a1, is influenced by two counteracting

effects. For one thing, as Y2 predicts future noise trader demand more precisely, agents trade

more aggressively on the signal when forming their demand. For another, a more precise Y2

implies that, at date 2, rational traders offset more of the date-2 noise trader demand. This

reduces the noise in the date-2 price, making Y2 less useful for predicting P2 at date 1.

When the signal is imprecise, the destabilizing effect dominates and agents trade more ag-

gressively on the signal Y2 (relative to fundamentals) as τη2 increases. Consequently, price

efficiency deteriorates. However, there exists a point where the stabilizing effect takes over,

and agents trade less aggressively on Y2 at date 1 as the signal gains further in precision.

This is conducive to price efficiency.

Turning to the general case (i.e., τη1 ≥ 0), the relation between var−1(θ |P ∗∗
1 ) and τη2 is not
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necessarily U-shaped. Nevertheless, similar arguments establish that more accurate infor-

mation about future noise trading cannot be unambiguously conducive to price efficiency:

price efficiency cannot be a monotonically increasing function of signal precision, so there

generally exists a range of values of signal precision over which it has a negative impact on

price efficiency. This follows from the observation that a completely uninformative signal

generally leads to higher efficiency than a perfectly informative signal:

Proposition 5: var−1(θ |P ∗∗
1 ) is no less for τη2 = 0 than for τη2 → ∞.

The proof is in Appendix A. By the same arguments as in the case τη1 = 0, the COMSFUN

effect drops out of (11) for τη2 → 0 (the signal plays no role) and for τη2 → ∞ (the signal is

useless at date 1 because noise trading s2 does not affect the resale price). So price efficiency

at date 1 depends on τη2 solely via the CON and COMESCON effects

(
1

ρ1
− c11

a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1
.

This sum is smaller and price efficiency is larger for τη2 = 0 than for τη2 → ∞ (see Appendix

A). The economic explanation for this result goes as follows: From Proposition 3, we know

that ρ1 is independent of τη2. Thus, the result is driven by the ratio c11/a1, which indicates

rational agents’ trading intensity against the public signal about contemporaneous noise

trading (relative to their trading intensity on fundamentals). Along the proof of Proposition

3.5 in Appendix A, we show that c11/a1 is greater for τη2 = 0 than as τη2 → ∞. This implies

that agents trade more aggressively against contemporaneous noise (compared to trading on

fundamentals) when the signal about future noise is completely imprecise. Date-1 traders

use the signal about current noise Y1 in two ways. On the one hand, Y1 is contained in P ∗
1

and used to extract noise inherent in the date-1 market price. Notably, τη2 does not influence

how aggressively agents trade on P ∗
1 (see date-1 traders’ demand function in the proof of

Proposition 3 in Appendix A). On the other hand, since the public signal Y1 is also observable

at date 2, forecasting P2 entails forecasting Y1. Thus, Y1 directly helps to predict P2. If Y2

is perfectly precise, the exact value of θ can be observed at date 2 by disentangling the

information conveyed by P2. Consequently, date-2 rational traders do not use Y1 to predict

fundamentals (i.e., c21 = 0). As of date 1, this makes Y1 less useful for predicting P2 and

traders put less weight on the signal when forming date-1 demand than for τη2 = 0. This

explains why c11/a1 is unequivocally larger for τη2 = 0 than as τη2 → ∞.
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Figure 3: The impact of the precision of public information about future noise trader de-
mand on current price efficiency in the LLA (solid curve) and OLG (dashed curve) models
(parameters: τη1 = 2.5, γ = 2, τθ = 4, τε = 0.8, τs1 = 0.01, τs2 = 3.5)

The fact that c11/a1 is greater in the absence of information about future noise trading implies

that the CON effect is less pronounced for τη2 = 0 than as τη2 → ∞, raising price efficiency.

The COMESCON effect, by contrast, is clearly more pronounced for τη2 = 0, which harms

price efficiency. Thus, as τη2 switches from infinity to zero, the impact of more aggressive

trading against Y1 on price efficiency is two-edged. Nevertheless, the result in Proposition

5 demonstrates that the stabilizing impact coming from the reduction in the CON effect

dominates the destabilizing impact generated by the increase in the COMESCON effect.

Figure 3 illustrates the result contained in Proposition 5. Interestingly, while the relation

between precision of the signal about date-2 noise and date-1 price efficiency thus cannot

be monotonically increasing, there exist parameterizations such that it is monotonically

decreasing (see Figure 4).

Price efficiency tends to go down when the precision of the signal about future noise rises

from zero to small positive values. This is necessarily true for τη1 = 0, in which case price

efficiency is maximum for τη2 = 0 (see Proposition 4). Numerical analysis confirms this

property for a wide range of parameters, including those underlying Figures 3 and 4. The

following proposition gives the necessary and sufficient condition:
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Proposition 6: ∂[var−1(θ |P ∗∗
1 )]/∂τη2 < 0 for τη2 = 0 exactly if

− 2τη1τ
2
ε (1− γρ2τs2)

τs1 [τε + ρ21(τs1 + τη1)(1 + ϕ10)]
+

τθ + ρ21(τs1 + τη1)

1 + γρ2τs2
> 0,

where

ϕ10 =
γ2 [τθ + ρ21(τs1 + τη1)] τs2

(1 + γρ2τs2)
2 .

The proof is in Appendix A. The first term on the left-hand side of the inequality in Propo-

sition 6 represents the (adjusted) impact of a marginal increase in τη2, starting from zero,

on the sum of the CON and COMESCON effects in (11). The second term is the (adjusted)

marginal change in the COMSFUN effect. As one would expect, the impact on the COMS-

FUN effect is positive and, hence, detrimental to price efficiency. The total effect on price

efficiency is negative for γρ2τs2 large enough. A simple sufficient condition is γρ2τs2 > 1.

In this case, increases in τη2 make date-1 agents trade less aggressively against the pub-

lic signal Y1, strengthening the CON effect and weakening the COMESCON effect in (11)

(see Appendix A). The net effect is positive, adding to the COMSFUN effect and reducing

price efficiency, because a high value of γρ2τs2 implies that c11/a1 is small (see the proof of

Proposition 5 in Appendix A), so that the weight of the CON effect is large compared to

the COMESCON effect in (11).

In sum, the impact of more accurate information about future noise trading on price efficiency

is not unequivocally positive. Higher precision necessarily has a negative impact on price

efficiency over a range of relatively low values, and possibly throughout. This challenges the

conventional wisdom, derived from static models, that more non-fundamental information

is conducive to the conveyance of information via asset prices and supports concerns about

the impact of social sentiment investing on the informational content of asset prices.

We also checked the implications of the model for price efficiency at date 2 and the impact

of changes in the precision of the signal about contemporaneous noise trader demand τη1

on date-1 price efficiency. Higher precision τη2 potentially reduces not only date-1 price

efficiency var−1(θ |P ∗∗
1 ), but also date-2 price efficiency var−1(θ |P ∗∗

1 , P ∗∗
2 ). This reinforces our

conclusion that non-fundamental information potentially makes asset prices less informative.

Perhaps surprisingly, an increase in τη1 can also decrease date-1 price efficiency var−1(θ |P ∗∗
1 ).

However, this can only happen when there is also an informative signal about future noise,
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Figure 4: The impact of the precision of public information about future noise trader de-
mand on current price efficiency in the LLA (solid curve) and OLG (dashed curve) models
(parameters: τη1 = 0.5, γ = 2, τθ = 4.5, τε = 0.1, τs1 = 0.6, τs2 = 2.5)

i.e., when τη2 > 0.9 So, unlike a signal about contemporaneous noise, a signal about future

noise is a necessary prerequisite for a negative impact of more precise non-fundamental

information on price efficiency.

4 Short-term trading

Following Allen et al. (2006) and others (e.g., Brown and Jennings, 1989; Gao, 2008; Cespa

and Vives, 2015; Farboodi and Veldkamp, 2020), this section replaces the long-lived traders

in the model of Section 3 with two overlapping generations (OLG) of short-lived traders. This

has become a standard way of modeling short-term trading by agents that enter and exit

markets in quick succession and are, therefore, predominantly interested in price changes,

not in fundamentals. We show that, as in the model with LLA, the impact of an increase in

the precision of the signal about future noise on price efficiency can be negative.

Model

The model is the same as in Section 3 except that there are now two generations of rational

9Proofs of the stated results are available on request.
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traders, one that enters the market at date 1 and exits at date 2 and another one that enters

at date 2 and lives until date 3. Each generation of investors has unit mass, and each investor

is characterized by the same coefficient of constant absolute risk aversion γ−1. Each rational

agent i obtains a private signal xi = θ + εi about θ. As before, the signals are costless. The

exogenous random variables are jointly normally and independently distributed with zero

mean and the established notation for precisions.

Equilibrium

The final wealth of a first generation investor who invests Di1 in the risky asset πi1 = (P2 −
P1)Di1 is determined by the resale price P2 and does not depend directly on fundamentals θ.

Investors that enter the market at date 2 invest Di2 and obtain final wealth πi2 = (θ−P2)Di2.

A dynamic REE is defined in the same way as in the LLA version of the model except that

both generations of rational agents maximize their respective expected utilities.

Let the asset prices be given by (7) and (8). Solving the model backwards yields a unique

linear dynamic REE (see Appendix A):

Proposition 7: There exists a unique linear dynamic REE, with

ρ1 =
γ2τε(τs2 + τη2)

1 + γ2τε(τs2 + τη2)
γτε

ρ2 = γτε

∆ = τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2)

a1 =
ρ21(τs1 + τη1)(∆ + τε) + τε [τε + ρ22(τs2 + τη2)]

∆ [τθ + τε + ρ21(τs1 + τη1)]

b1 =
a1
ρ1

c11 =
(∆ + τε)ρ1τη1

∆[τθ + τε + ρ21(τs1 + τη1)]

c12 =
τη2

γ∆(τs2 + τη2)

a2 =
τε + ρ22(τs2 + τη2)

∆

b2 =
1 + γρ2(τs2 + τη2)

γ∆

c21 =
−ρ21(τs1 + τη1)

c11
a1

+ ρ1τη1

∆

c22 =
ρ2τη2 + ρ21(τs1 + τη1)

c12
a1

∆
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d2 =
ρ21(τs1 + τη1)

a1∆
.

Equilibrium shares several properties with the LLA model of Section 3. Proposition 7 pro-

vides a closed-form solution for the unique linear REE. The expressions for ρ2, a2, b2, c21, c22,

and d2 are the same as in the LLA model. This is because the analysis of date-2 trading is

identical in both models. Demand responds negatively to the signal about contemporaneous

noise trading (as c11 > 0 and c22 > 0) but positively to the signal about future noise trading

(as c12 > 0). The latter effect is due to the fact that a high value of the signal indicates price

pressure emanating from high noise trader demand at date 2. c21 ̸= 0 and d2 ̸= 0 mean that

the signal about date-1 noise trader demand and the date-1 price have predictive power for

the date-2 price level. The remarks on noise traders’ expected final wealth E[(θ−P2)s2] and

expected interim wealth E[(P2 − P1)s1] following Proposition 3 in Section 3 hold without

modification (see Appendix A for the computations). A difference compared to the LLA

model, which is important for price efficiency, is that ρ1 (= a1/b1) depends (positively) on

the precision of the non-fundamental signal τη2.

Price efficiency

As in Section 3, price efficiency var−1(θ |P ∗∗
1 ) is given by equation (11), where P ∗∗

1 ≡ P1/a1

and the coefficients ρ1, a1, c11, and c12 are now given by Proposition 7 (Appendix B shows

that the alternative metrics yield analogous conclusions). So the same three effects (CON,

COMESCON, and COMSFUN) determine price efficiency.

Proposition 8: For τη1 = 0, var−1(θ |P ∗∗
1 ) is smaller for τη2 = 0 than for τη2 → ∞. For all

τη1 ≥ 0, the limit of var−1(θ |P ∗∗
1 ) as τη2 → ∞ is equal to the limit in the model with LLA.

The proof is in Appendix A. Suppose τη1 = 0. Evidently, from Proposition 7, c11/a1 =

(c11/a1)
2/τη1 = 0 in this case. As in the LLA model, the COMESCON effect drops out of

(11) and price efficiency is inversely related to

1

ρ21τs1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)
.

The first term is the CON effect, the second one is the COMSFUN effect. Contrary to

the LLA model, the CON effect is not independent of τη2: increases in τη2 raise ρ1, thereby

weakening the CON effect and raising price efficiency var−1(θ |P ∗∗
1 ). This is why more precise

information about future noise is less likely to reduce contemporaneous price efficiency than
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in the model with LLA. As in the LLA model, the COMSFUN effect vanishes for τη2 = 0

and for τη2 → ∞ (see the proof of Proposition 8 in Appendix A). Taken together, it follows

that, contrary to the model with LLA, price efficiency is higher for τη2 → ∞ than for τη2 = 0

(see also Figure 2). For all τη1 ≥ 0, ρ1 converges to the constant equilibrium value of the

LLA model, viz., γτε (see Propositions 3 and 7). As a consequence, price efficiency and the

impact of changes in τη2 on price efficiency are similar in the two versions of the model (see

Figures 2 and 3).

Numerical analysis of the case τη1 > 0 shows that price efficiency is generally lower in the

OLG model than in the LLA model. Jointly with the fact that, from Proposition 8, the

difference goes to zero as τη2 grows large, this means that the marginal impact of increases

in τη2 tends to be larger. This more optimistic assessment of the impact of more precise

non-fundamental information notwithstanding, as in the LLA case, there exist parameters

such that var−1(θ |P ∗∗
1 ) is a monotonically decreasing function of τη2 (see Figure 4).

5 Conclusion

The growing availability of big data has a profound impact on many parts of social life

and economic activity. This holds true in particular for activity in financial markets. As

a rule of thumb, the dissemination of information allows individual market participants to

make more accurate financial decisions and leads to more efficient market outcomes. In line

with this, the availability of more data on economic fundamentals makes asset prices more

informative in theory. But can we be confident that more data on noise trading collected by

social sentiment investors also makes asset prices more efficient? Given the obvious problems

of coming up with a sound empirical answer to this question, one might be interested in what

theory says to start with. If one tackles the problem from a static perspective, one might be

confident that the rule of thumb also holds: better information about noise allows sentiment

investors to trade more aggressively against noise trader shocks, making asset prices more

efficient. Unfortunately, this optimistic assessment of the impact of sentiment investing on

price efficiency does not generally carry over to a dynamic setup. The dynamic perspective

acknowledges that, as most assets are traded frequently before maturity and between coupon

or dividend payments, resale prices are the main determinant of returns on investment.

Information about future noise moves the current price of an asset because rational investors

anticipate the impact of future noise on future asset prices, i.e., the prices at which they resell
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assets not held up to maturity. The ensuing additional conditional price volatility reduces

the informativeness of the current asset price as an indicator of fundamentals. So taking the

dynamic perspective leads to a more pessimistic assessment of the impact of social sentiment

trading on price efficiency.
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A Proofs

Proof of Proposition 3: The first two conditional moments of θ at date 2 are

E(θ | Ii2) =
τε xi + ρ21 (τs1 + τη1)P

∗
1 + ρ22 (τs2 + τη2)P

∗
2

τθ + τε + ρ21 (τs1 + τη1) + ρ22 (τs2 + τη2)

var−1(θ | Ii2) = τθ + τε + ρ21 (τs1 + τη1) + ρ22 (τs2 + τη2) .

Trader i’s date-2 demand (adjusted by her risk tolerance) can be written as

Di2

γ
= τε xi + ρ21 (τs1 + τη1)P

∗
1 + ρ22 (τs2 + τη2)P

∗
2 −∆P2,

where ∆ ≡ var−1(θ | Ii2). Market clearing at date 2 and the strong law of large numbers (i.e.,∫ 1

0
xi di = θ) imply

0 =
s2
γ

+

∫ 1

0

Di2

γ
di

=
s2
γ

+ τε θ + ρ21 (τs1 + τη1)

(
P1 + c11Y1 − c12Y2

a1
− 1

ρ1

τη1
τs1 + τη1

Y1

)
+ ρ22 (τs2 + τη2)

[
θ +

1

ρ2

(
s2 −

τη2
τs2 + τη2

Y2

)]
−∆P2.

Solving for P2 yields

P2 =
1

∆

{[
τε + ρ22 (τs2 + τη2)

]
θ +

[
γ−1 + ρ2 (τs2 + τη2)

]
s2

−
[
ρ1τη1 − ρ21 (τs1 + τη1)

c11
a1

]
Y1 −

[
ρ2τη2 + ρ21 (τs1 + τη1)

c12
a1

]
Y2

+ ρ21 (τs1 + τη1)
1

a1
P1

}
.

Matching coefficients and some algebra yield the expressions for a2, b2, c21, c22, d2, and ρ2

in the proposition.

Turning to date 1, after defining Γ1 ≡ var(θ | Ii1) and Γ2 ≡ var(s2 | Ii1), we have

cov(θ − P2, P2 | Ii1) = a2(1− a2)Γ1 − b22Γ2

var(θ − P2 | Ii1) = (1− a2)
2Γ1 + b22Γ2,
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so that

h =
a2(1− a2)Γ1 − b22Γ2

(1− a2)2Γ1 + b22Γ2

.

Using

E[P2 − h(θ − P2) | Ii1] = [(1 + h)a2 − h] E(θ | Ii1)

+ (1 + h) [b2E(s2 | Ii1)− c21Y1 − c22Y2 + d2P1]

E(θ | Ii1) =
τε xi + ρ21 (τs1 + τη1)P

∗
1

τθ + τε + ρ21 (τs1 + τη1)

E(s2 | Ii1) =
τη2

τs2 + τη2
Y2

var[P2 − h(θ − P2) | Ii1] =
b22Γ1Γ2

(1− a2)2Γ1 + b22Γ2

,

trader i’s date-1 demand (adjusted by her risk tolerance) becomes

Di1

γ
= τε xi + ρ21 (τs1 + τη1)P

∗
1 +

1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

Y2 − c21Y1 − c22Y2 + d2P1

)
− (1− a2)

2Γ1 + b22Γ2

b22Γ1Γ2

P1.

Market clearing in the first period yields

0 =
s1
γ

+

∫ 1

0

Di1

γ
di

= τε θ +
s1
γ

−
[
ρ1τη1 − ρ21 (τs1 + τη1)

c11
a1

+
1− a2
b22Γ2

c21

]
Y1

+

[
1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

− c22

)
− ρ21 (τs1 + τη1)

c12
a1

]
Y2

−
[
(1− a2)

2Γ1 + b22Γ2

b22Γ1Γ2

− 1− a2
b22Γ2

d2 − ρ21 (τs1 + τη1)
1

a1

]
P1.

Solving for P1 and matching coefficients gives the expressions for a1, b1, c11, c12, and ρ1 in

the proposition. q.e.d.

Proof that E[(P2 − P1)s1] < 0 in the LLA model:

From Proposition 3,

−c21
1

τs1
+ d2(b1 − c11)

1

τs1
=

ρ1
∆
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and

(b1 − c11)
1

τs1
= a1

τε + ρ21τs1

(
1 + 1−a2

∆b22Γ2

)
ρ1τs1

[
τε + ρ21(τs1 + τη1)

(
1 + 1−a2

∆b22Γ2

)] .
Plugging this into the expression for noise traders’ interim expected wealth in the main text,

letting

D ≡ 1 + γ2τε(τs2 + τη2)

E ≡ τθ + ρ21(τs1 + τη1),

and simplifying terms, we get

E[(P2−P1)s1] = −Eγ2(τs2 + τη2)ρ
2
1τs1[τε + ρ22(τs2 + τη2)] +D2[τε∆+ ρ21τs1ρ

2
2(τs2 + τη2)]

ρ1τs1∆ {E2γ2(τs2 + τη2) +D2[τθ + τε + ρ21(τs1 + τη1)]}
< 0.

q.e.d.

Proof of Proposition 4: From the formulas in Proposition 3, for τη1 = 0, we obtain:

1− a2
b2

= γ
τθ + ρ21τs1

1 + γρ2(τs2 + τη2)

b2Γ2∆ =
1 + γρ2(τs2 + τη2)

γ(τs2 + τη2)

We note in passing that b2Γ2∆ > ρ2. It follows that

c11
a1

= 0(
c11
a1

)2
1

τη1
= 0

for τη1 = 0. That c12/a1 = 0 if τη2 = 0 follows from the fact that

ρ2
b2Γ2∆

=
γρ2(τs2 + τη2)

1 + γρ2(τs2 + τη2)
< 1.

Since c12/a1 is positive for all other finite values of τη2, var
−1(θ |P ∗∗

1 ) is greater for τη2 = 0

than for any finite τη2 > 0. q.e.d.
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Proof that var−1(θ |P ∗∗
1 ) is U-shaped in τη2 for τη1 = 0:

Define

A3 ≡
(
c12
a1

)2(
1

τs2
+

1

τη2

)
.

Then, we can show that

∂A3

∂τη2
=

γ2(τθ + ρ21τs1)
2
(
−b3τ

3
η2 − b2τ

2
η2 + b1τη2 + b0

)
τs2k3

3

,

where

b3 ≡ 2γ2ρ22(τϵ + ρ21τs1),

b2 ≡ 3γ2ρ22τs2(τϵ + ρ21τs1),

b1 ≡ 2(1 + γρ2τs2)(τϵ + ρ21τs1) + ρ21τs1γ(τθ + ρ21τs1)τs2,

b0 ≡ τs2[(1 + γρ2τs2)
2(τϵ + ρ21τs1) + ρ21τs1γ(τθ + ρ21τs1)τs2].

Note that the term in brackets in the numerator of the derivative is a cubic polynomial in

τη2. To determine the number of positive real roots, we use Descartes’ rule of signs. Since

the cubic exhibits one sign change, it possesses exactly one positive real root, τ̄η2 say. This,

in return, implies that the unique extremum of A3 lies at τη2 = τ̄η2 . As ∂A3/∂τη2 > 0 for

τη2 = 0 and ∂A3/∂τη2 < 0 for τη2 large enough, A3 has a global maximum at τη2 = τ̄η2. Since

date-1 price efficiency is inversely related to A3, it is decreasing (resp., increasing) in τη2 for

τη2 ≶ τ̄η2. q.e.d.

Proof of Proposition 5: Define

A1 ≡
(

1

ρ1
− c11

a1

)2
1

τs1

A2 ≡
(
c11
a1

)2
1

τη1

A3 ≡
(
c12
a1

)2(
1

τs2
+

1

τη2

)
,

so that var−1(θ |P ∗∗
1 ) = τθ + (A1 +A2 +A3)

−1. A1, A2, and A3 are the CON, COMESCON,
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and COMSFUN effects defined in the text, respectively. From Proposition 3,

1− a2
b2

→ 0

1− a2
b2

τη2 → τθ + ρ21(τs1 + τη1)

ρ2
b2Γ2∆ → ρ2

c11
a1

→ ρ1τη1
τε + ρ21(τs1 + τη1)

c12
a1

→ 0

A1 → 1

ρ21τs1

[
τε + ρ21τs1

τε + ρ21(τs1 + τη1)

]2
A2 → 1

ρ21τη1

[
ρ21τη1

τε + ρ21(τs1 + τη1)

]2
A3 → 0

as τη2 → ∞ and

1− a2
b2

= γ
τθ + ρ21(τs1 + τη1)

1 + γρ2τs2

b2Γ2∆ =
1 + γρ2τs2

γτs2
c11
a1

=
ρ1τη1

Bτε + ρ21(τs1 + τη1)
c12
a1

= 0

A1 =
1

ρ21τs1

[
Bτε + ρ21τs1

Bτε + ρ21(τs1 + τη1)

]2
A2 =

1

ρ21τη1

[
ρ21τη1

Bτε + ρ21(τs1 + τη1)

]2
A3 = 0

for τη2 = 0, where

B ≡
[
1 + γ2τs2

τθ + ρ21(τs1 + τη1)

(1 + γρ2τs2)2

]−1

< 1.

We note in passing that c11/a1 is greater for τη2 = 0 than for τη2 → ∞. We also note that

increases in γρ2τs2 raise B and reduce c11/a1 for τη2 = 0. It is easily checked that A1+A2+A3

is no greater for τη2 = 0 than for τη2 → ∞. q.e.d.
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Proof of Proposition 6:

∂[var−1(θ |P ∗∗
1 )]/∂τη2 < 0 for τη2 = 0 exactly if

3∑
i=1

∂Ai

∂τη2

∣∣∣∣
τη2 = 0

> 0.

Define

ϕ1 ≡
1− a2
b22Γ2∆

,

so that

A1 =

{
τε + ρ21τs1(1 + ϕ1)

ρ1[τε + ρ21(τs1 + τη1)(1 + ϕ1)]

}2
1

τs1
.

Differentiating with respect to τη2 yields

∂A1

∂τη2
= −

2τη1τε [τε + ρ21τs1(1 + ϕ1)]
∂ϕ1

∂τη2

τs1 [τε + ρ21(τs1 + τη1)(1 + ϕ1)]
3 .

Likewise, differentiating

A2 = τη1

[
ρ1(1 + ϕ1)

τε + ρ21(τs1 + τη1)(1 + ϕ1)

]2
gives

∂A2

∂τη2
=

2ρ21τη1τε(1 + ϕ1)
∂ϕ1

∂τη2

[τε + ρ21(τs1 + τη1)(1 + ϕ1)]
3 .

Hence,

2∑
i=1

∂Ai

∂τη2
= −

2τη1τ
2
ε

∂ϕ1

∂τη2

τs1 [τε + ρ21(τs1 + τη1)(1 + ϕ1)]
3 .

Using the coefficients in Proposition 3, ϕ1 can be written as

ϕ1 =
γ2[τθ + ρ21(τs1 + τη1)](τs2 + τη2)

[1 + γρ2(τs2 + τη2)]2
.
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So

∂ϕ1

∂τη2
=

γ2 [1− γρ2(τs2 + τη2)] [τθ + ρ21(τs1 + τη1)]

[1 + γρ2(τs2 + τη2)]
3 .

Letting

ϕ10 ≡ ϕ1|τη2=0
=

γ2τs2 [τθ + ρ21(τs1 + τη1)]

(1 + γρ2τs2)2
,

it follows that

2∑
i=1

∂Ai

∂τη2

∣∣∣∣
τη2 = 0

= − 2γ2τη1τ
2
ε (1− γρ2τs2) [τθ + ρ21(τs1 + τη1)]

τs1(1 + γρ2τs2)3 [τε + ρ21(τs1 + τη1)(1 + ϕ10)]
3 .

Differentiating

A3 = τη2
γ2[τθ + ρ21(τs1 + τη1)]

2(τs2 + τη2)

τs2[1 + γρ2(τs2 + τη2)]4[τε + ρ21(τs1 + τη1) (1 + ϕ1)]2

gives

∂A3

∂τη2
=

γ2[τθ + ρ21(τs1 + τη1)]
2(τs2 + τη2)

τs2[1 + γρ2(τs2 + τη2)]4[τε + ρ21(τs1 + τη1) (1 + ϕ1)]2

+ τη2
∂

∂τη2

{
γ2[τθ + ρ21(τs1 + τη1)]

2(τs2 + τη2)

τs2[1 + γρ2(τs2 + τη2)]4[τε + ρ21(τs1 + τη1) (1 + ϕ1)]2

}
.

Evaluating this derivative at τη2 = 0, we obtain

∂A3

∂τη2

∣∣∣∣
τη2 = 0

=
γ2 [τθ + ρ21(τs1 + τη1)]

2

(1 + γρ2τs2)4 [τε + ρ21(τs1 + τη1) (1 + ϕ10)]
2 .

Therefore,

3∑
i=1

∂Ai

∂τη2

∣∣∣∣
τη2 = 0

=
γ2 [τθ + ρ21(τs1 + τη1)]

(1 + γρ2τs2)3 [τε + ρ21(τs1 + τη1)(1 + ϕ10)]
2

·
{
− 2τη1τ

2
ε (1− γρ2τs2)

τs1 [τε + ρ21(τs1 + τη1)(1 + ϕ10)]
+

τθ + ρ21(τs1 + τη1)

1 + γρ2τs2

}
.

The condition in the proposition follows immediately. q.e.d.

Proof of Proposition 7:
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The vectors of signals available to rational agents born at dates 1 and 2 are Ii1 =

(P1, xi, Y1, Y2) and Ii2 = (P1, xi, Y1, Y2, P2), respectively. Define P ∗
1 and P ∗

2 as in Section

3. The analysis of date 2 in Section 3 goes through unchanged. So the expressions for ρ2, a2,

b2, c21, c22, and d2 in Proposition 3 hold true.

The asset demands of the first-generation rational traders are

Di1 = γ
E(P2 | I1i)− P1

var(P2 | I1i)
.

The conditional moments of P2 as of date 1 are:

E(P2 | I1i) = a2Γ1

[
τε xi + ρ21(τs1 + τη1)P

∗
1

]
+ b2Γ2τη2Y2 − c21Y1 − c22Y2 + d2P1

var(P2 | I1i) = a22Γ1 + b22Γ2,

where Γ1 and Γ2 are defined as in Proposition 3. These expressions can be used to rewrite

the date-1 market clearing condition
∫ 1

0
Di1di+ s1 = 0 as

0 = a2Γ1τε θ

+
a22Γ1 + b22Γ2

γ
s1 −

{
a2Γ1

[
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

]
+ c21

}
Y1

+

[
−a2Γ1ρ

2
1(τs1 + τη1)

c12
a1

+ b2Γ2τη2 − c22

]
Y2

−
[
1− d2 −

a2Γ1ρ
2
1(τs1 + τη1)

a1

]
P1.

Solving for P1 and matching coefficients with (7) yields the expressions for ρ1, a1, b1, c11,

and c12 in the proposition. q.e.d.

Proof that E[(P2 − P1)s1] < 0 in the OLG model:

From Proposition 7, we get the same expression for −c21/τs1+d2(b1− c11)/τs1 as in the LLA

model and

(b1 − c11)
1

τs1
=

ρ21τs1(∆ + τε) + τε [τε + ρ22(τs2 + τη2)]

∆ρ1τs1 [τθ + τε + ρ21(τs1 + τη1)]
.

Plugging this into the expression for noise traders’ interim expected wealth in the main text

and simplifying terms, we get

ρ1
∆

− (b1 − c11)
1

τs1
= − (ρ21τs1 + τε) [τε + ρ22(τs2 + τη2)]

∆ρ1τs1 [τθ + τε + ρ21(τs1 + τη1)]
< 0.
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q.e.d.

Proof of Proposition 8:

Define Ai (i = 1, 2, 3) as in the proof of Proposition 5. Using the coefficients in Proposition

7, one obtains

A1 =
1

ρ21τs1

{
ρ21τs1(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

}2

A2 = τη1

{
ρ1(∆ + τε)

ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

}2

A3 =
τη2

τs2(τs2 + τη2)

(
τθ + τε + ρ21(τs1 + τη1)

γ {ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2

,

where ∆ is defined as in Proposition 3.

As τη2 → ∞, we have

A1 + A2 →
[(γτε)

2τs1 + τε]
2
+ τη1τs1(γτε)

4

(γτε)2τs1 [(γτε)2(τs1 + τη1) + τε]
2

and A3 → 0. These limits are identical to those in the model of Section 3 (cf. the proof of

Proposition 5). For τη2 = 0, we have

A1 + A2 =
(ρ210τs1 + τεC)

2
+ τη1τs1ρ

4
10

ρ210τs1 [ρ
2
10(τs1 + τη1) + τεC]

2 ,

where

ρ10 ≡ γτε
γ2τετs2

1 + γ2τετs2

C ≡ τε + ρ22τs2
τε +∆0

∆0 ≡ τθ + τε + ρ210(τs1 + τη1) + ρ22τs2

and ρ2 = γτε is given by Proposition 7, and A3 = 0.

For τη1 = 0, the expressions for A1 + A2 simplify to

A1 + A2 →
1

(γτε)2τs1
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for τη2 → ∞ and

A1 + A2 =
1

ρ210τs1
>

1

(γτε)2τs1

for τη2 = 0. q.e.d.

B Alternative measures of price efficiency

Grossman and Stiglitz (1980, p. 399) and Li (2022), based on Mendel and Shleifer

(2012, p. 314), propose alternative measures of price efficiency, viz., corr2(θ, P ) and

var(P | s, η)/var(P | θ), respectively.
In the static model of Section 2, from (2),

cov(θ, P ) = a
1

τθ

var(P ) = a2
1

τθ
+ (b− c)2

1

τs
+ c2

1

τη

var(P | s, η) = a2
1

τθ

var(P | θ) = (b− c)2
1

τs
+ c2

1

τη
.

Using Proposition 1, we obtain

corr2(θ, P ) =
cov2(θ, P )

var(θ)var(P )
=

1
τθ

1
τθ
+ 1

var−1(θ|P )−τθ

(B.1)

and
var(P | s, η)
var(P | θ)

=
var−1(θ|P )

τθ
− 1. (B.2)

For given τθ, both alternative measures of price efficiency are increasing functions of price

efficiency var−1(θ|P ). So, given τθ, the three different notions of price efficiency move in

lockstep when τη2 changes. In the dynamic model of Section 3, using (7) instead of (2)

and Proposition 3 (in the LLA version) or Proposition 7 (in the OLG version) instead of

Proposition 1, one obtains the same expressions (B.1) and (B.2) for the alternative measures

of price efficiency, with P ∗∗
1 replacing P .
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